Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
03e500ca
Commit
03e500ca
authored
Jun 30, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Small changes for testing, revert behind if bad
parent
5015fe54
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
19 deletions
+25
-19
WorkingPyDemo.py
WorkingPyDemo.py
+25
-19
No files found.
WorkingPyDemo.py
View file @
03e500ca
...
...
@@ -74,7 +74,8 @@ def predict_pix(tiff_image_path, difference = True):
A ndarray(3 X 3): system of equation
"""
image_obj
=
Image
.
open
(
tiff_image_path
)
#Open the image and read it as an Image object
image_array
=
np
.
array
(
image_obj
)[
1
:,:]
.
astype
(
int
)
#Convert to an array, leaving out the first row because the first row is just housekeeping data
# image_array = np.array(image_obj)[1:].astype(int) #Convert to an array, leaving out the first row because the first row is just housekeeping data
image_array
=
np
.
array
(
image_obj
)
.
astype
(
int
)
# image_array = image_array.astype(int)
# A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]]) # the matrix for system of equation
Ainv
=
np
.
array
([[
0.5
,
-
0.5
,
-
0.5
],[
-
0.5
,
1.83333333
,
1.5
],[
0.5
,
-
1.5
,
-
1.5
]])
...
...
@@ -517,45 +518,50 @@ if __name__ == "__main__":
scenes
=
file_extractor
(
folder_name
)
images
=
image_extractor
(
scenes
)
newnamesforlater
=
[]
# list_dic, bins = make_dictionary(images[0:1
], 4, False)
list_dic
,
bins
=
make_dictionary
(
images
[
19
:
20
],
4
,
False
)
file_sizes_new
=
[]
file_sizes_old
=
[]
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
"TRUE"
)
#
list_dic = np.load("first_dic.npy", allow_pickle="TRUE")
bins
=
[
21
,
32
,
48
]
for
i
,
item
in
enumerate
(
images
):
if
"NoI"
in
item
:
print
(
item
)
print
(
i
)
# np.save("first_dic.npy", list_dic)
for
i
in
range
(
len
(
images
[
0
:
5
])):
# image, new_error, diff = huffman(images[i], 4, False)
# encoded_string = encoder(new_error, list_dic, diff, bins)
# inletters = bitstring_to_bytes(encoded_string)
for
i
in
range
(
19
,
len
(
images
[
0
:
20
])):
image
,
new_error
,
diff
=
huffman
(
images
[
i
],
4
,
False
)
encoded_string
=
encoder
(
new_error
,
list_dic
,
diff
,
bins
)
inletters
=
bitstring_to_bytes
(
encoded_string
)
if
images
[
i
][
-
5
:]
==
".tiff"
:
newname
=
images
[
i
][:
-
5
]
else
:
newname
=
images
[
i
][:
-
4
]
print
(
newname
)
newnamesforlater
.
append
(
newname
+
"_Compressed.txt"
)
#
with open(newname + "_Compressed.txt", 'wb') as f:
#
f.write(inletters)
with
open
(
newname
+
"_Compressed.txt"
,
'wb'
)
as
f
:
f
.
write
(
inletters
)
file_sizes_new
.
append
((
os
.
path
.
getsize
(
newname
+
"_Compressed.txt"
)))
file_sizes_old
.
append
((
os
.
path
.
getsize
(
images
[
i
])))
# sleep(5)
# if i % 50 == 0:
# print(i)
# sleep(20)
print
(
np
.
sum
(
file_sizes_new
)
/
np
.
sum
(
file_sizes_old
))
file_sizes_new
.
append
(
os
.
path
.
getsize
(
"first_dic.npy"
))
print
(
np
.
sum
(
file_sizes_new
)
/
np
.
sum
(
file_sizes_old
))
# list_dic = np.load("first_dic.npy", allow_pickle="TRUE")
bins
=
[
21
,
32
,
48
]
for
i
,
item
in
enumerate
(
newnamesforlater
):
print
(
item
)
image
,
new_error
,
diff
=
huffman
(
images
[
i
],
4
,
False
)
encoded_string2
=
bytes_to_bitstring
(
read_from_file
(
item
))
starttime
=
time
()
reconstruct_image
=
decoder
(
encoded_string2
,
list_dic
,
bins
,
False
)
print
(
np
.
allclose
(
image
,
reconstruct_image
))
print
(
time
()
-
starttime
)
#
for i,item in enumerate(newnamesforlater):
#
print(item)
#
image, new_error, diff = huffman(images[i], 4, False)
#
encoded_string2 = bytes_to_bitstring(read_from_file(item))
#
starttime = time()
#
reconstruct_image = decoder(encoded_string2, list_dic, bins, False)
#
print(np.allclose(image, reconstruct_image))
#
print(time() - starttime)
# text_to_tiff("images/1626033496_437803/1626033496_437803_3._Compressed.txt", list_dic, bins)
# original_image = Image.open("images/1626033496_437803/1626033496_437803_3.tiff")
# original_image = np.array(original_image)[1:]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment