ahci_dma_rd_fifo.v 11.8 KB
Newer Older
1 2 3 4 5 6 7
/*!
 * <b>Module:</b>ahci_dma_rd_fifo
 * @file ahci_dma_rd_fifo.v
 * @date 2016-01-01  
 * @author Andrey Filippov
 *
 * @brief cross clocks,  word-realign, 64->32
8 9 10
 * Convertion from x64 QWORD-aligned AXI data @hclk to
 * 32-bit word-aligned data at mclk
 *
11 12 13 14
 * @copyright Copyright (c) 2016 Elphel, Inc .
 *
 * <b>License:</b>
 *
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 * ahci_dma_rd_fifo.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  ahci_dma_rd_fifo.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
 * files and/or simulating the code, the copyright holders of this Program give
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
 * charge, and there is no dependence on any encrypted modules for simulating of
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
40
 */
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
`timescale 1ns/1ps

module  ahci_dma_rd_fifo#(
    parameter WCNT_BITS    = 21,
    parameter ADDRESS_BITS = 3
)(
    input                 mrst,
    input                 hrst,
    input                 mclk,
    input                 hclk,
    // hclk domain
    input [WCNT_BITS-1:0] wcnt,  // decrementing word counter, 0- based (0 need 1, 1 - need 2, ...) valid @ start
    input           [1:0] woffs, // 2 LSBs of the initial word address - valid @ start
    input                 start, // start transfer
    input          [63:0] din,
    input                 din_av,
    input                 din_av_many,
    input                 last_prd, // last prd, flush partial dword if there were odd number of words transferred. valid @ start
    // Or maybe use "last_prd"?
    output                din_re,
    output reg            done,        // this PRD data sent to cross-clock FIFO (may result in only half-dword sent out),
                                       // OK to fetch another PRD (if it was not the last) 
    output                done_flush,  // finished last PRD (indicated by last_prd @ start), data left module
    // mclk domain
    output         [31:0] dout,
    output                dout_vld,
    input                 dout_re,
    output                last_DW      // dout contains last DW
    ,output [31:0] debug_dma_h2d
    
);
    localparam ADDRESS_NUM = (1<<ADDRESS_BITS); // 8 for ADDRESS_BITS==3
    reg   [ADDRESS_BITS : 0] waddr; // 1 extra bit       
//    reg   [ADDRESS_BITS+1:0] raddr; // 1 extra bit       
    reg   [ADDRESS_BITS+1:0] raddr_r; // 1 extra bit       
    wire  [ADDRESS_BITS+1:0] raddr_w; // 1 extra bit       
    reg              [63:16] din_prev; // only 48 bits are needed
    reg      [WCNT_BITS-3:0] qwcntr;
    reg                      busy;
    wire               [2:0] end_offs = wcnt[1:0] + woffs;
    
    reg               [63:0] fifo_ram  [0: ADDRESS_NUM - 1];
    reg                [3:0] vld_ram   [0: ADDRESS_NUM - 1];
    reg [(1<<ADDRESS_BITS)-1:0] fifo_full;  // set in write clock domain
    reg [(1<<ADDRESS_BITS)-1:0] fifo_nempty;// set in read clock domain
    wire                     fifo_wr;
    wire                     fifo_rd;
    reg                [1:0] fifo_rd_r;
    reg                      mrst_hclk;
    
    wire [(1<<ADDRESS_BITS)-1:0] fifo_full2 =       {~fifo_full[0],fifo_full[ADDRESS_NUM-1:1]};
    reg                      fifo_dav;  // @mclk
    wire                     fifo_dav2_w;   
    reg                      fifo_dav2; // @mclk
    
    reg                      fifo_half_hclk; // Half Fifo is empty, OK to write
    reg                [1:0] woffs_r;
    
    wire              [63:0] fifo_di= woffs_r[1]?(woffs_r[0] ? {din[47:0],din_prev[63:48]} : {din[31:0],din_prev[63:32]}):
                                                 (woffs_r[0] ? {din[15:0],din_prev[63:16]} : din[63:0]);
    wire               [3:0] fifo_di_vld;                                             
//    wire              [63:0] fifo_do =       fifo_ram [raddr[ADDRESS_BITS:1]];
//    wire               [3:0] fifo_do_vld =   vld_ram  [raddr[ADDRESS_BITS:1]];
    reg               [63:0] fifo_do_r;
    reg                [3:0] fifo_do_vld_r;
    reg                      din_av_safe_r;
    reg                      en_fifo_wr;
    reg                [3:0] last_mask;
    wire                     done_flush_mclk;
    reg                      flushing_hclk; // flushing data, ends when confirmed from mclk domain
    reg                      flushing_mclk; // just registered flushing_hclk @mclk                     
    
    wire                     last_fifo_wr;
    
    assign din_re =  busy && fifo_half_hclk && din_av_safe_r;
    assign fifo_wr = en_fifo_wr && fifo_half_hclk && (din_av_safe_r || !busy);
    assign fifo_di_vld =    last_fifo_wr? last_mask : 4'hf;

    
    wire [2:0] debug_waddr = waddr[2:0];
    wire [2:0] debug_raddr = raddr_r[3:1];
     // just for gtkwave - same names
    wire  [ADDRESS_BITS+1:0] raddr = raddr_r;       
    wire              [63:0] fifo_do =       fifo_do_r;
    wire               [3:0] fifo_do_vld =   fifo_do_vld_r;
    
    
//    assign fifo_dav2_w = fifo_full2[raddr[ADDRESS_BITS:1]] ^ raddr[ADDRESS_BITS+1];
///    assign fifo_dav2_w = fifo_full2[raddr_r[ADDRESS_BITS:1]] ^ raddr_r[ADDRESS_BITS+1];
    assign fifo_dav2_w = fifo_full2[raddr_w[ADDRESS_BITS:1]] ^ raddr_w[ADDRESS_BITS+1];
    
    
    
    assign last_fifo_wr = !busy || ((qwcntr == 0) && ((woffs == 0) || end_offs[2])); //            ((qwcntr != 0) || ((woffs != 0) && last_prd));
    
    
    always @ (posedge hclk) begin
        if      (hrst)                      mrst_hclk <= 0;
        else                                mrst_hclk <= mrst;
    
        if      (mrst_hclk)                 busy <= 0;
        else if (start)                     busy <= 1;
        else if (din_re && (qwcntr == 0))   busy <= 0;
        
        done <= busy && din_re && (qwcntr == 0);
        
        if      (mrst_hclk)                 en_fifo_wr <= 0;
        else if (start)                     en_fifo_wr <= (woffs == 0);
        else if (din_re || fifo_wr)         en_fifo_wr <= busy && ((qwcntr != 0) || ((woffs != 0) && !end_offs[2]));
        
        if       (start) qwcntr <= wcnt[WCNT_BITS-1:2] + end_offs[2];
        else if (din_re) qwcntr <= qwcntr - 1;
        

        if (start) woffs_r <= woffs;
        
        if    (mrst_hclk) fifo_full <= 0;
        else if (fifo_wr) fifo_full <= {fifo_full[ADDRESS_NUM-2:0],~waddr[ADDRESS_BITS]};

        if    (mrst_hclk) waddr <= 0;
        else if (fifo_wr) waddr <= waddr+1;
        
        fifo_half_hclk <= fifo_nempty [waddr[ADDRESS_BITS-1:0]] ^ waddr[ADDRESS_BITS];
        
        if (din_re) din_prev[63:16] <= din[63:16];
        
        if (fifo_wr) fifo_ram[waddr[ADDRESS_BITS-1:0]] <= fifo_di;
        if (fifo_wr) vld_ram [waddr[ADDRESS_BITS-1:0]] <= fifo_di_vld;
//        if (fifo_wr) flush_ram[waddr[ADDRESS_BITS-1:0]] <= fifo_di_flush;
        
        if (mrst_hclk) din_av_safe_r <= 0;
        else           din_av_safe_r <= din_av && (din_av_many || !din_re);
        
        if (start) last_mask <= {&wcnt[1:0], wcnt[1], |wcnt[1:0], 1'b1}; 
        
        if      (mrst_hclk || done_flush)                                                          flushing_hclk <= 0;
        else if (fifo_wr && last_prd && (((qwcntr == 0) && ((woffs == 0) || !last_prd)) || !busy)) flushing_hclk <= 1;
        
    end
    
    assign raddr_w = mrst ? 0 : (raddr_r + fifo_rd);
    
    always @ (posedge mclk) begin
    
        fifo_rd_r <= {fifo_rd_r[0],fifo_rd};
//        if      (mrst)                raddr <= 0;
//        else if (fifo_rd)             raddr <= raddr + 1; 

        raddr_r <= raddr_w;

        if      (mrst)                fifo_nempty <= {{(ADDRESS_NUM>>1){1'b0}},{(ADDRESS_NUM>>1){1'b1}}};// 8'b00001111
//        else if (fifo_rd && raddr[0]) fifo_nempty <= {fifo_nempty[ADDRESS_NUM-2:0], ~raddr[ADDRESS_BITS+1] ^ raddr[ADDRESS_BITS]};
        else if (fifo_rd && raddr_r[0]) fifo_nempty <= {fifo_nempty[ADDRESS_NUM-2:0], ~raddr_r[ADDRESS_BITS+1] ^ raddr_r[ADDRESS_BITS]};
        
//        fifo_dav <=  fifo_full [raddr[ADDRESS_BITS:1]] ^ raddr[ADDRESS_BITS+1];
///        fifo_dav <=  fifo_full [raddr_r[ADDRESS_BITS:1]] ^ raddr_r[ADDRESS_BITS+1];
        fifo_dav <=  fifo_full [raddr_w[ADDRESS_BITS:1]] ^ raddr_w[ADDRESS_BITS+1];
        
        
        fifo_dav2 <= fifo_dav2_w; // fifo_full2[raddr[ADDRESS_BITS:1]] ^ raddr[ADDRESS_BITS+1];
        
        if      (mrst)   flushing_mclk <= 0;
        else             flushing_mclk <= flushing_hclk;
        
        fifo_do_r <=       fifo_ram [raddr_w[ADDRESS_BITS:1]];
        fifo_do_vld_r <=   vld_ram  [raddr_w[ADDRESS_BITS:1]];
        
    end
    
    ahci_dma_rd_stuff ahci_dma_rd_stuff_i (
        .rst      (mrst),                                       // input
        .clk      (mclk),                                       // input
        .din_av   (fifo_dav),                                   // input
        .din_avm_w(fifo_dav2_w),                                // input
        .din_avm  (fifo_dav2),                                  // input
        .flushing (flushing_mclk),                              // input
//        .din      (raddr[0]?fifo_do[63:32]:  fifo_do[31:0]),    // input[31:0] 
//        .dm       (raddr[0]?fifo_do_vld[3:2]:fifo_do_vld[1:0]), // input[1:0] 
        .din      (raddr_r[0]?fifo_do_r[63:32]:  fifo_do_r[31:0]),    // input[31:0] 
        .dm       (raddr_r[0]?fifo_do_vld_r[3:2]:fifo_do_vld_r[1:0]), // input[1:0] 
        .din_re   (fifo_rd),                                    // output
        .flushed  (done_flush_mclk),                            // output reg: flush (end of last PRD is finished - data left module)
        .dout     (dout),                                       // output[31:0] reg 
        .dout_vld (dout_vld),                                   // output
        .dout_re  (dout_re),                                    // input
        .last_DW  (last_DW)                                     // output
    );

    pulse_cross_clock #(
        .EXTRA_DLY(0)
    ) done_flush_i (
        .rst       (mrst),                               // input
        .src_clk   (mclk),                               // input
        .dst_clk   (hclk),                               // input
        .in_pulse  (done_flush_mclk),                    // input
        .out_pulse (done_flush),                         // output
        .busy()                                          // output
    );
    
    assign debug_dma_h2d = {
                            14'b0,
                            fifo_rd,
                            raddr_r[4:0],
                            fifo_do_vld_r[3:0],
    
                            fifo_dav,
                            fifo_dav2_w,
                            fifo_dav2,
                            flushing_mclk,
                            
                            done_flush_mclk,
                            dout_vld,
                            dout_re,
                            last_DW
    };
endmodule