Commit dc5e7ac2 authored by Nathaniel Callens's avatar Nathaniel Callens

deletions made

parent 20af6366
......@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "dbef8759",
"metadata": {
"id": "dbef8759"
......@@ -28,7 +28,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "9ed20f84",
"metadata": {
"id": "9ed20f84"
......@@ -218,7 +218,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 8,
"id": "bb11dcd0",
"metadata": {},
"outputs": [],
......@@ -266,7 +266,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 9,
"id": "c01fda28",
"metadata": {},
"outputs": [],
......@@ -335,7 +335,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 10,
"id": "ffa858e8",
"metadata": {},
"outputs": [
......@@ -346,8 +346,8 @@
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_23384/384786850.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mencode_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merror\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morig_image\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mencoder\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mimages\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mplot\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_23384/3253315524.py\u001b[0m in \u001b[0;36mencoder\u001b[1;34m(images, i, plot)\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;31m#update on throughout\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;31m#new_error[1:-1,1:-1] = np.reshape(error[1:-1,1:-1],(510, 638))\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0mnew_error\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0merror\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;31m#Set the inside of the updating matrix to be the same as the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[1;31m#error matrix retreived from predicting\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0mkeep\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnew_error\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;31m#The top left entry stays the same\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_2620/384786850.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mencode_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merror\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morig_image\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mencoder\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mimages\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mplot\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_2620/3253315524.py\u001b[0m in \u001b[0;36mencoder\u001b[1;34m(images, i, plot)\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;31m#update on throughout\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;31m#new_error[1:-1,1:-1] = np.reshape(error[1:-1,1:-1],(510, 638))\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0mnew_error\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0merror\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;31m#Set the inside of the updating matrix to be the same as the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[1;31m#error matrix retreived from predicting\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0mkeep\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnew_error\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;31m#The top left entry stays the same\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mValueError\u001b[0m: could not broadcast input array from shape (508,636) into shape (510,638)"
]
}
......@@ -456,12 +456,25 @@
},
{
"cell_type": "code",
"execution_count": 137,
"execution_count": 13,
"id": "30b1c87e",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6.7830123821108295\n"
]
}
],
"source": [
"def entropy_func(images):\n",
" \"\"\"\n",
" Computes the entropy for all pictures (tiff files) in the images list.\n",
" This gives an idea of how many bits it would take on average to encode the\n",
" given image. The output is a list of entropies, one per image.\n",
" \"\"\"\n",
" entr = []\n",
" for i in range(len(images)):\n",
" prediction, diff, im, err, A = predict(images, i)\n",
......@@ -470,7 +483,8 @@
" entr.append(sp.stats.entropy(counts))\n",
" return entr\n",
"\n",
"e = entropy_func(images)"
"e = entropy_func(images)\n",
"print(np.mean(e))"
]
},
{
......
......@@ -432,7 +432,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.8.11"
}
},
"nbformat": 4,
......
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment