Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
410cc91f
Commit
410cc91f
authored
Jul 13, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
first_dict name changes, docstrings
parent
e0758036
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
69 additions
and
312 deletions
+69
-312
ErrorImageCreator.py
ErrorImageCreator.py
+1
-1
FullTester.ipynb
FullTester.ipynb
+22
-293
RunningInParallel.py
RunningInParallel.py
+3
-3
WorkingPyDemo.py
WorkingPyDemo.py
+43
-15
No files found.
ErrorImageCreator.py
View file @
410cc91f
...
...
@@ -3,10 +3,10 @@ def produce_error_array(encoded_string, list_dic, bins, use_diff):
"""
This function decodes the encoded_matrix.
Input:
A (3 X 3): system of equation
list_dic (num_dic + 1,): a list of huffman coding table
encoded_matrix (512, 640): encoded matrix
bins (num_bins - 1,): a list of threshold to cut the bins
use_diff (bool): whether or not to use the alternate differencing system
Return:
decode_matrix (512, 640): decoded matrix
...
...
FullTester.ipynb
View file @
410cc91f
This diff is collapsed.
Click to expand it.
RunningInParallel.py
View file @
410cc91f
...
...
@@ -21,7 +21,7 @@ if __name__ == "__main__":
scenes
=
file_extractor
(
folder_name
)
images
=
image_extractor
(
scenes
)
dview
=
initialize
()
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
True
)
list_dic
=
np
.
load
(
"first_dic
t
.npy"
,
allow_pickle
=
True
)
bins
=
[
21
,
32
,
48
]
starttime
=
time
()
...
...
@@ -30,7 +30,7 @@ if __name__ == "__main__":
Takes in the filename and writes the compressed image
"""
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
True
)
list_dic
=
np
.
load
(
"first_dic
t
.npy"
,
allow_pickle
=
True
)
bins
=
[
21
,
32
,
48
]
image
,
new_error
,
diff
=
huffman
(
filename
,
4
,
False
)
encoded_string
=
encoder
(
new_error
,
list_dic
,
diff
,
bins
)
...
...
@@ -42,7 +42,7 @@ if __name__ == "__main__":
with
open
(
newname
+
"_Compressed.txt"
,
'wb'
)
as
f
:
f
.
write
(
inletters
)
def
decode_an_image
(
filename
):
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
True
)
list_dic
=
np
.
load
(
"first_dic
t
.npy"
,
allow_pickle
=
True
)
bins
=
[
21
,
32
,
48
]
image
,
new_error
,
diff
=
huffman
(
filename
,
4
,
False
)
if
filename
[
-
5
:]
==
".tiff"
:
...
...
WorkingPyDemo.py
View file @
410cc91f
...
...
@@ -65,14 +65,13 @@ def predict_pix(tiff_image_path, difference = True):
Input:
tiff_image_path (string): path to the tiff file
difference (bool): whether or not to use the alternate differencing system
Return:
image ndarray(512 X 640): original image
diff. ndarray(325380,): IF difference = TRUE, difference between the min and max of four neighbors exclude the boundary
ELSE: the residuals of the four nearest pixels to a fitted hyperplane
error ndarray(325380,): difference between the original image and predicted image
A ndarray(3 X 3): system of equation
"""
image_obj
=
Image
.
open
(
tiff_image_path
)
#Open the image and read it as an Image object
image_array
=
np
.
array
(
image_obj
)[
1
:]
.
astype
(
int
)
#Convert to an array, leaving out the first row because the first row is just housekeeping data
...
...
@@ -187,7 +186,8 @@ def make_dictionary(tiff_image_path_list, num_bins=4, difference = True):
Input:
tiff_image_path (string): path to the tiff file
num_bins (int): number of bins
difference (bool): whether or not to use the alternate differencing system
Return:
huffman_encoding_list list (num_bins + 1): a list of dictionary, each dictionary is a huffman encoding
bins list (num_bins - 1,): a list of threshold to cut the bins
...
...
@@ -278,16 +278,13 @@ def huffman(tiff_image_path, num_bins=4, difference = True):
Input:
tiff_image_path (string): path to the tiff file
num_bins (int): number of bins
difference (bool): whether or not to use the alternate differencing system
Return:
huffman_encoding_list list (num_bins + 1): a list of dictionary
image_as_array ndarray (512, 640): original image
new_error ndarray (512, 640): error that includes the boundary
diff ndarray (510, 638): difference of min and max of the 4 neighbors
boundary ndarray (2300,): the boundary values after subtracting the very first pixel value
predict ndarray (325380,): the list of predicted values
bins list (num_bins - 1,): a list of threshold to cut the bins
A ndarray (3 X 3): system of equation
"""
# get the image_as_array, etc
image_as_array
,
diff
,
error
=
predict_pix
(
tiff_image_path
,
difference
)
...
...
@@ -374,8 +371,9 @@ def encoder(error, list_dic, diff, bins):
bins (num_bins - 1,): a list of threshold to cut the bins
Return:
encoded
(512, 640): encoded matrix
returnable_encode
(512, 640): encoded matrix
"""
returnable_encode
=
""
# copy the error matrix (including the boundary)
encoded
=
np
.
copy
(
error
)
.
astype
(
int
)
.
astype
(
str
)
.
astype
(
object
)
...
...
@@ -400,10 +398,10 @@ def decoder(encoded_string, list_dic, bins, use_diff):
"""
This function decodes the encoded_matrix.
Input:
A (3 X 3): system of equation
encoded_string (string): This is the input, the available information in 1s, 0s
list_dic (num_dic + 1,): a list of huffman coding table
encoded_matrix (512, 640): encoded matrix
bins (num_bins - 1,): a list of threshold to cut the bins
use_diff (bool): whether or not to use the alternate differencing system
Return:
decode_matrix (512, 640): decoded matrix
...
...
@@ -483,10 +481,24 @@ def decoder(encoded_string, list_dic, bins, use_diff):
return
decode_matrix
.
astype
(
int
)
def
read_from_file
(
filename
):
'''
This function reads the file and return the content in a list
Input:
filename (string): the name of the file
Return:
content (list): the content of the file
'''
with
open
(
filename
,
'rb'
)
as
file
:
return
file
.
read
()
def
bitstring_to_bytes
(
input_string
):
'''
This function converts the bitstring to bytes
Input:
input_string (string): the bitstring
Return:
output_string (string): the bytes
'''
int_array
=
[]
length_of_string
=
len
(
input_string
)
while
length_of_string
>=
8
:
...
...
@@ -501,12 +513,28 @@ def bitstring_to_bytes(input_string):
return
bytes
(
int_array
)
def
bytes_to_bitstring
(
input_bytearray
):
'''
This function converts the bytes to bitstring
Input:
input_bytearray (bytearray): the bytes
Return:
output_string (string): the bitstring
'''
end_string
=
""
int_array
=
[
i
for
i
in
input_bytearray
]
for
i
,
item
in
enumerate
(
int_array
):
end_string
+=
(
bin
(
item
)[
2
:]
.
zfill
(
8
))
return
end_string
def
text_to_tiff
(
filename
,
list_dic
,
bins
):
'''
This function converts and saves the text to tiff
Input:
filename (string): the name of the file
list_dic (list): the list of dictionary
bins (list): the list of bins
Return:
None
'''
encoded_string
=
bytes_to_bitstring
(
read_from_file
(
filename
))
reconstruct_image
=
decoder
(
encoded_string
,
list_dic
,
bins
,
False
)
reconstruct_image
=
reconstruct_image
.
astype
(
np
.
uint16
)
...
...
@@ -521,7 +549,7 @@ if __name__ == "__main__":
list_dic
,
bins
=
make_dictionary
(
images
,
4
,
False
)
file_sizes_new
=
[]
file_sizes_old
=
[]
# list_dic = np.load("first_dic.npy", allow_pickle="TRUE")
# list_dic = np.load("first_dic
t
.npy", allow_pickle="TRUE")
bins
=
[
21
,
32
,
48
]
np
.
save
(
"first_dict.npy"
,
list_dic
)
for
i
in
range
(
len
(
images
)):
...
...
@@ -544,9 +572,9 @@ if __name__ == "__main__":
print
(
file_sizes_new
)
print
(
file_sizes_old
)
print
(
np
.
sum
(
file_sizes_new
)
/
np
.
sum
(
file_sizes_old
))
file_sizes_new
.
append
(
os
.
path
.
getsize
(
"first_dic.npy"
))
file_sizes_new
.
append
(
os
.
path
.
getsize
(
"first_dic
t
.npy"
))
print
(
np
.
sum
(
file_sizes_new
)
/
np
.
sum
(
file_sizes_old
))
# list_dic = np.load("first_dic.npy", allow_pickle="TRUE")
# list_dic = np.load("first_dic
t
.npy", allow_pickle="TRUE")
bins
=
[
21
,
32
,
48
]
# for i,item in enumerate(newnamesforlater):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment