Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
e426ec6e
Commit
e426ec6e
authored
Jul 19, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
end of day, no major findings
parent
824f26de
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
16949 additions
and
1010 deletions
+16949
-1010
FPNprojstart.py
FPNprojstart.py
+34
-13
information_weird_array.csv
information_weird_array.csv
+13919
-997
smaller_information_weird_array.csv
smaller_information_weird_array.csv
+2996
-0
No files found.
FPNprojstart.py
View file @
e426ec6e
from
functools
import
singledispatchmethod
from
cv2
import
mean
import
numpy
as
np
from
WorkingPyDemo
import
*
from
Remove_Noise
import
*
...
...
@@ -13,7 +11,7 @@ from sklearn.metrics import mean_squared_error
scenes
=
remote_file_extractor
(
"/media/elphel/NVME/lwir16-proc/te0607/scenes/"
)
images
=
remote_image_extractor
(
scenes
)
images
=
find_only_in_channel
(
images
,
"5"
)
#
images = find_only_in_channel(images, "5")
sftp_client
=
setup_remote_sftpclient
()
image_array
=
np
.
array
(
Image
.
open
(
sftp_client
.
open
(
images
[
250
])))
# image_array = np.array(Image.open(images[250])).astype(np.uint16)
...
...
@@ -52,22 +50,30 @@ def intarray_to_uint32(int_array):
# print(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[0:6])
frame_spacings
=
[]
signaltonoise
=
[]
information_array
=
np
.
zeros
((
len
(
images
),
3
))
information_array
=
np
.
zeros
((
len
(
images
),
5
))
def
celcius_to_kelvin
(
celcius
):
return
celcius
+
273.15
for
i
in
range
(
len
(
images
)
):
last_image
=
np
.
array
(
Image
.
open
(
sftp_client
.
open
(
images
[
0
])))
.
astype
(
np
.
uint16
)
for
i
in
range
(
1
,
3000
):
image_array
=
np
.
array
(
Image
.
open
(
sftp_client
.
open
(
images
[
i
])))
.
astype
(
np
.
uint16
)
current_frame_count
=
intarray_to_uint32
(
repopulate_array_with_bitstring
(
uint16_array_to_bitstring
(
image_array
[
0
]))[
84
:
88
])
frame_count_at_FFC
=
intarray_to_uint32
(
repopulate_array_with_bitstring
(
uint16_array_to_bitstring
(
image_array
[
0
]))[
88
:
92
])
# signaltonoise.append(1/np.std(image_array[1:]))
information_array
[
i
,
0
]
=
current_frame_count
-
frame_count_at_FFC
# information_array[i,-1] = 1
/np.std(image_array[1:])
information_array
[
i
,
-
1
]
=
mean_squared_error
(
gaussian_filter
(
image_array
[
1
:],
sigma
=
.4
),
image_array
[
1
:])
information_array
[
i
,
-
1
]
=
4096
/
np
.
std
(
image_array
[
1
:])
information_array
[
i
,
-
2
]
=
mean_squared_error
(
gaussian_filter
(
image_array
[
1
:],
sigma
=
.4
),
image_array
[
1
:])
# print(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[76:77])
# print("start")
information_array
[
i
,
1
]
=
intarray_to_uint32
(
repopulate_array_with_bitstring
(
uint16_array_to_bitstring
(
image_array
[
0
]))[
94
:
96
])
-
\
celcius_to_kelvin
(
intarray_to_uint32
(
repopulate_array_with_bitstring
(
uint16_array_to_bitstring
(
image_array
[
0
]))[
162
:
166
]))
# information_array[i,1] = intarray_to_uint32(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[94:96]) - \
# celcius_to_kelvin(intarray_to_uint32(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[162:166]))
information_array
[
i
,
1
]
=
mean_squared_error
(
gaussian_filter
(
last_image
[
1
:],
sigma
=
.4
),
last_image
[
1
:])
# information_array[i,2] = 20*np.log10(np.std(image_array[1:]))
if
images
[
i
][
-
7
]
==
"1"
:
information_array
[
i
,
2
]
=
images
[
i
][
-
7
:
-
5
]
else
:
information_array
[
i
,
2
]
=
images
[
i
][
-
6
:
-
5
]
# print(information_array[i,2])
# information_array[i,3] = np.std(image_array[1:])
# information_array[i,2] = intarray_to_uint32(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[96:98])
# information_array[i,2] = celcius_to_kelvin(intarray_to_uint32(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[162:166]))
# information_array[i,4] = information_array[i,1] - information_array[i,2]
...
...
@@ -75,6 +81,7 @@ for i in range(len(images)):
# information_array[i,4] = intarray_to_uint32(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[170:174])
# information_array[i,5] = intarray_to_uint32(repopulate_array_with_bitstring(uint16_array_to_bitstring(image_array[0]))[174:178])
# frame_spacings.append(current_frame_count - frame_count_at_FFC)
last_image
=
np
.
array
(
Image
.
open
(
sftp_client
.
open
(
images
[
i
])))
.
astype
(
np
.
uint16
)
# print(np.argmin(signaltonoise))
# print(np.argmax(signaltonoise))
# print(np.min(abs(np.array(frame_spacings))))
...
...
@@ -82,11 +89,25 @@ for i in range(len(images)):
mask
=
information_array
[:,
0
]
>
0
information_df
=
pd
.
DataFrame
(
information_array
[
mask
],
columns
=
[
"Frame_Spacing"
,
"Curr_Temp_Diff"
,
"Signal_to_Noise"
])
information_df
.
to_csv
(
"information_weird_array.csv"
)
information_df
=
pd
.
read_csv
(
"information_weird_array.csv"
)
information_df
=
pd
.
DataFrame
(
information_array
[
mask
],
columns
=
[
"Frame_Spacing"
,
"Last_MSE"
,
"ImageName"
,
"Signal_to_Noise"
,
"MSE"
])
information_df
.
to_csv
(
"smaller_information_weird_array.csv"
)
information_df
=
pd
.
read_csv
(
"smaller_information_weird_array.csv"
,
index_col
=
0
)
information_array
=
information_df
.
values
print
(
information_array
[
0
,
2
])
plt
.
scatter
(
information_array
[:,
0
],
information_array
[:,
-
1
],
s
=
1
)
plt
.
legend
()
plt
.
xlabel
(
"Frame_Spacing"
)
plt
.
ylabel
(
"Signal_to_Noise"
)
plt
.
show
()
colors
=
[
"red"
,
"blue"
,
"green"
,
"orange"
,
"purple"
,
"brown"
,
"pink"
,
"black"
,
"grey"
,
"cyan"
,
"magenta"
,
"yellow"
,
"white"
,
"lime"
,
"teal"
,
"olive"
,
"maroon"
,
"navy"
,
"silver"
,
"gold"
,
"indigo"
,
"violet"
]
secondmask
=
information_array
[:,
1
]
<
30000
print
(
np
.
unique
(
information_array
[:,
2
]))
for
g
in
np
.
unique
(
information_array
[:,
2
]):
i
=
np
.
where
(
information_array
[:,
2
]
==
g
)
print
(
g
)
plt
.
scatter
(
information_array
[:,
1
][
secondmask
][
i
],
information_array
[:,
4
][
secondmask
][
i
],
s
=
1
,
label
=
g
,
color
=
colors
[
int
(
g
)])
plt
.
legend
()
plt
.
xlabel
(
"Frame_Spacing"
)
plt
.
ylabel
(
"Signal_to_Noise"
)
...
...
information_weird_array.csv
View file @
e426ec6e
This diff is collapsed.
Click to expand it.
smaller_information_weird_array.csv
0 → 100644
View file @
e426ec6e
This source diff could not be displayed because it is too large. You can
view the blob
instead.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment