rs232_rcv393.v 6.58 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*!
 * <b>Module:</b>rs232_rcv393
 * @file rs232_rcv393.v
 * @date 2015-07-06  
 * @author Andrey Filippov     
 *
 * @brief rs232 receiver
 *
 * @copyright Copyright (c) 2015 Elphel, Inc.
 *
 * <b>License:</b>
12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * rs232_rcv393.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  rs232_rcv393.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
25 26 27 28 29 30
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
31
 * files and/or simulating the code, the copyright holders of this Program give
32 33
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
Andrey Filippov's avatar
Andrey Filippov committed
34
 * charge, and there is no dependence on any encrypted modules for simulating of
35 36 37
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
38
 */
39 40 41
`timescale 1ns/1ps

module  rs232_rcv393(
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    input                         xclk,    // half frequency (80 MHz nominal)
    input                  [15:0] bitHalfPeriod,  // half of the serial bit duration, in xclk cycles
    input                         ser_di,         // rs232 (ttl) serial data in
    input                         ser_rst,        // reset (force re-sync)
    output                        ts_stb,         // strobe timestamp (start of message) (reset bit counters in nmea decoder)
    output reg                    wait_just_pause,// may be used as reset for decoder
    output                        start,          // serial character start (single pulse)
    output reg                    ser_do,         // serial data out(@posedge xclk) LSB first!
    output reg                    ser_do_stb,     // output data strobe (@posedge xclk), first cycle after ser_do becomes valid
    // Next outputs are just fro debugging
    output                  [4:0] debug,          // {was_ts_stb, was_start, was_error, was_ser_di_1, was_ser_di_0} - once after reset
    output                 [15:0] bit_dur_cntr,
    output                  [4:0] bit_cntr);
    
    reg     [4:0] ser_di_d;
    reg           ser_filt_di;
    reg           ser_filt_di_d;
    reg           bit_half_end; // last cycle in half-bit
    reg           last_half_bit;
    reg           wait_pause;   // waiting input to stay at 1 for 10 cycles
    reg           wait_start;   // (or use in_sync - set it after wait_pause is over?
    reg           receiving_byte;
    reg           start_r;
    reg    [15:0] bit_dur_cntr_r; // bit duration counter (half bit duration)
    reg     [4:0] bit_cntr_r;     // counts half-bit intervals
    wire          error;          // low level during stop slot
    reg     [1:0] restart;
    wire          reset_wait_pause;
    reg           ts_stb_r;
    reg           shift_en;
72
  
73 74 75 76 77 78 79 80
    wire          sample_bit;
    wire          reset_bit_duration;
    wire          wstart;
//  reg     [4:0] debug0;          // {was_ts_stb, was_start, was_error, was_ser_di_1, was_ser_di_0} - once after reset
    assign reset_wait_pause =   (restart[1] && !restart[0]) || (wait_pause && !wait_start && !ser_di);
    assign error =              !ser_filt_di && last_half_bit && bit_half_end && receiving_byte;
    assign sample_bit =         shift_en && bit_half_end && !bit_cntr[0];
    assign reset_bit_duration = reset_wait_pause || start || bit_half_end || ser_rst;
81
  
82
    assign wstart =             wait_start && ser_filt_di_d && !ser_filt_di;
83
  
84 85
//  assign debug[4:0] =         {1'b0,wait_start,wait_pause,receiving_byte,shift_en};
    assign debug[4:0] =         {error, wait_start, wait_pause, receiving_byte, shift_en};
86
  
87 88 89 90 91 92 93
    assign bit_dur_cntr =       bit_dur_cntr_r; // bit duration counter (half bit duration)
    assign bit_cntr =           bit_cntr_r;        // counts half-bit intervals
    assign start =              start_r;
    assign ts_stb =             ts_stb_r;
  
    always @ (posedge xclk) begin
        ser_di_d[4:0] <= {ser_di_d[3:0],ser_di};
94

95 96
        if (ser_rst || &ser_di_d[4:0]) ser_filt_di <= 1'b1;
        else if      (~|ser_di_d[4:0]) ser_filt_di <= 1'b0;
97
    
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        ser_filt_di_d <= ser_filt_di;
        
        restart[1:0] <= {restart[0],(ser_rst || (last_half_bit && bit_half_end && receiving_byte))};
        wait_pause <= !ser_rst && (reset_wait_pause ||
                                   (receiving_byte && last_half_bit && bit_half_end ) ||
                                   (wait_pause && !(last_half_bit && bit_half_end) && !(wait_start && !ser_filt_di)));
        start_r                 <= wstart;
        ts_stb_r <= !wait_pause && wstart; // only first start after pause
        bit_half_end <=(bit_dur_cntr_r[15:0]==16'h1) && !reset_bit_duration;
        
        wait_start <= !ser_rst && ((wait_pause || receiving_byte) && last_half_bit && bit_half_end  || (wait_start && !wstart));
        receiving_byte <= !ser_rst && (start_r || (receiving_byte && !(last_half_bit && bit_half_end)));
        wait_just_pause <=wait_pause && !wait_start;
        
        
        if (reset_bit_duration) bit_dur_cntr_r[15:0] <= bitHalfPeriod[15:0];
        else                    bit_dur_cntr_r[15:0] <= bit_dur_cntr_r[15:0] - 1;
        
        if (reset_wait_pause || ser_rst)  bit_cntr_r[4:0] <= 5'h13;
        else if (start_r)                    bit_cntr_r[4:0] <= 5'h12;
        else if (bit_half_end)             bit_cntr_r[4:0] <= bit_cntr_r[4:0] - 1;
119
    
120 121 122 123 124 125 126
        last_half_bit <= ((bit_cntr_r[4:0] == 5'h0) && !bit_half_end); 
        shift_en <= receiving_byte &&  ((bit_half_end && ( bit_cntr_r[3:0]==4'h2))? bit_cntr_r[4]:shift_en);
       
        if (sample_bit) ser_do <= ser_filt_di;
        ser_do_stb <= sample_bit; 
        
    //    if (ser_rst) debug0[4:0] <=5'b0;
127
    //    else debug0[4:0] <= debug | {ts_stb_r,start_r,error,ser_di_d[0],~ser_di_d[0]};
128
    end
129
endmodule