link.v 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*!
 * <b>Module:</b>link
 * @file link.v
 * @date  2015-07-11  
 * @author Alexey     
 *
 * @brief sata link layer implementation
 *
 * @copyright Copyright (c) 2015 Elphel, Inc.
 *
 * <b>License:</b>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 *
 * link.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * link.v file is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
 * files and/or simulating the code, the copyright holders of this Program give
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
 * charge, and there is no dependence on any encrypted modules for simulating of
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
38
 */
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
//`include "scrambler.v"
//`include "crc.v"
module link #(
    // 4 = dword. 4-bytes aligned data transfers TODO 2 = word - easy, 8 = qword - difficult
    parameter DATA_BYTE_WIDTH = 4,
`ifdef SIMULATION
//    parameter ALIGNES_PERIOD =  10 // period of sending ALIGNp pairs
    parameter ALIGNES_PERIOD =  100 // period of sending ALIGNp pairs
`else
    parameter ALIGNES_PERIOD =  252 // period of sending ALIGNp pairs
`endif    
)
(
    // TODO insert watchdogs
    input   wire    rst,
    input   wire    clk,

    // data inputs from transport layer
    // input data stream (if any data during OOB setting => ignored)
    input   wire    [DATA_BYTE_WIDTH*8 - 1:0] data_in,
    // in case of strange data aligments and size (1st mentioned @ doc, p.310, odd number of words case)
    // Actually, only last data bundle shall be masked, others are always valid.
    // Mask could be encoded into 3 bits instead of 4 for qword, but encoding+decoding aren't worth the bit
    
    input   wire    [DATA_BYTE_WIDTH/2 - 1:0] data_mask_in,  // TODO, for now not supported, all mask bits are assumed to be set
    output  wire    data_strobe_out,                         // buffer read strobe
    input   wire    data_last_in,                            // transaction's last data budle pulse
    input   wire    data_val_in,                             // read data is valid (if 0 while last pulse wasn't received => need to hold the line)
    // data outputs to transport layer
    output  wire    [DATA_BYTE_WIDTH*8 - 1:0] data_out,      // read data, same as related inputs
    output  wire    [DATA_BYTE_WIDTH/2 - 1:0] data_mask_out, // same thing - all 1s for now. TODO
    output  wire    data_val_out,                            // count every data bundle read by transport layer, even if busy flag is set
                                                             // let the transport layer handle oveflows by itself
    input   wire    data_busy_in,                            // transport layer tells if its inner buffer is almost full
    output  wire    data_last_out,
    input   wire    frame_req,                               // request for a new frame transition
// a little bit of overkill with the cound of response signals, think of throwing out 1 of them    
    output  wire    frame_busy,                              // LL tells back if it cant handle the request for now
    output  wire    frame_ack,                               // LL tells if the request is transmitting
    output  wire    frame_rej,                               // or if it was cancelled because of simultanious incoming transmission
    output  wire    frame_done_good,                         // Tell TL if the outcoming transaction is done and how it was done
    output  wire    frame_done_bad,
    output  wire    incom_start,                             // if started an incoming transaction
    output  wire    incom_done,                              // if incoming transition was completed
    output  wire    incom_invalidate,                        // if incoming transition had errors
    output  wire    incom_sync_escape,                       // particular type - got sync escape
    input   wire    incom_ack_good,                          // transport layer responds on a completion of a FIS
    input   wire    incom_ack_bad,                           // Reject frame even if it had good CRC (Bad will be responded automatically)
                                                             // It is OK to send extra incom_ack_bad from transport - it will be discarded
    input   wire    link_reset,                              // oob sequence is reinitiated and link now is not established or rxelecidle
    input   wire    sync_escape_req,                         // TL demands to brutally cancel current transaction
    output  wire    sync_escape_ack,                         // acknowlegement of a successful reception
    input   wire    incom_stop_req,                          // TL demands to stop current recieving session
    output          link_established,                        // received 3 back-to-back non-align primitives.
    output  reg     link_bad_crc,                            // got bad crc at EOF
    // inputs from phy
    input   wire    phy_ready,                               // phy is ready - link is established
    input   wire    [DATA_BYTE_WIDTH*8 - 1:0] phy_data_in,   // data-primitives stream from phy
    input   wire    [DATA_BYTE_WIDTH   - 1:0] phy_isk_in,    // charisk
    input   wire    [DATA_BYTE_WIDTH   - 1:0] phy_err_in,    // disperr | notintable
    // to phy
    output  wire    [DATA_BYTE_WIDTH*8 - 1:0] phy_data_out,
    output  wire    [DATA_BYTE_WIDTH   - 1:0] phy_isk_out,   // charisk
    // debug
    output                             [31:0] debug_out      //
);
`ifdef SIMULATION
    reg [639:0] HOST_LINK_TITLE; // to show human-readable state in the GTKWave
    reg  [31:0] HOST_LINK_DATA;
`endif

// latching data-primitives stream from phy
reg     [DATA_BYTE_WIDTH*8 - 1:0] phy_data_in_r;
reg     [DATA_BYTE_WIDTH   - 1:0] phy_isk_in_r; // charisk
reg     [DATA_BYTE_WIDTH   - 1:0] phy_err_in_r; // disperr | notintable
//one extra layer to process CONTp
reg     [DATA_BYTE_WIDTH*8 - 1:0] phy_data_in_r0;
reg     [DATA_BYTE_WIDTH   - 1:0] phy_isk_in_r0; // charisk
reg     [DATA_BYTE_WIDTH   - 1:0] phy_err_in_r0; // disperr | notintable

reg     [DATA_BYTE_WIDTH*8 - 1:0] last_not_cont_di; // last primitive dword, but not CONTp
reg                               rcv_junk;         // receiving CONTp junk data
wire                              is_non_cont_non_align_p_w;  // got primitive other than CONTp and ALIGNp (early by 1)
wire                              is_cont_p_w;                // got CONTp primitive  (early by 1)
wire                              is_align_p_w;               // got ALIGNp primitive  (early by 1)

//CONTp should pass ALIGNp

wire    frame_done;
// scrambled data
wire    [DATA_BYTE_WIDTH*8 - 1:0]   scrambler_out;
wire    dec_err; // doc, p.311 
// while receiving session shows crc check status
wire    crc_good;
wire    crc_bad;
// current crc
wire    [31:0] crc_dword;
// Removing - state_align is handled by OOB 
///reg                                link_established_r;                        // received 3 back-to-back non-align primitives.
///reg                          [1:0] non_align_cntr;                  
///assign link_established = link_established_r; 
assign link_established = phy_ready;
// send primitives variety count, including CRC and DATA as primitives
localparam  PRIM_NUM = 16; // 15;
wire    [PRIM_NUM - 1:0] rcvd_dword;    // shows current processing primitive (or just data dword)
wire                     dword_val;     // any valid primitive/data
wire                     dword_val_na;  // any valid primitive but ALIGNp
// list of bits of rcvd_dword
localparam  CODE_DATA   = 0;  // DATA
localparam  CODE_CRC    = 1;  // CRC
localparam  CODE_SYNCP  = 2;  // SYNCp
localparam  CODE_ALIGNP = 3;  // ALIGNp PHY layer control
localparam  CODE_XRDYP  = 4;  // X_RDYp Transmission data ready
localparam  CODE_SOFP   = 5;  // SOFp Start of Frame
localparam  CODE_HOLDAP = 6;  // HOLDAp HOLD acknowledge
localparam  CODE_HOLDP  = 7;  // HOLDp Hold data transmission
localparam  CODE_EOFP   = 8;  // EOFp End Of Frame
localparam  CODE_WTRMP  = 9;  // WTRMp Wait for frame termination
localparam  CODE_RRDYP  = 10; // R_RDYp Receiver ready
localparam  CODE_IPP    = 11; // R_IPp - Reception in progress
localparam  CODE_DMATP  = 12; // DMATp - DMA terminate
localparam  CODE_OKP    = 13; // R_OKp - Reception with no error
localparam  CODE_ERRP   = 14; // R_ERRp - Reception with Error
localparam  CODE_CONTP  = 15; // CONTp - Continue repeating

// processing CONTp/junk, delaying everything by 1 clock 
always @ (posedge clk) begin
    phy_data_in_r0   <= phy_data_in;
    phy_isk_in_r0    <= phy_isk_in;
    phy_err_in_r0    <= phy_err_in;
    
    if (is_non_cont_non_align_p_w) last_not_cont_di <= phy_data_in_r0; // last_not_cont_di - primitive to repeat instead of junk
    
    if (rst || is_non_cont_non_align_p_w) rcv_junk <= 0;
    else if (is_cont_p_w)                 rcv_junk <= 1;
    
    if (is_cont_p_w || (rcv_junk && !(is_non_cont_non_align_p_w || is_align_p_w))) begin
        phy_data_in_r   <= last_not_cont_di;  // last non-cont/non-align primitive will be sent instead of junk
        phy_isk_in_r    <= 1;                 // it was always primitive (4'b0001)
    end else begin
        phy_data_in_r   <= phy_data_in_r0;   // data and ALIGNp will go through
        phy_isk_in_r    <= phy_isk_in_r0;    // data and ALIGNp will go through
    end
    phy_err_in_r    <= phy_err_in_r0;
    
end
// When switching from state_rcvr_shold to state_rcvr_data we need to know that it will be data 1 cycle ahead
wire                     next_will_be_data = !(is_cont_p_w || (rcv_junk && !(is_non_cont_non_align_p_w || is_align_p_w))) && !(|phy_isk_in_r0);

reg                      data_txing_r; // if there are still some data to transmit and the transaction wasn't cancelled
wire                     data_txing = data_txing_r & ~state_send_crc;
// Make it safe
always @ (posedge clk) begin
    if (rst)                                    data_txing_r <= 0;
    else if (frame_req)                         data_txing_r <= 1;    
    else if (state_send_crc)                    data_txing_r <= 0;
end   


// states and transitions are taken from the doc, "Link Layer State Machine" chapter
// power mode states are not implemented. TODO insert them as an additional branch of fsm

// !!!IMPORTANT!!! If add/remove any states, dont forget to change this parameter value
localparam STATES_COUNT = 23;
// idle state
wire    state_idle;
reg     state_sync_esc;     // SyncEscape
reg     state_nocommerr;    // NoComErr
reg     state_nocomm;       // NoComm
reg     state_align;        // SendAlign - not used, handled by OOB
reg     state_reset;        // RESET
// tranmitter branch
reg     state_send_rdy;     // SendChkRdy
reg     state_send_sof;     // SendSOF
reg     state_send_data;    // SendData
reg     state_send_rhold;   // RcvrHold - hold initiated by current data reciever
reg     state_send_shold;   // SendHold - hold initiated by current data sender
reg     state_send_crc;     // SendCVC
reg     state_send_eof;     // SendEOF
reg     state_wait;         // Wait
// receiver branch
reg     state_rcvr_wait;    // RcvWaitFifo
reg     state_rcvr_rdy;     // RcvChkRdy
reg     state_rcvr_data;    // RcvData
reg     state_rcvr_rhold;   // Hold     - hold initiated by current data reciever
reg     state_rcvr_shold;   // RcvHold  - hold initiated by current data sender
reg     state_rcvr_eof;     // RcvEOF
reg     state_rcvr_goodcrc; // GoodCRC
reg     state_rcvr_goodend; // GoodEnd
reg     state_rcvr_badend;  // BadEnd

// handling single-cycle incom_ack_good/incom_ack_bad when they arrive at alignes_pair
reg     incom_ack_good_pend;
reg     incom_ack_bad_pend;
wire    incom_ack_good_or_pend = incom_ack_good || incom_ack_good_pend;
wire    incom_ack_bad_or_pend =  incom_ack_bad || incom_ack_bad_pend;


wire    set_sync_esc;
wire    set_nocommerr;
wire    set_nocomm;
wire    set_align;
wire    set_reset;
wire    set_send_rdy;
wire    set_send_sof;
wire    set_send_data;
wire    set_send_rhold;
wire    set_send_shold;
wire    set_send_crc;
wire    set_send_eof;
wire    set_wait;
wire    set_rcvr_wait;
wire    set_rcvr_rdy;
wire    set_rcvr_data;
wire    set_rcvr_rhold;
wire    set_rcvr_shold;
wire    set_rcvr_eof;
wire    set_rcvr_goodcrc;
wire    set_rcvr_goodend;
wire    set_rcvr_badend;
                            
wire    clr_sync_esc;
wire    clr_nocommerr;
wire    clr_nocomm;
wire    clr_align;
wire    clr_reset;
wire    clr_send_rdy;
wire    clr_send_sof;
wire    clr_send_data;
wire    clr_send_rhold;
wire    clr_send_shold;
wire    clr_send_crc;
wire    clr_send_eof;
wire    clr_wait;
wire    clr_rcvr_wait;
wire    clr_rcvr_rdy;
wire    clr_rcvr_data;
wire    clr_rcvr_rhold;
wire    clr_rcvr_shold;
wire    clr_rcvr_eof;
wire    clr_rcvr_goodcrc;
wire    clr_rcvr_goodend;
wire    clr_rcvr_badend;

assign state_idle = ~state_sync_esc
                  & ~state_nocommerr
                  & ~state_nocomm
                  & ~state_align
                  & ~state_reset
                  & ~state_send_rdy
                  & ~state_send_sof
                  & ~state_send_data
                  & ~state_send_rhold
                  & ~state_send_shold
                  & ~state_send_crc
                  & ~state_send_eof
                  & ~state_wait
                  & ~state_rcvr_wait
                  & ~state_rcvr_rdy
                  & ~state_rcvr_data
                  & ~state_rcvr_rhold
                  & ~state_rcvr_shold
                  & ~state_rcvr_eof
                  & ~state_rcvr_goodcrc
                  & ~state_rcvr_goodend
                  & ~state_rcvr_badend;

// got an escaping primitive = request to cancel the transmission
// may be 1 cycle, need to extend over alignes_pair
wire got_escape = dword_val & rcvd_dword[CODE_SYNCP]; // can wait over alignes pair
reg     sync_escape_req_r;  // ahci sends 1 single-clock pulse, it may hit alignes_pair
always @ (posedge clk) begin
    sync_escape_req_r <= alignes_pair && (sync_escape_req || sync_escape_req_r);
end

// escaping is done
assign  sync_escape_ack = state_sync_esc;


reg           alignes_pair;   // pauses every state go give a chance to insert 2 align primitives on a line at least every 256 dwords due to spec
reg     [8:0] alignes_timer;

reg    alignes_pair_0; // time for 1st align primitive

always @ (posedge clk) begin
    if (!phy_ready || select_prim[CODE_ALIGNP]) alignes_timer <= ALIGNES_PERIOD;
    else                                        alignes_timer <= alignes_timer -1;
    alignes_pair_0 <= alignes_timer == 0;
    alignes_pair <= phy_ready && ((alignes_timer == 0) || alignes_pair_0);
    
end

always @ (posedge clk) begin
    link_bad_crc <= state_rcvr_eof & crc_bad;
    
    if      (incom_ack_good)                             incom_ack_good_pend <= 1;
    else if (!state_rcvr_goodcrc)                        incom_ack_good_pend <= 0;
    
    if      (incom_ack_bad)                              incom_ack_bad_pend <= 1;
    else if (!state_rcvr_goodcrc)                        incom_ack_bad_pend <= 0; // didn't like it even with good crc
end

// Whole transitions table, literally from doc pages 311-328 (Andrey: now modified, may be not true)
assign  set_sync_esc        = sync_escape_req || sync_escape_req_r; // extended over alignes_pair
assign  set_nocommerr       = ~phy_ready & ~state_nocomm & ~state_reset;
assign  set_nocomm          = state_nocommerr;
assign  set_align  = 0;   // never, as this state is handled by OOB
assign  set_reset           = link_reset;

assign  set_send_rdy        = state_idle        & frame_req;

assign  set_send_sof        = state_send_rdy    & phy_ready  &                                dword_val      &  rcvd_dword[CODE_RRDYP];

assign  set_send_data       = state_send_sof    & phy_ready 
                            | state_send_rhold  & data_txing & ~dec_err &                     dword_val_na  & ~rcvd_dword[CODE_HOLDP] & ~rcvd_dword[CODE_SYNCP] & ~rcvd_dword[CODE_DMATP]
                            | state_send_shold  & data_txing &  data_val_in &                 dword_val_na  & ~rcvd_dword[CODE_HOLDP] & ~rcvd_dword[CODE_SYNCP];

assign  set_send_rhold      = state_send_data   & data_txing &  data_val_in & ~data_last_in & dword_val    &  rcvd_dword[CODE_HOLDP]
                            | state_send_shold  & data_txing &  data_val_in &                 dword_val    &  rcvd_dword[CODE_HOLDP];
                            
assign  set_send_shold      = state_send_data   & data_txing & ~data_val_in &                 dword_val    & ~rcvd_dword[CODE_SYNCP];

assign  set_send_crc        = state_send_data   & data_txing &  data_val_in &  data_last_in & dword_val    & ~rcvd_dword[CODE_SYNCP] 
                            | state_send_data   &                                             dword_val    &  rcvd_dword[CODE_DMATP];
                            
assign  set_send_eof        = state_send_crc    & phy_ready &                                 dword_val    & ~rcvd_dword[CODE_SYNCP];

assign  set_wait            = state_send_eof    & phy_ready &                                 dword_val    & ~rcvd_dword[CODE_SYNCP];

// receiver's branch
assign  set_rcvr_wait       = state_idle        & dword_val    &  rcvd_dword[CODE_XRDYP]
                            | state_send_rdy    & dword_val    &  rcvd_dword[CODE_XRDYP];
                            
assign  set_rcvr_rdy        = state_rcvr_wait   & dword_val    &  rcvd_dword[CODE_XRDYP]  & ~data_busy_in;

assign  set_rcvr_data       = state_rcvr_rdy    & dword_val    &  rcvd_dword[CODE_SOFP]
                            | state_rcvr_rhold  & next_will_be_data & ~data_busy_in
                            | state_rcvr_shold  & next_will_be_data  // So it will not be align
                            | state_rcvr_data   & next_will_be_data; // to skip over single-cycle CODE_HOLDP
//next_will_be_data                            
assign  set_rcvr_rhold      = state_rcvr_data   & dword_val    &  rcvd_dword[CODE_DATA]  &  data_busy_in;

assign  set_rcvr_shold      = state_rcvr_data   & dword_val    &  (rcvd_dword[CODE_HOLDP] & ~next_will_be_data)
                            | state_rcvr_rhold  & dword_val    &  (rcvd_dword[CODE_HOLDP] & ~next_will_be_data) & ~data_busy_in;
                            
assign  set_rcvr_eof        = state_rcvr_data   & dword_val    &  rcvd_dword[CODE_EOFP]
                            | state_rcvr_rhold  & dword_val    &  rcvd_dword[CODE_EOFP]
                            | state_rcvr_shold  & dword_val    &  rcvd_dword[CODE_EOFP];
                            
assign  set_rcvr_goodcrc    = state_rcvr_eof    & crc_good;

assign  set_rcvr_goodend    = state_rcvr_goodcrc& incom_ack_good_or_pend; // incom_ack_good; // may arrive at aligns_pair

assign  set_rcvr_badend     = state_rcvr_data   & dword_val    &  rcvd_dword[CODE_WTRMP]     // Missed EOF
                            | state_rcvr_eof    & crc_bad                                    // Got bad CRC
                            | state_rcvr_goodcrc& incom_ack_bad_or_pend; // incom_ack_bad;   // Transport didn't like it (may arrive at aligns_pair)

assign  clr_sync_esc        = set_nocommerr | set_reset                | dword_val & (rcvd_dword[CODE_RRDYP] | rcvd_dword[CODE_SYNCP]);
assign  clr_nocommerr       =                 set_reset                | set_nocomm;
assign  clr_nocomm          =                 set_reset                | set_align;
///assign  clr_align        = set_nocommerr | set_reset                | phy_ready;
///assign  clr_align           = set_nocommerr | set_reset                | link_established_r; // Not phy_ready !!!
assign  clr_align           = 0; // never - this state is handled in OOB
assign  clr_reset           =                                           ~link_reset;
///assign  clr_reset           =                                           set_align;
assign  clr_send_rdy        = set_nocommerr | set_reset | set_sync_esc | set_send_sof | set_rcvr_wait;
assign  clr_send_sof        = set_nocommerr | set_reset | set_sync_esc | set_send_data; // | got_escape;
assign  clr_send_data       = set_nocommerr | set_reset | set_sync_esc | set_send_rhold | set_send_shold | set_send_crc; // | got_escape;
assign  clr_send_rhold      = set_nocommerr | set_reset | set_sync_esc | set_send_data | set_send_crc; //  | got_escape;
assign  clr_send_shold      = set_nocommerr | set_reset | set_sync_esc | set_send_data | set_send_rhold | set_send_crc; //  | got_escape;
assign  clr_send_crc        = set_nocommerr | set_reset | set_sync_esc | set_send_eof; // | got_escape;
assign  clr_send_eof        = set_nocommerr | set_reset | set_sync_esc | set_wait; //  | got_escape;
assign  clr_wait            = set_nocommerr | set_reset | set_sync_esc | frame_done; // | got_escape;

assign  clr_rcvr_wait       = set_nocommerr | set_reset | set_sync_esc /*| set_rcvr_rdy */ | (dword_val_na & ~rcvd_dword[CODE_XRDYP]);
assign  clr_rcvr_rdy        = set_nocommerr | set_reset | set_sync_esc /*| set_rcvr_data */ | (dword_val_na & ~rcvd_dword[CODE_XRDYP] & ~rcvd_dword[CODE_SOFP]);
assign  clr_rcvr_data       = set_nocommerr | set_reset | set_sync_esc /*| set_rcvr_rhold | set_rcvr_shold | set_rcvr_eof */ | set_rcvr_badend; // | got_escape;
assign  clr_rcvr_rhold      = set_nocommerr | set_reset | set_sync_esc /*| set_rcvr_data | set_rcvr_eof | set_rcvr_shold */; //  | got_escape;
assign  clr_rcvr_shold      = set_nocommerr | set_reset | set_sync_esc /*| set_rcvr_data | set_rcvr_eof */; //  | got_escape;
assign  clr_rcvr_eof        = set_nocommerr | set_reset | set_sync_esc /*|set_rcvr_goodcrc | set_rcvr_badend*/;
assign  clr_rcvr_goodcrc    = set_nocommerr | set_reset | set_sync_esc /*set_rcvr_goodend | set_rcvr_badend |*/; // | got_escape;

assign  clr_rcvr_goodend    = set_nocommerr | set_reset | set_sync_esc; // | got_escape; // can be 1 cycle only
assign  clr_rcvr_badend     = set_nocommerr | set_reset | set_sync_esc; // | got_escape;

// the only truely asynchronous transaction between states is -> state_ reset. It shall not be delayed by sending alignes
// Luckily, while in that state, the line is off, so we dont need to care about merging alignes and state-bounded primitives
// Others transitions are straightforward
always @ (posedge clk)
begin
    state_sync_esc      <= (state_sync_esc     | set_sync_esc     & ~alignes_pair) & ~(clr_sync_esc & ~alignes_pair)                    & ~rst;
    state_nocommerr     <= (state_nocommerr    | set_nocommerr    & ~alignes_pair) & ~(clr_nocommerr & ~alignes_pair)                   & ~rst;
    state_nocomm        <= (state_nocomm       | set_nocomm       & ~alignes_pair) & ~(clr_nocomm & ~alignes_pair)                      & ~rst;
    // state_align is not used, it is handled by OOB
    state_align         <= (state_align        | set_align        & ~alignes_pair) & ~(clr_align & ~alignes_pair)                       & ~rst;
    state_reset         <= (state_reset        | set_reset                       ) & ~ clr_reset                                        & ~rst;
    state_send_rdy      <= (state_send_rdy     | set_send_rdy     & ~alignes_pair) & ~(clr_send_rdy & ~alignes_pair)                    & ~rst;
    state_send_sof      <= (state_send_sof     | set_send_sof     & ~alignes_pair) & ~(got_escape | (clr_send_sof & ~alignes_pair))     & ~rst;
    state_send_data     <= (state_send_data    | set_send_data    & ~alignes_pair) & ~(got_escape | (clr_send_data & ~alignes_pair))    & ~rst;
    state_send_rhold    <= (state_send_rhold   | set_send_rhold   & ~alignes_pair) & ~(got_escape | (clr_send_rhold & ~alignes_pair))   & ~rst;
    state_send_shold    <= (state_send_shold   | set_send_shold   & ~alignes_pair) & ~(got_escape | (clr_send_shold & ~alignes_pair))   & ~rst;
    state_send_crc      <= (state_send_crc     | set_send_crc     & ~alignes_pair) & ~(got_escape | (clr_send_crc & ~alignes_pair))     & ~rst;
    state_send_eof      <= (state_send_eof     | set_send_eof     & ~alignes_pair) & ~(got_escape | (clr_send_eof & ~alignes_pair))     & ~rst;
    state_wait          <= (state_wait         | set_wait         & ~alignes_pair) & ~(got_escape | (clr_wait & ~alignes_pair))         & ~rst;
    // Andrey: most receiver states can not wait for transmitting aligns_pair. What host sends in this states matters when confirmed by the device
    // So it seems OK if alignes_pair will just overwrite whatever host was going to send in these state.
    // Care should be taken only for transitions between these states and others (transmit) that need to wait for alignes_pair to finish
    // set_* are considered fast (no wait), clr_* - slow (to non-receive states), next opeartors use OR-ed "set_*" in immediate transitions
    // to other states, clr_* - to other states
    //    rdy->data, data->eof 
    state_rcvr_wait     <= (state_rcvr_wait    | (set_rcvr_wait    & ~alignes_pair)) & ~(set_rcvr_rdy |    (clr_rcvr_wait & ~alignes_pair))  & ~rst;

    state_rcvr_rdy      <= (state_rcvr_rdy     | set_rcvr_rdy                      ) & ~(set_rcvr_data |   (clr_rcvr_rdy  & ~alignes_pair))  & ~rst;
    
    state_rcvr_data     <= (state_rcvr_data    | set_rcvr_data                     ) & ~(set_rcvr_shold |
                                                                                         set_rcvr_shold |
                                                                                         set_rcvr_eof |
                                                                                         got_escape |      (clr_rcvr_data & ~alignes_pair))  & ~rst;
                                                                                         
    state_rcvr_rhold    <= (state_rcvr_rhold   | set_rcvr_rhold                   )  & ~(set_rcvr_data |
                                                                                         set_rcvr_shold |
                                                                                         set_rcvr_eof |
                                                                                         got_escape |      (clr_rcvr_rhold & ~alignes_pair)) & ~rst;
                                                                                         
    state_rcvr_shold    <= (state_rcvr_shold   | set_rcvr_shold                   )  & ~(set_rcvr_data |
                                                                                         set_rcvr_eof |
                                                                                         got_escape |      (clr_rcvr_shold & ~alignes_pair)) & ~rst;
                                                                                         
    state_rcvr_eof      <= (state_rcvr_eof     | set_rcvr_eof                     )  & ~(set_rcvr_goodcrc |
                                                                                         state_rcvr_badend |(clr_rcvr_eof & ~alignes_pair))  & ~rst;
    
    state_rcvr_goodcrc  <= (state_rcvr_goodcrc | set_rcvr_goodcrc                 )  & ~(set_rcvr_goodend |
                                                                                         set_rcvr_badend |
                                                                                         got_escape |      (clr_rcvr_goodcrc & ~alignes_pair)) & ~rst;
                                                                                         
    state_rcvr_goodend  <= (state_rcvr_goodend | set_rcvr_goodend                 ) & ~(got_escape |       (clr_rcvr_goodend & ~alignes_pair)) & ~rst;
    
    state_rcvr_badend   <= (state_rcvr_badend  | set_rcvr_badend                  ) & ~(got_escape |       (clr_rcvr_badend & ~alignes_pair))  & ~rst;

end

// flag if incoming request to terminate current transaction came from TL
reg     incom_stop_f;
always @ (posedge clk)
//    incom_stop_f <= rst | incom_done | ~frame_busy ? 1'b0 : incom_stop_req ? 1'b1 : incom_stop_f;
    if      (rst)                      incom_stop_f <= 0;
    else if (incom_stop_req)           incom_stop_f <= 1;
    else if (incom_done | ~frame_busy) incom_stop_f <= 0;
    

// form data to phy
reg     [DATA_BYTE_WIDTH*8 - 1:0] to_phy_data;
reg     [DATA_BYTE_WIDTH   - 1:0] to_phy_isk;
// TODO implement CONTP
localparam [15:0] PRIM_SYNCP_HI     = {3'd5, 5'd21, 3'd5, 5'd21};
localparam [15:0] PRIM_SYNCP_LO     = {3'd4, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_ALIGNP_HI	= {3'd3, 5'd27, 3'd2, 5'd10};
localparam [15:0] PRIM_ALIGNP_LO	= {3'd2, 5'd10, 3'd5, 5'd28};
localparam [15:0] PRIM_XRDYP_HI		= {3'd2, 5'd23, 3'd2, 5'd23};
localparam [15:0] PRIM_XRDYP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_SOFP_HI		= {3'd1, 5'd23, 3'd1, 5'd23};
localparam [15:0] PRIM_SOFP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_HOLDAP_HI	= {3'd4, 5'd21, 3'd4, 5'd21};
localparam [15:0] PRIM_HOLDAP_LO	= {3'd5, 5'd10, 3'd3, 5'd28};
localparam [15:0] PRIM_HOLDP_HI		= {3'd6, 5'd21, 3'd6, 5'd21};
localparam [15:0] PRIM_HOLDP_LO		= {3'd5, 5'd10, 3'd3, 5'd28};
localparam [15:0] PRIM_EOFP_HI		= {3'd6, 5'd21, 3'd6, 5'd21};
localparam [15:0] PRIM_EOFP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_WTRMP_HI		= {3'd2, 5'd24, 3'd2, 5'd24};
localparam [15:0] PRIM_WTRMP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_RRDYP_HI		= {3'd2, 5'd10, 3'd2, 5'd10};
localparam [15:0] PRIM_RRDYP_LO		= {3'd4, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_IPP_HI		= {3'd2, 5'd21, 3'd2, 5'd21};
localparam [15:0] PRIM_IPP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_DMATP_HI		= {3'd1, 5'd22, 3'd1, 5'd22};
localparam [15:0] PRIM_DMATP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_OKP_HI		= {3'd1, 5'd21, 3'd1, 5'd21};
localparam [15:0] PRIM_OKP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
localparam [15:0] PRIM_ERRP_HI		= {3'd2, 5'd22, 3'd2, 5'd22};
localparam [15:0] PRIM_ERRP_LO		= {3'd5, 5'd21, 3'd3, 5'd28};
//The transmission of CONTp is optional, but the ability to receive and properly process CONTp is required.
localparam [15:0] PRIM_CONTP_HI     = {3'd4, 5'd25, 3'd4, 5'd25};
localparam [15:0] PRIM_CONTP_LO     = {3'd5, 5'd10, 3'd3, 5'd28};


wire    [DATA_BYTE_WIDTH*8 - 1:0] prim_data [PRIM_NUM - 1:0];

// fill all possible output primitives to choose from them after
generate
if (DATA_BYTE_WIDTH == 2)
begin
    reg     prim_word; // word counter in a primitive TODO logic
    assign  prim_data[CODE_SYNCP] [15:0]    =  prim_word ? PRIM_SYNCP_HI    : PRIM_SYNCP_LO;
    assign  prim_data[CODE_ALIGNP][15:0]    =  prim_word ? PRIM_ALIGNP_HI   : PRIM_ALIGNP_LO;
    assign  prim_data[CODE_XRDYP] [15:0]    =  prim_word ? PRIM_XRDYP_HI    : PRIM_XRDYP_LO;
    assign  prim_data[CODE_SOFP]  [15:0]    =  prim_word ? PRIM_SOFP_HI     : PRIM_SOFP_LO;
    assign  prim_data[CODE_DATA]  [15:0]    =  scrambler_out[15:0];
    assign  prim_data[CODE_HOLDAP][15:0]    =  prim_word ? PRIM_HOLDAP_HI   : PRIM_HOLDAP_LO;
    assign  prim_data[CODE_HOLDP] [15:0]    =  prim_word ? PRIM_HOLDP_HI    : PRIM_HOLDP_LO;
    assign  prim_data[CODE_CRC]   [15:0]    =  scrambler_out[15:0];
    assign  prim_data[CODE_EOFP]  [15:0]    =  prim_word ? PRIM_EOFP_HI     : PRIM_EOFP_LO;
    assign  prim_data[CODE_WTRMP] [15:0]    =  prim_word ? PRIM_WTRMP_HI    : PRIM_WTRMP_LO;
    assign  prim_data[CODE_RRDYP] [15:0]    =  prim_word ? PRIM_RRDYP_HI    : PRIM_RRDYP_LO;
    assign  prim_data[CODE_IPP]   [15:0]    =  prim_word ? PRIM_IPP_HI      : PRIM_IPP_LO;
    assign  prim_data[CODE_DMATP] [15:0]    =  prim_word ? PRIM_DMATP_HI    : PRIM_DMATP_LO;
    assign  prim_data[CODE_OKP]   [15:0]    =  prim_word ? PRIM_OKP_HI      : PRIM_OKP_LO;
    assign  prim_data[CODE_ERRP]  [15:0]    =  prim_word ? PRIM_ERRP_HI     : PRIM_ERRP_LO;
    assign  prim_data[CODE_CONTP] [15:0]    =  prim_word ? PRIM_CONTP_HI    : PRIM_CONTP_LO;
    always @ (posedge clk)
    begin
        $display("%m: unsupported data width");
        $finish;
    end
end
else
if (DATA_BYTE_WIDTH == 4)
begin
    assign  prim_data[CODE_SYNCP]     = {PRIM_SYNCP_HI    , PRIM_SYNCP_LO};
    assign  prim_data[CODE_ALIGNP]    = {PRIM_ALIGNP_HI   , PRIM_ALIGNP_LO};
    assign  prim_data[CODE_XRDYP]     = {PRIM_XRDYP_HI    , PRIM_XRDYP_LO};
    assign  prim_data[CODE_SOFP]      = {PRIM_SOFP_HI     , PRIM_SOFP_LO};
    assign  prim_data[CODE_DATA]      = scrambler_out;
    assign  prim_data[CODE_HOLDAP]    = {PRIM_HOLDAP_HI   , PRIM_HOLDAP_LO};
    assign  prim_data[CODE_HOLDP]     = {PRIM_HOLDP_HI    , PRIM_HOLDP_LO};
    assign  prim_data[CODE_CRC]       = scrambler_out;
    assign  prim_data[CODE_EOFP]      = {PRIM_EOFP_HI     , PRIM_EOFP_LO};
    assign  prim_data[CODE_WTRMP]     = {PRIM_WTRMP_HI    , PRIM_WTRMP_LO};
    assign  prim_data[CODE_RRDYP]     = {PRIM_RRDYP_HI    , PRIM_RRDYP_LO};
    assign  prim_data[CODE_IPP]       = {PRIM_IPP_HI      , PRIM_IPP_LO};
    assign  prim_data[CODE_DMATP]     = {PRIM_DMATP_HI    , PRIM_DMATP_LO};
    assign  prim_data[CODE_OKP]       = {PRIM_OKP_HI      , PRIM_OKP_LO};
    assign  prim_data[CODE_ERRP]      = {PRIM_ERRP_HI     , PRIM_ERRP_LO};
    assign  prim_data[CODE_CONTP]     = {PRIM_CONTP_HI    , PRIM_CONTP_LO};
end
else
begin
    always @ (posedge clk)
    begin
        $display("%m: unsupported data width");
        $finish;
    end
end
endgenerate

// select which primitive shall be sent 
wire    [PRIM_NUM - 1:0]    select_prim;
assign  select_prim[CODE_SYNCP]     = ~alignes_pair & (state_idle | state_sync_esc | state_rcvr_wait | state_reset);
assign  select_prim[CODE_ALIGNP]    =  alignes_pair | (state_nocomm | state_nocommerr | state_align);
assign  select_prim[CODE_XRDYP]     = ~alignes_pair & (state_send_rdy);
assign  select_prim[CODE_SOFP]      = ~alignes_pair & (state_send_sof);
assign  select_prim[CODE_DATA]      = ~alignes_pair & (state_send_data & ~set_send_shold); // if there's no data availible for a transmission, fsm still = state_send_data. Need to explicitly count this case.
assign  select_prim[CODE_HOLDAP]    = ~alignes_pair & (state_send_rhold | state_rcvr_shold & ~incom_stop_f);
assign  select_prim[CODE_HOLDP]     = ~alignes_pair & (state_send_shold | state_rcvr_rhold | state_send_data & set_send_shold); // the case mentioned 2 lines upper
assign  select_prim[CODE_CRC]       = ~alignes_pair & (state_send_crc);
assign  select_prim[CODE_EOFP]      = ~alignes_pair & (state_send_eof);
assign  select_prim[CODE_WTRMP]     = ~alignes_pair & (state_wait);
assign  select_prim[CODE_RRDYP]     = ~alignes_pair & (state_rcvr_rdy);
assign  select_prim[CODE_IPP]       = ~alignes_pair & (state_rcvr_data & ~incom_stop_f | state_rcvr_eof | state_rcvr_goodcrc);
assign  select_prim[CODE_DMATP]     = ~alignes_pair & (state_rcvr_data &  incom_stop_f | state_rcvr_shold & incom_stop_f);
assign  select_prim[CODE_OKP]       = ~alignes_pair & (state_rcvr_goodend);
assign  select_prim[CODE_ERRP]      = ~alignes_pair & (state_rcvr_badend);
// No sending of CONTp

// primitive selector MUX 
always @ (posedge clk)
    to_phy_data <=  rst ? {DATA_BYTE_WIDTH*8{1'b0}}: 
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_SYNCP]}}  & prim_data[CODE_SYNCP]  |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_ALIGNP]}} & prim_data[CODE_ALIGNP] |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_RRDYP]}}  & prim_data[CODE_RRDYP]  |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_SOFP]}}   & prim_data[CODE_SOFP]   |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_HOLDAP]}} & prim_data[CODE_HOLDAP] |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_HOLDP]}}  & prim_data[CODE_HOLDP]  |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_EOFP]}}   & prim_data[CODE_EOFP]   |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_WTRMP]}}  & prim_data[CODE_WTRMP]  |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_XRDYP]}}  & prim_data[CODE_XRDYP]  |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_IPP]}}    & prim_data[CODE_IPP]    |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_DMATP]}}  & prim_data[CODE_DMATP]  |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_OKP]}}    & prim_data[CODE_OKP]    |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_ERRP]}}   & prim_data[CODE_ERRP]   |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_CRC]}}    & prim_data[CODE_CRC]    |
                    {DATA_BYTE_WIDTH*8{select_prim[CODE_DATA]}}   & prim_data[CODE_DATA];

always @ (posedge clk)
    to_phy_isk <= rst | ~select_prim[CODE_DATA] & ~select_prim[CODE_CRC] ? {{(DATA_BYTE_WIDTH - 1){1'b0}}, 1'b1} : {DATA_BYTE_WIDTH{1'b0}} ;

// incoming data is data
wire    inc_is_data;
assign  inc_is_data = dword_val & rcvd_dword[CODE_DATA] & (state_rcvr_data | state_rcvr_rhold);
//wire    inc_is_crc = dword_val_na & rcvd_dword[CODE_CRC] & (state_rcvr_data | state_rcvr_rhold);
/*
 * Scrambler can work both as a scrambler and a descramler, because data stream could be
 * one direction at a time
 */
scrambler scrambler(
    .rst        (select_prim[CODE_SOFP] | dword_val & rcvd_dword[CODE_SOFP]),
    .clk        (clk),
    .val_in     (select_prim[CODE_DATA] | inc_is_data | select_prim[CODE_CRC]),
    .data_in    (crc_dword & {DATA_BYTE_WIDTH*8{select_prim[CODE_CRC]}} | 
                 data_in & {DATA_BYTE_WIDTH*8{select_prim[CODE_DATA]}} | 
                 phy_data_in_r & {DATA_BYTE_WIDTH*8{inc_is_data}}),
    .data_out   (scrambler_out)
);

/*
 * Same as for scrambler, crc computation for both directions
 */
crc crc(
    .clk        (clk),
    .rst        (select_prim[CODE_SOFP] | dword_val & rcvd_dword[CODE_SOFP]),
    .val_in     (select_prim[CODE_DATA] | inc_is_data),
    .data_in    (data_in & {DATA_BYTE_WIDTH*8{select_prim[CODE_DATA]}} | scrambler_out & {DATA_BYTE_WIDTH*8{inc_is_data}}),
    .crc_out    (crc_dword)
);

// the output of crc module shall be 0 if 1 tick later reciever got a crc checksum and no errors occured
assign  crc_good = ~|crc_dword & state_rcvr_eof;
assign  crc_bad  =  |crc_dword & state_rcvr_eof;

// to TL data outputs assigment
// delay outputs so the last data would be marked
reg [31:0]  data_out_r;
reg         data_val_out_r;
reg [31:0]  data_out_rr;
reg         data_val_out_rr;
// if current == EOF => _r == CRC and _rr == last data piece
reg  data_held;   // some data is held in data_out_r over primitives - to be restored if not EOF
// no need to check for set_rcvr_eof - last dword will be always lost
always @ (posedge clk) begin
    if (dword_val & rcvd_dword[CODE_SOFP]) data_held <= 0;
    else if (inc_is_data)                  data_held <= 1;
    
    if (inc_is_data)                       data_out_r   <= scrambler_out;
    if (data_val_out_r)                    data_out_rr  <= data_out_r;
    
    data_val_out_r  <= inc_is_data;

    data_val_out_rr <= inc_is_data && data_held;
    
end


assign  data_out        = data_out_rr;
assign  data_mask_out   = 2'b11;//{DATA_BYTE_WIDTH/2{1'b1}};
assign  data_val_out    = data_val_out_rr;
assign  data_last_out   = set_rcvr_eof;

// from TL data
// gives a strobe everytime data is present and we're at a corresponding state.
assign  data_strobe_out = select_prim[CODE_DATA];

// Just to make output signals single-cycel regardless of alignes_pair and remove dependence on SM code
wire frame_rej_w;
wire incom_start_w;
wire incom_done_w;
wire incom_invalidate_w;

reg frame_rej_r;
reg incom_start_r;
reg incom_done_r;
reg incom_invalidate_r;

assign frame_rej =        frame_rej_w        && !frame_rej_r;
assign incom_start =      incom_start_w      && ! incom_start_r;
assign incom_done =       incom_done_w       && ! incom_done_r;
assign incom_invalidate = incom_invalidate_w && ! incom_invalidate_r;

always @ (posedge clk) begin
    frame_rej_r <=        frame_rej_w;
    incom_start_r <=      incom_start_w;
    incom_done_r <=       incom_done_w;
    incom_invalidate_r <= incom_invalidate_w;
end

// assign phy data outputs
assign  phy_data_out = to_phy_data;
assign  phy_isk_out  = to_phy_isk;

assign  frame_busy  = ~state_idle;
assign  frame_ack   = state_send_sof;
assign  frame_rej_w = set_rcvr_wait & state_send_rdy; //  & ~alignes_pair; // OK to mask with 

// incoming fises detected
assign  incom_start_w = set_rcvr_wait; //  & ~alignes_pair;
// ... and processed
assign  incom_done_w  = set_rcvr_goodcrc; // & ~alignes_pair;
// or the FIS had errors
// Separating different types of errors, sync_escape from other problems. TODO: route individual errors to set SERR bits
assign  incom_invalidate_w =  (state_rcvr_eof &  crc_bad) | // CRC mismatch
                              (state_rcvr_data & dword_val &  rcvd_dword[CODE_WTRMP]); // missed EOF?
assign  incom_sync_escape =   (state_rcvr_wait | state_rcvr_rdy | state_rcvr_data | state_rcvr_rhold |
                               state_rcvr_shold | state_rcvr_eof | state_rcvr_goodcrc) & got_escape;

// shows that incoming primitive or data is ready to be processed // TODO somehow move alignes_pair into dword_val_na

assign  dword_val =    |rcvd_dword & phy_ready;                            // any valid primitive/data
assign  dword_val_na = |rcvd_dword & phy_ready & ~rcvd_dword[CODE_ALIGNP]; // any valid primitive/data but ALIGNp
// determine imcoming primitive type
assign  rcvd_dword[CODE_DATA]	= ~|phy_isk_in_r;
assign  rcvd_dword[CODE_CRC]	= 1'b0;
assign  rcvd_dword[CODE_SYNCP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_SYNCP ] == phy_data_in_r);
assign  rcvd_dword[CODE_ALIGNP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_ALIGNP] == phy_data_in_r);
assign  rcvd_dword[CODE_XRDYP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_XRDYP ] == phy_data_in_r);
assign  rcvd_dword[CODE_SOFP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_SOFP  ] == phy_data_in_r);
assign  rcvd_dword[CODE_HOLDAP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_HOLDAP] == phy_data_in_r);
assign  rcvd_dword[CODE_HOLDP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_HOLDP ] == phy_data_in_r);
assign  rcvd_dword[CODE_EOFP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_EOFP  ] == phy_data_in_r);
assign  rcvd_dword[CODE_WTRMP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_WTRMP ] == phy_data_in_r);
assign  rcvd_dword[CODE_RRDYP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_RRDYP ] == phy_data_in_r);
assign  rcvd_dword[CODE_IPP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_IPP   ] == phy_data_in_r);
assign  rcvd_dword[CODE_DMATP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_DMATP ] == phy_data_in_r);
assign  rcvd_dword[CODE_OKP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_OKP   ] == phy_data_in_r);
assign  rcvd_dword[CODE_ERRP]	= phy_isk_in_r[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_ERRP  ] == phy_data_in_r);
// was missing
assign  rcvd_dword[CODE_CONTP]  = phy_isk_in_r[0] && ~(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_CONTP ] == phy_data_in_r);

// CONTp (*_r0 is one cycle ahead of *_r)
// Following is processed one cycle ahead of the others to replace CONTp junk with the replaced repeated primitives
assign is_cont_p_w =               phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_CONTP  ] == phy_data_in_r0);
assign is_align_p_w =              phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_ALIGNP ] == phy_data_in_r0);
assign is_non_cont_non_align_p_w = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_CONTP  ] != phy_data_in_r0)
                                                                                              && (prim_data[CODE_ALIGNP ] != phy_data_in_r0);


// phy level errors handling TODO
assign  dec_err = |phy_err_in_r;

// form a response to transport layer
assign  frame_done      = frame_done_good | frame_done_bad;
assign  frame_done_good = state_wait & dword_val & rcvd_dword[CODE_OKP];
assign  frame_done_bad  = state_wait & dword_val & rcvd_dword[CODE_ERRP];

// Handling 3 non-align primitives - removed, this is (should be) done by OOB

// =========== Debug code ===================
wire [PRIM_NUM - 1:0] rcvd_dword0; // at least oce received after reset

assign  rcvd_dword0[CODE_DATA]   = ~|phy_isk_in_r0;
assign  rcvd_dword0[CODE_CRC]    = 1'b0;
assign  rcvd_dword0[CODE_SYNCP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_SYNCP ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_ALIGNP] = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_ALIGNP] == phy_data_in_r0);
assign  rcvd_dword0[CODE_XRDYP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_XRDYP ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_SOFP]   = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_SOFP  ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_HOLDAP] = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_HOLDAP] == phy_data_in_r0);
assign  rcvd_dword0[CODE_HOLDP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_HOLDP ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_EOFP]   = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_EOFP  ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_WTRMP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_WTRMP ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_RRDYP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_RRDYP ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_IPP]    = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_IPP   ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_DMATP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_DMATP ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_OKP]    = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_OKP   ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_ERRP]   = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_ERRP  ] == phy_data_in_r0);
assign  rcvd_dword0[CODE_CONTP]  = phy_isk_in_r0[0] && !(|phy_isk_in_r0[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_CONTP ] == phy_data_in_r0);

reg [PRIM_NUM - 1:0] debug_rcvd_dword; // at least once received after reset
reg         debug_first_error;
reg         debug_first_alignp;
reg         debug_first_syncp;
reg         debug_first_nonsyncp;
reg         debug_first_unknown; 
reg  [19:0] debug_to_first_err;
reg  [15:0] debug_num_aligns;
reg  [15:0] debug_num_syncs;
reg  [15:0] debug_num_later_aligns;
reg         other_prim_r;
reg  [15:0] debug_num_other; // other primitives - not aligh, sync or cont
reg  [31:0] debug_unknown_dword; 
wire  debug_is_sync_p_w = phy_isk_in_r0[0] && !(|phy_isk_in_r[DATA_BYTE_WIDTH-1:1]) && (prim_data[CODE_SYNCP ] == phy_data_in_r0);

wire [STATES_COUNT - 1:0] debug_states_concat = {
                           state_idle
                         , state_sync_esc
                         , state_nocommerr
                         , state_nocomm
                         , state_align
                         , state_reset
                         , state_send_rdy
                         , state_send_sof
                         , state_send_data
                         , state_send_rhold
                         , state_send_shold
                         , state_send_crc
                         , state_send_eof
                         , state_wait
                         , state_rcvr_wait
                         , state_rcvr_rdy
                         , state_rcvr_data
                         , state_rcvr_rhold
                         , state_rcvr_shold
                         , state_rcvr_eof
                         , state_rcvr_goodcrc
                         , state_rcvr_goodend
                         , state_rcvr_badend
                         };
reg [4:0] debug_states_encoded;

reg [STATES_COUNT - 1:0] debug_states_visited;

always @ (posedge clk) begin
    other_prim_r <= is_non_cont_non_align_p_w && !debug_is_sync_p_w;

    if  (rst)                                              debug_first_alignp <= 0;
    else if (is_align_p_w)                                 debug_first_alignp <= 1;

    if  (rst)                                              debug_first_syncp <= 0;
    else if (debug_is_sync_p_w && debug_first_alignp)      debug_first_syncp <= 1;

    if  (rst)                                              debug_first_error <= 0;
    else if (dec_err && debug_first_syncp)                 debug_first_error <= 1;


    if  (rst)                                              debug_first_nonsyncp <= 0;
    else if (!debug_is_sync_p_w && debug_first_syncp)      debug_first_nonsyncp <= 1;
    
    if  (rst)                                              debug_first_unknown <= 0;
    else if ((rcvd_dword0 ==0) && debug_first_alignp)      debug_first_unknown <= 1;
    
    
    
    if  (rst)                                              debug_to_first_err <= 0;
    else if (debug_first_alignp && !debug_first_error)     debug_to_first_err <= debug_to_first_err + 1;
    
    if  (rst)                                              debug_num_aligns <= 0;
    else if (debug_first_alignp && !debug_first_syncp)     debug_num_aligns <= debug_num_aligns + 1;
    
    if  (rst)                                              debug_num_syncs <= 0;
    else if (debug_first_syncp && !debug_first_nonsyncp)   debug_num_syncs <= debug_num_syncs + 1;

    if  (rst)                                                              debug_num_later_aligns <= 0;
    else if (debug_first_nonsyncp && !debug_first_error && is_align_p_w)   debug_num_later_aligns <= debug_num_later_aligns + 1;

    if  (rst)                                                              debug_num_other <= 0;
    else if (debug_first_nonsyncp && !debug_first_error && other_prim_r)   debug_num_other <= debug_num_other + 1;
    
    if      (rst)                                                             debug_unknown_dword <= 0;
    else if ((rcvd_dword0 ==0) && debug_first_alignp && !debug_first_unknown) debug_unknown_dword <= phy_data_in_r0;
    
    if      (rst)                                                             debug_rcvd_dword <= 0;
    else if (debug_first_syncp                         && !debug_first_error) debug_rcvd_dword <= debug_rcvd_dword | rcvd_dword0;
    
    if (rst) debug_states_visited <= 0;
    else     debug_states_visited <= debug_states_visited | debug_states_concat;
    
    
    debug_states_encoded <= { |debug_states_concat[22:16],
                              |debug_states_concat[15: 8],
                             (|debug_states_concat[22:20]) | (|debug_states_concat[15:12]) | (|debug_states_concat[7:4]),
                             debug_states_concat[22] | (|debug_states_concat[19:18]) | (|debug_states_concat[15:14]) | 
                             (|debug_states_concat[11:10]) | (|debug_states_concat[7:6]) | (|debug_states_concat[3:2]),
                             debug_states_concat[21] |  debug_states_concat[19] | debug_states_concat[17] | debug_states_concat[15] |
                             debug_states_concat[13] |  debug_states_concat[11] | debug_states_concat[ 9] | debug_states_concat[7] |
                             debug_states_concat[ 5] |  debug_states_concat[ 3] | debug_states_concat[ 1]};
    
end


reg [1:0] debug_data_last_in_r;
reg [1:0] debug_alignes_pair_r;
reg [1:0] debug_state_send_data_r;
reg [1:0] debug_dword_val_na;
reg [1:0] debug_CODE_SYNCP;
reg [1:0] debug_set_send_crc;
reg [1:0] debug_data_val_in;
reg [1:0] debug_was_OK_ERR;
reg       debug_was_wait;
reg       debug_was_idle;
reg       debug_was_ok_err;
reg       debug_was_state_wait;
reg       debug_was_frame_done;
reg       debug_was_got_escape;
// frame_done | got_escape

always @(posedge clk) begin
    if (data_strobe_out) begin
        debug_data_last_in_r <= {debug_data_last_in_r[0],data_last_in};
        debug_alignes_pair_r <= {debug_alignes_pair_r[0],alignes_pair};
        debug_state_send_data_r <= {debug_state_send_data_r[0],state_send_data};
        debug_dword_val_na <= {debug_dword_val_na[0],dword_val_na};
        debug_CODE_SYNCP <= {debug_CODE_SYNCP[0],rcvd_dword[CODE_SYNCP]};
        debug_set_send_crc <= {debug_set_send_crc[0],set_send_crc};
        debug_data_val_in <= {debug_data_val_in[0],data_val_in};
    end
     
    debug_was_ok_err <= rcvd_dword[CODE_ERRP] | rcvd_dword[CODE_OKP];
    
    if (frame_req) debug_was_OK_ERR <= 0;
    else debug_was_OK_ERR <= debug_was_OK_ERR | {rcvd_dword[CODE_ERRP], rcvd_dword[CODE_OKP]};
    
    if (frame_req) debug_was_state_wait <= 0;
    else debug_was_state_wait <= debug_was_state_wait | state_wait;
    
    if (state_wait && clr_wait && !alignes_pair) debug_was_frame_done <= frame_done;

    if (state_wait && clr_wait && !alignes_pair) debug_was_got_escape <= got_escape;
    
    if ((rcvd_dword[CODE_ERRP] || rcvd_dword[CODE_OKP]) && !debug_was_ok_err) begin
        debug_was_wait <= state_wait;
        debug_was_idle <= state_idle;
    end
    
end

assign debug_out[ 4: 0]  =            debug_states_encoded;
assign debug_out[7: 5] =  {
                           rcvd_dword[CODE_SYNCP],
                           rcvd_dword[CODE_OKP],
                           alignes_pair};
assign debug_out[31]   =   rcvd_dword[CODE_ALIGNP];
assign debug_out[30]   =   set_send_sof;
assign debug_out[29]   =   clr_send_rdy;
assign debug_out[28]   =   state_send_rdy;
assign debug_out[27]   =   state_send_sof;
assign debug_out[26]   =   state_idle;
assign debug_out[25]   =   state_send_data;
assign debug_out[24]   =   (state_send_sof     | set_send_sof     & ~alignes_pair);
assign debug_out[23]   =   (clr_send_sof & ~alignes_pair);
assign debug_out[22]   =   set_rcvr_wait; // start logging input

//assign debug_out[15: 5] =            debug_to_first_err[14:4];
assign debug_out[21:16] =              debug_rcvd_dword[5:0];

assign debug_out[15: 8] = {
                           debug_was_wait,         // state was wait when last CODE_ERRP/CODE_OKP was received
                           debug_was_idle,         // state was idle when last CODE_ERRP/CODE_OKP was received
                           debug_was_OK_ERR[1:0],
                           debug_was_state_wait,
                           debug_was_frame_done,
                           debug_was_got_escape,
                           
/*                           debug_data_last_in_r[1],
                           debug_alignes_pair_r[1],
                           debug_state_send_data_r[1],
                           debug_state_send_data_r[0],
                           debug_data_val_in[1],
                           
                           debug_data_val_in[0],
                           debug_set_send_crc[1],
*/                           
//                           debug_dword_val_na[1],
                           ~debug_CODE_SYNCP[1]};

/*
    state_send_sof      <= (state_send_sof     | set_send_sof     & ~alignes_pair) & ~(clr_send_sof & ~alignes_pair)     & ~rst;



_send_crc        = state_send_data   & data_txing &  data_val_in &  data_last_in & dword_val_na & ~rcvd_dword[CODE_SYNCP]
                            | state_send_data   &                                             dword_val_na &  rcvd_dword[CODE_DMATP];

*/



//assign debug_out[STATES_COUNT - 1:0] = debug_states_visited;

/* 
//assign debug_out[PRIM_NUM - 1:0] = debug_rcvd_dword;
assign debug_out[ 7: 0] =          debug_rcvd_dword[7:0];
assign debug_out[15: 8] =          debug_alignes;
assign debug_out[23:16] =          debug_data_primitives;
assign debug_out[30:24] =          debug_notaligned_primitives[6:0]; // now count state_reset _/~
assign debug_out[31] =             debug_state_reset_r[0];
*/
`ifdef CHECKERS_ENABLED
// incoming primitives
always @ (posedge clk)
    if (~|rcvd_dword & phy_ready)
    begin
        $display("%m: invalid primitive received : %h, conrol : %h, err : %h", phy_data_in_r, phy_isk_in_r, phy_err_in_r);
        #500;
        $finish;
    end
// States checker
reg  [STATES_COUNT - 1:0] sim_states_concat;
always @ (posedge clk)
    if (~rst)
    if (( 32'h0
       + state_idle
       + state_sync_esc
       + state_nocommerr
       + state_nocomm
       + state_align
       + state_reset
       + state_send_rdy
       + state_send_sof
       + state_send_data
       + state_send_rhold
       + state_send_shold
       + state_send_crc
       + state_send_eof
       + state_wait
       + state_rcvr_wait
       + state_rcvr_rdy
       + state_rcvr_data
       + state_rcvr_rhold
       + state_rcvr_shold
       + state_rcvr_eof
       + state_rcvr_goodcrc
       + state_rcvr_goodend
       + state_rcvr_badend
       ) != 1)
    begin
        sim_states_concat = {
                           state_idle
                         , state_sync_esc
                         , state_nocommerr
                         , state_nocomm
                         , state_align
                         , state_reset
                         , state_send_rdy
                         , state_send_sof
                         , state_send_data
                         , state_send_rhold
                         , state_send_shold
                         , state_send_crc
                         , state_send_eof
                         , state_wait
                         , state_rcvr_wait
                         , state_rcvr_rdy
                         , state_rcvr_data
                         , state_rcvr_rhold
                         , state_rcvr_shold
                         , state_rcvr_eof
                         , state_rcvr_goodcrc
                         , state_rcvr_goodend
                         , state_rcvr_badend
                         };
        $display("%m: invalid states: %b", sim_states_concat);
//        $finish;
    end
`endif

`ifdef SIMULATION
integer sim_cnt;
always @ (posedge clk) begin
    if (incom_start) begin
        HOST_LINK_TITLE = "Incoming start";
        $display("[Host] LINK:        %s @%t", HOST_LINK_TITLE, $time);
        sim_cnt = 0;
    end
    if (data_val_out) begin
        HOST_LINK_TITLE = "From device - received data";
        HOST_LINK_DATA =  data_out;
        $display("[Host] LINK:        %s = %h (#%d)@%t", HOST_LINK_TITLE, HOST_LINK_DATA, sim_cnt, $time);
        sim_cnt = sim_cnt + 1;
    end
    if (incom_done) begin
        HOST_LINK_TITLE = "Incoming end";
        $display("[Host] LINK:        %s @%t", HOST_LINK_TITLE, $time);
        sim_cnt = 0;
    end
    if (incom_invalidate) begin
        HOST_LINK_TITLE = "Incoming invalidate";
        $display("[Host] LINK:        %s @%t", HOST_LINK_TITLE, $time);
        sim_cnt = 0;
    end
    if (incom_sync_escape) begin
        HOST_LINK_TITLE = "Incoming sync_escape";
        $display("[Host] LINK:        %s @%t", HOST_LINK_TITLE, $time);
        sim_cnt = 0;
    end
    if (incom_ack_good) begin
        HOST_LINK_TITLE = "Incoming ack_good";
        $display("[Host] LINK:        %s @%t", HOST_LINK_TITLE, $time);
        sim_cnt = 0;
    end
    if (incom_ack_bad) begin
        HOST_LINK_TITLE = "Incoming ack_bad";
        $display("[Host] LINK:        %s @%t", HOST_LINK_TITLE, $time);
        sim_cnt = 0;
    end
//    if (inc_is_data) begin
//        $display("[Host] LINK:        From device - received raw data = %h", phy_data_in);
//    end
end
    
`endif

endmodule