Commit 0f3da6d0 authored by Bryce Hepner's avatar Bryce Hepner

medium update

parent 2022b169
This diff is collapsed.
...@@ -215,8 +215,8 @@ def save_testable_images(images, selected_channel, quantity_of_images): ...@@ -215,8 +215,8 @@ def save_testable_images(images, selected_channel, quantity_of_images):
selected_images = np.array(images)[image_locations] selected_images = np.array(images)[image_locations]
average_image = np.array(Image.open("Average_On_Channel(" + selected_channel + ").tiff")) # average_image = np.array(Image.open("Average_On_Channel(" + selected_channel + ").tiff"))
images_in_each_direction = 80 # images_in_each_direction = 80
for i, item in enumerate(selected_images): for i, item in enumerate(selected_images):
# if image_locations[i] < images_in_each_direction: # if image_locations[i] < images_in_each_direction:
# average_image = remote_create_average(images[image_locations[i] - image_locations[i]: image_locations[i] + images_in_each_direction + image_locations[i]], selected_channel) # average_image = remote_create_average(images[image_locations[i] - image_locations[i]: image_locations[i] + images_in_each_direction + image_locations[i]], selected_channel)
...@@ -226,13 +226,14 @@ def save_testable_images(images, selected_channel, quantity_of_images): ...@@ -226,13 +226,14 @@ def save_testable_images(images, selected_channel, quantity_of_images):
# average_image = remote_create_average(images[image_locations[i] - images_in_each_direction: image_locations[i] + images_in_each_direction], selected_channel) # average_image = remote_create_average(images[image_locations[i] - images_in_each_direction: image_locations[i] + images_in_each_direction], selected_channel)
image = Image.open(sftp_client.open(item)) image = Image.open(sftp_client.open(item))
wherelastslash = item.rfind("/") wherelastslash = item.rfind("/")
image = np.array(image)[1:] # image = np.array(image)[1:]
image = np.array(image)
savable_original = Image.fromarray(image) savable_original = Image.fromarray(image)
savable_original.save("original_images(" + selected_channel + ")/innerfolder/original" + item[wherelastslash + 1:]) savable_original.save("original_images(" + selected_channel + ")/innerfolder/original" + item[wherelastslash + 1:])
altered_image = adjust_to_original(image, average_image) # altered_image = adjust_to_original(image, average_image)
altered_image = Image.fromarray(altered_image) # altered_image = Image.fromarray(altered_image)
altered_image.save("averaged_images(" + selected_channel + ")/innerfolder" + item[wherelastslash:]) # altered_image.save("averaged_images(" + selected_channel + ")/innerfolder" + item[wherelastslash:])
# average_image = Image.fromarray(average_image) # average_image = Image.fromarray(average_image)
sftp_client.close() sftp_client.close()
...@@ -270,7 +271,7 @@ if __name__ == "__main__": ...@@ -270,7 +271,7 @@ if __name__ == "__main__":
images = remote_image_extractor(scenes) images = remote_image_extractor(scenes)
images = find_only_in_channel(images, "11") images = find_only_in_channel(images, "11")
# average_image = np.array(Image.open("Average_On_Channel(" + "11" + ").tiff")) # average_image = np.array(Image.open("Average_On_Channel(" + "11" + ").tiff"))
# save_testable_images(images,"11",5) save_testable_images(images,"11",500)
# plt.imshow(color_adjust(average_image),cmap='gray',vmin = 0, vmax=1) # plt.imshow(color_adjust(average_image),cmap='gray',vmin = 0, vmax=1)
# plt.show() # plt.show()
......
...@@ -113,7 +113,7 @@ def predict_pix(tiff_image_path, difference = True): ...@@ -113,7 +113,7 @@ def predict_pix(tiff_image_path, difference = True):
#The res is the residuals of the four points used to fit the hyperplane (summed distance of each of the #The res is the residuals of the four points used to fit the hyperplane (summed distance of each of the
#points to the hyperplane), it is a measure of gradient #points to the hyperplane), it is a measure of gradient
f, diff, rank, s = la.lstsq(points, neighbor.T, rcond=None) f, diff, rank, s = la.lstsq(points, neighbor.T, rcond=None)
diff = diff.astype(int) # diff = diff.astype(int)
# Pinv = np.linalg.pinv(points) # Pinv = np.linalg.pinv(points)
# b = [z0,z1,z2,z3] # b = [z0,z1,z2,z3]
# x = Pinv@np.array(b) # x = Pinv@np.array(b)
...@@ -461,7 +461,7 @@ def decoder(encoded_string, list_dic, bins, use_diff): ...@@ -461,7 +461,7 @@ def decoder(encoded_string, list_dic, bins, use_diff):
# x = Pinv@np.array(b) # x = Pinv@np.array(b)
# difference = np.linalg.norm(b - points@x,ord=2) # difference = np.linalg.norm(b - points@x,ord=2)
f, difference, rank, s = la.lstsq(points, [z0,z1,z2,z3], rcond=None) f, difference, rank, s = la.lstsq(points, [z0,z1,z2,z3], rcond=None)
difference = difference.astype(int) # difference = difference.astype(int)
# predict = np.round(np.round(np.linalg.solve(A,y)[-1][0],1)) # predict = np.round(np.round(np.linalg.solve(A,y)[-1][0],1))
predict = np.round(np.round((Ainv[-1]@y)[0],1)) predict = np.round(np.round((Ainv[-1]@y)[0],1))
......
No preview for this file type
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment