Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
cfb96985
Project 'Elphel/master' was moved to 'Elphel/image-compression'. Please update any links and bookmarks that may still have the old path.
Commit
cfb96985
authored
Jun 28, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Mathematical changes and testing
parent
9b1db8a3
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
78 additions
and
29 deletions
+78
-29
ErrorImageCreator.py
ErrorImageCreator.py
+15
-15
Remove_Noise.py
Remove_Noise.py
+36
-0
WorkingPyDemo.py
WorkingPyDemo.py
+27
-14
No files found.
ErrorImageCreator.py
View file @
cfb96985
from
turtle
import
color
from
WorkingPyDemo
import
*
def
produce_error_array
(
encoded_string
,
list_dic
,
bins
,
use_diff
):
"""
...
...
@@ -88,17 +87,18 @@ def color_adjust(visual_array):
adjusted_array
=
visual_array
-
min_of_errors
adjusted_array
=
np
.
round
(
adjusted_array
*
255
/
np
.
max
(
adjusted_array
))
return
adjusted_array
scenes
=
file_extractor
(
folder_name
)
images
=
image_extractor
(
scenes
)
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
"TRUE"
)
bins
=
[
21
,
32
,
48
]
encoded_string2
=
bytes_to_bitstring
(
read_from_file
(
images
[
250
][:
-
5
]
+
"_Compressed.txt"
))
original_array
,
error_array
=
produce_error_array
(
encoded_string2
,
list_dic
,
bins
,
False
)
adjusted_errors
=
color_adjust
(
abs
(
error_array
))
original_array_adjusted
=
color_adjust
(
original_array
)
# print(adjusted_errors)
plt
.
subplot
(
121
)
plt
.
imshow
(
original_array_adjusted
,
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
255
)
plt
.
subplot
(
122
)
plt
.
imshow
(
adjusted_errors
,
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
255
)
plt
.
show
()
\ No newline at end of file
if
__name__
==
"__main__"
:
scenes
=
file_extractor
(
folder_name
)
images
=
image_extractor
(
scenes
)
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
"TRUE"
)
bins
=
[
21
,
32
,
48
]
encoded_string2
=
bytes_to_bitstring
(
read_from_file
(
images
[
1
][:
-
5
]
+
"_Compressed.txt"
))
original_array
,
error_array
=
produce_error_array
(
encoded_string2
,
list_dic
,
bins
,
False
)
adjusted_errors
=
color_adjust
(
abs
(
error_array
))
original_array_adjusted
=
color_adjust
(
original_array
)
# print(adjusted_errors)
plt
.
subplot
(
121
)
plt
.
imshow
(
original_array_adjusted
,
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
255
)
plt
.
subplot
(
122
)
plt
.
imshow
(
adjusted_errors
,
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
255
)
plt
.
show
()
\ No newline at end of file
Remove_Noise.py
0 → 100644
View file @
cfb96985
from
matplotlib.image
import
composite_images
from
WorkingPyDemo
import
*
def
remove_noise
(
images
,
which_sensor
):
same_sensor_images
=
[]
which_sensor
=
str
(
which_sensor
)
average_image
=
np
.
zeros_like
(
np
.
array
(
Image
.
open
(
images
[
0
]))[
1
:])
for
i
,
image_name
in
enumerate
(
images
):
if
int
(
which_sensor
)
>
9
:
if
image_name
[
-
7
:
-
5
]
==
which_sensor
:
same_sensor_images
.
append
(
image_name
)
else
:
if
image_name
[
-
7
:
-
5
]
==
"_"
+
which_sensor
:
same_sensor_images
.
append
(
image_name
)
for
i
,
image_name
in
enumerate
(
same_sensor_images
):
# print(image_name)
image_object
=
Image
.
open
(
image_name
)
# print(np.array(image_object).shape)
# print(np.array(image_object)[1:] + average_image)
average_image
=
np
.
array
(
image_object
)[
1
:]
+
average_image
return
average_image
/
len
(
same_sensor_images
)
scenes
=
file_extractor
(
folder_name
)
images
=
image_extractor
(
scenes
)
average_image
=
remove_noise
(
images
,
"7"
)
def
color_adjust
(
visual_array
):
min_of_errors
=
np
.
min
(
visual_array
)
adjusted_array
=
visual_array
-
min_of_errors
adjusted_array
=
np
.
round
(
adjusted_array
*
255
/
np
.
max
(
adjusted_array
))
return
adjusted_array
print
(
np
.
max
(
average_image
))
print
(
np
.
min
(
average_image
))
plt
.
imshow
(
color_adjust
(
average_image
),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
255
)
plt
.
show
()
# print(np.linalg.inv(np.array([[3,0,-1],[0,3,3],[1,-3,-4]])))
print
(
np
.
linalg
.
pinv
(
np
.
array
([[
-
1
,
-
1
,
1
],
[
-
1
,
0
,
1
],
[
-
1
,
1
,
1
],
[
0
,
-
1
,
1
]])))
\ No newline at end of file
WorkingPyDemo.py
View file @
cfb96985
...
...
@@ -76,7 +76,8 @@ def predict_pix(tiff_image_path, difference = True):
image_obj
=
Image
.
open
(
tiff_image_path
)
#Open the image and read it as an Image object
image_array
=
np
.
array
(
image_obj
)[
1
:,:]
.
astype
(
int
)
#Convert to an array, leaving out the first row because the first row is just housekeeping data
# image_array = image_array.astype(int)
A
=
np
.
array
([[
3
,
0
,
-
1
],[
0
,
3
,
3
],[
1
,
-
3
,
-
4
]])
# the matrix for system of equation
# A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]]) # the matrix for system of equation
Ainv
=
np
.
array
([[
0.5
,
-
0.5
,
-
0.5
],[
-
0.5
,
1.83333333
,
1.5
],[
0.5
,
-
1.5
,
-
1.5
]])
# where z0 = (-1,1), z1 = (0,1), z2 = (1,1), z3 = (-1,0)
z0
=
image_array
[
0
:
-
2
,
0
:
-
2
]
# get all the first pixel for the entire image
z1
=
image_array
[
0
:
-
2
,
1
:
-
1
]
# get all the second pixel for the entire image
...
...
@@ -91,8 +92,8 @@ def predict_pix(tiff_image_path, difference = True):
# use numpy solver to solve the system of equations all at once
#predict = np.floor(np.linalg.solve(A,y)[-1])
predict
=
np
.
round
(
np
.
round
((
np
.
linalg
.
solve
(
A
,
y
)[
-
1
]),
1
))
#
predict = np.round(np.round((np.linalg.solve(A,y)[-1]),1))
predict
=
np
.
round
(
np
.
round
((
Ainv
[
-
1
]
@
y
)),
1
)
#Matrix system of points that will be used to solve the least squares fitting hyperplane
points
=
np
.
array
([[
-
1
,
-
1
,
1
],
[
-
1
,
0
,
1
],
[
-
1
,
1
,
1
],
[
0
,
-
1
,
1
]])
...
...
@@ -113,7 +114,12 @@ def predict_pix(tiff_image_path, difference = True):
#points to the hyperplane), it is a measure of gradient
f
,
diff
,
rank
,
s
=
la
.
lstsq
(
points
,
neighbor
.
T
,
rcond
=
None
)
diff
=
diff
.
astype
(
int
)
# Pinv = np.linalg.pinv(points)
# b = [z0,z1,z2,z3]
# x = Pinv@np.array(b)
# diff = np.linalg.norm(b - points@x,ord=2)
# diff = diff.astype(int)
# calculate the error
error
=
np
.
ravel
(
image_array
[
1
:
-
1
,
1
:
-
1
])
-
predict
...
...
@@ -402,6 +408,7 @@ def decoder(encoded_string, list_dic, bins, use_diff):
decode_matrix (512, 640): decoded matrix
"""
A
=
np
.
array
([[
3
,
0
,
-
1
],[
0
,
3
,
3
],[
1
,
-
3
,
-
4
]])
# the matrix for system of equation
Ainv
=
np
.
array
([[
0.5
,
-
0.5
,
-
0.5
],[
-
0.5
,
1.83333333
,
1.5
],[
0.5
,
-
1.5
,
-
1.5
]])
# change the dictionary back to list
# !!!!!WARNING!!!! has to change this part, everytime you change the number of bins
the_keys0
=
list
(
list_dic
[
0
]
.
keys
())
...
...
@@ -421,7 +428,7 @@ def decoder(encoded_string, list_dic, bins, use_diff):
#Matrix system of points that will be used to solve the least squares fitting hyperplane
points
=
np
.
array
([[
-
1
,
-
1
,
1
],
[
-
1
,
0
,
1
],
[
-
1
,
1
,
1
],
[
0
,
-
1
,
1
]])
# Pinv = np.linalg.pinv(points)
decode_matrix
=
np
.
zeros
((
512
,
640
))
# loop through all the element in the matrix
for
i
in
range
(
decode_matrix
.
shape
[
0
]):
...
...
@@ -449,11 +456,14 @@ def decoder(encoded_string, list_dic, bins, use_diff):
if
use_diff
:
difference
=
max
(
z0
,
z1
,
z2
,
z3
)
-
min
(
z0
,
z1
,
z2
,
z3
)
else
:
# b = [z0,z1,z2,z3]
# x = Pinv@np.array(b)
# difference = np.linalg.norm(b - points@x,ord=2)
f
,
difference
,
rank
,
s
=
la
.
lstsq
(
points
,
[
z0
,
z1
,
z2
,
z3
],
rcond
=
None
)
difference
=
difference
.
astype
(
int
)
predict
=
np
.
round
(
np
.
round
(
np
.
linalg
.
solve
(
A
,
y
)[
-
1
][
0
],
1
))
# predict = np.round(np.round(np.linalg.solve(A,y)[-1][0],1))
predict
=
np
.
round
(
np
.
round
((
Ainv
[
-
1
]
@
y
)[
0
],
1
))
# add on the difference by searching the dictionary
# !!!!!WARNING!!!! has to change this part, eveytime you change the number of bins
if
difference
<=
bins
[
0
]:
...
...
@@ -501,19 +511,19 @@ def text_to_tiff(filename, list_dic, bins):
reconstruct_image
=
reconstruct_image
.
astype
(
np
.
uint16
)
reconstruct_image
=
Image
.
fromarray
(
reconstruct_image
)
reconstruct_image
.
save
(
filename
[:
-
16
]
+
"_reconstructed.tiff"
,
"TIFF"
)
# starttime = time()
if
__name__
==
"__main__"
:
scenes
=
file_extractor
(
folder_name
)
images
=
image_extractor
(
scenes
)
newnamesforlater
=
[]
# list_dic, bins = make_dictionary(images, 4, False)
# list_dic, bins = make_dictionary(images
[0:1]
, 4, False)
file_sizes_new
=
[]
file_sizes_old
=
[]
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
"TRUE"
)
bins
=
[
21
,
32
,
48
]
# np.save("first_dic.npy", list_dic)
for
i
in
range
(
len
(
images
)):
for
i
in
range
(
len
(
images
[
0
:
5
]
)):
# image, new_error, diff = huffman(images[i], 4, False)
# encoded_string = encoder(new_error, list_dic, diff, bins)
# inletters = bitstring_to_bytes(encoded_string)
...
...
@@ -535,18 +545,21 @@ if __name__ == "__main__":
file_sizes_new
.
append
(
os
.
path
.
getsize
(
"first_dic.npy"
))
print
(
np
.
sum
(
file_sizes_new
)
/
np
.
sum
(
file_sizes_old
))
list_dic
=
np
.
load
(
"first_dic.npy"
,
allow_pickle
=
"TRUE"
)
#
list_dic = np.load("first_dic.npy", allow_pickle="TRUE")
bins
=
[
21
,
32
,
48
]
# starttime = time()
for
i
,
item
in
enumerate
(
newnamesforlater
[
0
:
5
]
):
for
i
,
item
in
enumerate
(
newnamesforlater
):
print
(
item
)
image
,
new_error
,
diff
=
huffman
(
images
[
i
],
4
,
False
)
encoded_string2
=
bytes_to_bitstring
(
read_from_file
(
item
))
starttime
=
time
()
reconstruct_image
=
decoder
(
encoded_string2
,
list_dic
,
bins
,
False
)
print
(
np
.
allclose
(
image
,
reconstruct_image
))
print
(
time
()
-
starttime
)
# text_to_tiff("images/1626033496_437803/1626033496_437803_3._Compressed.txt", list_dic, bins)
# original_image = Image.open("images/1626033496_437803/1626033496_437803_3.tiff")
# original_image = np.array(original_image)[1:]
# secondimage = Image.open("images/1626033496_437803/1626033496_437803_3_reconstructed.tiff")
# secondimage = np.array(secondimage)
# print(np.allclose(original_image, secondimage))
\ No newline at end of file
# print(np.allclose(original_image, secondimage))
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment