simul_axi_hp_rd.v 12.4 KB
Newer Older
1 2 3
/*******************************************************************************
 * Module: simul_axi_hp_rd
 * Date:2015-04-25  
4
 * Author: Andrey Filippov     
5 6
 * Description: Simplified model of AXI_HP read channel (64-bit only)
 *
7
 * Copyright (c) 2015 Elphel, Inc.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 * simul_axi_hp_rd.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  simul_axi_hp_rd.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *******************************************************************************/
`timescale 1ns/1ps

module  simul_axi_hp_rd #(
    parameter [1:0] HP_PORT=0
)(
    input         rst,
    // AXI signals
    input         aclk,
    output        aresetn, // do not use?
    // read address
    input  [31:0] araddr,
    input         arvalid,
    output        arready,
    input  [ 5:0] arid,
    input  [ 1:0] arlock,
    input  [ 3:0] arcache,
    input  [ 2:0] arprot,
    input  [ 3:0] arlen,
39
    input  [ 1:0] arsize,
40 41 42 43 44 45 46 47
    input  [ 1:0] arburst,
    input  [ 3:0] arqos,
    // read data
    output [63:0] rdata,
    output        rvalid,
    input         rready,
    output [ 5:0] rid,
    output        rlast,
48
    output [ 1:0] rresp,
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    // PL extra (non-AXI) signals
    output [ 7:0] rcount,
    output [ 2:0] racount,
    input         rdissuecap1en,
    // Simulation signals - use same aclk
    output [31:0] sim_rd_address,
    output [ 5:0] sim_rid,
    input         sim_rd_valid,
    output        sim_rd_ready,
    input  [63:0] sim_rd_data,
    output [ 2:0] sim_rd_cap,
    output [ 3:0] sim_rd_qos,
    input  [ 1:0] sim_rd_resp,
    input  [31:0] reg_addr,
    input         reg_wr,
    input         reg_rd,
    input  [31:0] reg_din,
    output [31:0] reg_dout
);
    localparam AFI_BASECTRL= 32'hf8008000+ (HP_PORT << 12);
    localparam AFI_RDCHAN_CTRL= AFI_BASECTRL + 'h00;
    localparam AFI_RDCHAN_ISSUINGCAP= AFI_BASECTRL + 'h4;
    localparam AFI_RDQOS= AFI_BASECTRL + 'h8;
    localparam AFI_RDDATAFIFO_LEVEL= AFI_BASECTRL + 'hc;
    localparam AFI_RDDEBUG= AFI_BASECTRL + 'h10; // SuppressThisWarning VEditor - not yet used


    localparam VALID_ARLOCK =  2'b0; // TODO
    localparam VALID_ARCACHE = 4'b0011; //
    localparam VALID_ARPROT =  3'b000;
    localparam VALID_ARLOCK_MASK =  2'b11; // TODO
    localparam VALID_ARCACHE_MASK = 4'b0011; //
    localparam VALID_ARPROT_MASK =  3'b010;

    assign aresetn= ~rst; // probably not needed at all - docs say "do not use"

    reg         rdQosHeadOfCmdQEn =   0;
    reg         rdFabricOutCmdEn =    0;
    reg         rdFabricQosEn =       0;
    reg         rd32BitEn =           0; // verify it i 0
    reg   [2:0] rdIssueCap1 =         0;
    reg   [2:0] rdIssueCap0 =         7;
    reg   [3:0] rdStaticQos =         0;
    
    wire  [3:0] rd_qos_in;
    wire  [3:0] rd_qos_out;
/*    
    wire        aw_nempty;
    wire        w_nempty;
    wire        enough_data; // enough data to start a new burst
    wire [11:3] next_wr_address; // bits that are incrtemented in 64-bit mode (higher are kept according to AXI 4KB inc. limit)
    reg  [31:0] write_address;
    wire        fifo_wd_rd; // read data fifo
    wire        last_confirmed_write;
*/

    wire  [5:0] arid_out; // verify it matches wid_out when outputting data
    wire  [1:0] arburst_out;
107
    wire  [1:0] arsize_out; // verify it is 3'h3
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    wire  [3:0] arlen_out;
    wire [31:0] araddr_out;
    wire        ar_nempty;
    reg   [7:0] fifo_with_requested=0; // fill level of data FIFO if all the requested data will arrive and nothing read
    wire        fifo_data_rd;
    wire  [7:0] next_with_requested;
    wire        start_read_burst_w;
    reg         was_data_fifo_read; // previos cycle was reading data from FIFO
    reg         was_data_fifo_write;// previos cycle was writing data to FIFO
    reg         was_addr_fifo_write; // previos cycle was writing addressto FIFO

    wire        read_in_progress_w; // should go inactive last confirmed upstream cycle
    reg         read_in_progress;
    reg   [3:0] read_left;
    reg   [1:0] rburst;
    reg   [3:0] rlen;
    wire [11:3] next_rd_address; // bits that are incrtemented in 64-bit mode (higher are kept according to AXI 4KB inc. limit)
    reg  [31:0] read_address;
    
    wire        last_confirmed_read;
    wire        last_read;
    
    
//    sim_rd_address = 
    assign sim_rd_qos = (rdQosHeadOfCmdQEn && (rd_qos_in > rd_qos_out))? rd_qos_in : rd_qos_out;
    assign sim_rd_cap = (rdFabricOutCmdEn && rdissuecap1en) ? rdIssueCap1 : rdIssueCap0;
    assign rd_qos_in =  rdFabricQosEn?(arqos & {4{arvalid}}) : rdStaticQos;
 //awqos & {4{awvalid}}   
    assign aresetn= ~rst; // probably not needed at all - docs say "do not use"
    //Supported control register fields
    assign reg_dout=(reg_rd && (reg_addr==AFI_RDDATAFIFO_LEVEL))?
                          {24'b0,rcount}:
                    (   (reg_rd && (reg_addr==AFI_RDCHAN_CTRL))?
                          {28'b0,rdQosHeadOfCmdQEn,rdFabricOutCmdEn,rdFabricQosEn,rd32BitEn}:
                     (  (reg_rd && (reg_addr==AFI_RDCHAN_ISSUINGCAP))?
                          {25'b0,rdIssueCap1,1'b0,rdIssueCap0}:
                      ( (reg_rd && (reg_addr==AFI_RDQOS))?
                          {28'b0,rdStaticQos}:32'bz)));

    always @ (posedge aclk or posedge rst) begin
        if (rst) begin
            rdQosHeadOfCmdQEn  <= 0;
            rdFabricOutCmdEn   <= 0;
            rdFabricQosEn      <= 1;
            rd32BitEn        <= 0;
        end else if (reg_wr && (reg_addr==AFI_RDCHAN_CTRL)) begin
            rdQosHeadOfCmdQEn  <= reg_din[3];
            rdFabricOutCmdEn   <= reg_din[2];
            rdFabricQosEn      <= reg_din[1];
            rd32BitEn        <= reg_din[0];
        end
        if (rst) begin
            rdIssueCap1  <= 0;
            rdIssueCap0  <= 7;
        end else if (reg_wr && (reg_addr==AFI_RDCHAN_ISSUINGCAP)) begin
            rdIssueCap1  <= reg_din[6:4];
            rdIssueCap0  <= reg_din[2:0];
        end
        if (rst) begin
            rdStaticQos  <= 0;
        end else if (reg_wr && (reg_addr==AFI_RDQOS)) begin
            rdStaticQos  <= reg_din[3:0];
        end
    end

    assign fifo_data_rd = rvalid && rready;
    assign next_with_requested= fifo_with_requested + {4'b0,arlen_out[3:0]} + {7'h0,~fifo_data_rd};
    assign start_read_burst_w= ar_nempty && (next_with_requested <= 8'h80) &&
                               (! read_in_progress || last_confirmed_read);
    assign read_in_progress_w= ar_nempty && (next_with_requested <= 8'h80) ||
                               (read_in_progress && !last_confirmed_read); 
    assign rvalid= (|rcount[7:1]) ||  (rcount[0] && !was_data_fifo_read);
    assign arready= !racount[2] && (!racount[1] || !racount[0] || !was_addr_fifo_write);
    assign last_read = (read_left==0);
    assign last_confirmed_read = (read_left==0) && sim_rd_valid && sim_rd_ready;
    // AXI: Bursts should not cross 4KB boundaries (... and to limit size of the address incrementer)
    // in 64 bit mode - low 3 bits are preserved, next 9 are incremented        
    assign      next_rd_address[11:3] =
      rburst[1]?
        (rburst[0]? {9'bx}:((read_address[11:3] + 1) & {5'h1f, ~rlen[3:0]})):
        (rburst[0]? (read_address[11:3]+1):(read_address[11:3]));
    assign sim_rd_address = read_address; 
    assign sim_rid =        arid_out;
    // Current model policy is not to initiate a new burst (read from simulation port) if it may overflow FIFO
    // - maybe the real module is done this way to aggregate external accesses.
    // So 'assign sim_rd_ready =   read_in_progress;' should be sufficient, but if that will chnage - below is 
    // full vesion that does not depend on the assumption.
    assign sim_rd_ready =   read_in_progress &&
           !rcount[7] && (!(&rcount[6:0]) || !was_data_fifo_write);
    
    always @ (posedge  aclk) begin
        if (start_read_burst_w) begin
200
            if (arsize_out != 2'h3) begin
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
                $display ("%m: at time %t ERROR: arsize_out=%h, currently only 'h3 (8 bytes) is valid",$time,arsize_out);
                $stop;
            end
        end
        if (arvalid && arready) begin
            if (((arlock ^ VALID_ARLOCK) & VALID_ARLOCK_MASK) != 0) begin
                $display ("%m: at time %t ERROR: arlock = %h, valid %h with mask %h",$time, arlock, VALID_ARLOCK, VALID_ARLOCK_MASK);
                $stop;
            end
            if (((arcache ^ VALID_ARCACHE) & VALID_ARCACHE_MASK) != 0) begin
                $display ("%m: at time %t ERROR: arcache = %h, valid %h with mask %h",$time, arcache, VALID_ARCACHE, VALID_ARCACHE_MASK);
                $stop;
            end
            if (((arprot ^ VALID_ARPROT) & VALID_ARPROT_MASK) != 0) begin
                $display ("%m: at time %t ERROR: arprot = %h, valid %h with mask %h",$time, arprot, VALID_ARPROT, VALID_ARPROT_MASK);
                $stop;
            end
        end
    end
    
    always @ (posedge aclk or posedge rst) begin
        if (rst)                     fifo_with_requested <= 0;
        else if (start_read_burst_w) fifo_with_requested <= next_with_requested;
        else                         fifo_with_requested <= fifo_with_requested - {7'h0,fifo_data_rd};
        
        if (rst)  was_data_fifo_read <= 0;
        else      was_data_fifo_read <= rvalid && rready;
        
        if (rst)  was_addr_fifo_write <= 0;
        else      was_addr_fifo_write <= arvalid && arready;

        if (rst)  was_data_fifo_write <= 0;
        else      was_data_fifo_write <= sim_rd_valid && sim_rd_ready;
        

        if   (rst)                   rburst[1:0] <= 0;
        else if (start_read_burst_w) rburst[1:0] <= arburst_out[1:0];

        if   (rst)                   rlen[3:0] <= 0;
        else if (start_read_burst_w) rlen[3:0] <=   arlen_out[3:0];

        if   (rst) read_in_progress <= 0;
        else       read_in_progress <= read_in_progress_w;
        
        if   (rst) read_left <= 0;
        else if (start_read_burst_w)           read_left <= arlen_out[3:0]; // precedence over inc
        else if (sim_rd_valid && sim_rd_ready) read_left <= read_left-1; //SuppressThisWarning ISExst Result of 32-bit expression is truncated to fit in 4-bit target.
                
        if   (rst)                             read_address <= 32'bx;
        else if (start_read_burst_w)           read_address <= araddr_out; // precedence over inc
        else if (sim_rd_valid && sim_rd_ready) read_address <= {read_address[31:12],next_rd_address[11:3],read_address[2:0]};
        
        
    end


257
fifo_same_clock_fill   #( .DATA_WIDTH(50),.DATA_DEPTH(2)) // read - 4, write - 32?
258 259 260 261 262 263
    raddr_i (
        .rst       (rst),
        .clk       (aclk),
        .sync_rst  (1'b0),
        .we        (arvalid && arready),
        .re        (start_read_burst_w),
264 265
        .data_in   ({arid[5:0],     arburst[1:0],    arsize[1:0],    arlen[3:0],    araddr[31:0],     rd_qos_in[3:0]}),
        .data_out  ({arid_out[5:0], arburst_out[1:0],arsize_out[1:0],arlen_out[3:0],araddr_out[31:0], rd_qos_out[3:0]}),
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        .nempty    (ar_nempty),
        .half_full (), //aw_half_full),
        .under      (), //waddr_under), // output reg 
        .over       (), //waddr_over), // output reg
        .wcount     (), //waddr_wcount), // output[3:0] reg 
        .rcount     (), //waddr_rcount), // output[3:0] reg 
        .num_in_fifo(racount) // output[3:0] 
    );

fifo_same_clock_fill   #( .DATA_WIDTH(73),.DATA_DEPTH(7)) // read - 4, write - 32?
    rdata_i (
        .rst       (rst),
        .clk       (aclk),
        .sync_rst  (1'b0),
        .we        (sim_rd_valid && sim_rd_ready),
        .re        (rvalid && rready),
        .data_in   ({last_read, arid_out[5:0],  sim_rd_resp[1:0],  sim_rd_data[63:0]}),
        .data_out  ({rlast,     rid[5:0],       rresp[1:0],        rdata[63:0]}),
        .nempty    (), //r_nempty),
        .half_full (), //aw_half_full),
        .under      (), //waddr_under), 
        .over       (), //waddr_over), 
        .wcount     (), //waddr_wcount), 
        .rcount     (), //waddr_rcount), 
        .num_in_fifo(rcount) 
    );



endmodule