Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
96e7a95d
Project 'Elphel/master' was moved to 'Elphel/image-compression'. Please update any links and bookmarks that may still have the old path.
Commit
96e7a95d
authored
Jun 08, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
midday_check
parent
c6dfe9f2
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
894 additions
and
23 deletions
+894
-23
NoBinsDemo.ipynb
NoBinsDemo.ipynb
+625
-0
SameTableEncoder.ipynb
SameTableEncoder.ipynb
+94
-23
WorkingPyDemo.py
WorkingPyDemo.py
+175
-0
No files found.
NoBinsDemo.ipynb
0 → 100644
View file @
96e7a95d
This diff is collapsed.
Click to expand it.
SameTableEncoder.ipynb
View file @
96e7a95d
...
...
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"execution_count":
11
5,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -20,7 +20,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count":
11
6,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -72,7 +72,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count":
11
7,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -147,7 +147,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count":
11
8,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -194,8 +194,6 @@
" node = NodeTree(key1, key2)\n",
" nodes.append((node, c1 + c2))\n",
" #reverse True, decending order\n",
"\n",
" #There is a huge memory leak here, no idea how or why\n",
" nodes = sorted(nodes, key=lambda x: x[1], reverse=True)\n",
" return nodes[0][0]\n",
"def decode_string(huffman_string, the_keys, the_values):\n",
...
...
@@ -208,7 +206,7 @@
},
{
"cell_type": "code",
"execution_count":
9
,
"execution_count":
138
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -245,7 +243,8 @@
"\n",
" # sort the difference and create the bins\n",
" sorted_diff = np.sort(diff.copy())\n",
" bins = [12,60,180]\n",
" # bins = [12,60,180]\n",
" bins = [21,31,48]\n",
" # get the boundary \n",
" boundary = np.hstack((image_array[0,:],image_array[-1,:],image_array[1:-1,0],image_array[1:-1,-1]))\n",
" \n",
...
...
@@ -309,7 +308,7 @@
},
{
"cell_type": "code",
"execution_count": 1
0
,
"execution_count": 1
39
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -341,7 +340,8 @@
" # sort the difference and create the bins\n",
" sorted_diff = np.sort(diff.copy())\n",
" # bins = [sorted_diff[i*data_points_per_bin] for i in range(1,num_bins)]\n",
" bins = [12,60,180]\n",
" # bins = [12,60,180]\n",
" bins = [21,31,48]\n",
" # get the boundary \n",
" boundary = np.hstack((image_array[0,:],image_array[-1,:],image_array[1:-1,0],image_array[1:-1,-1]))\n",
" \n",
...
...
@@ -417,7 +417,7 @@
},
{
"cell_type": "code",
"execution_count": 1
1
,
"execution_count": 1
40
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -456,7 +456,7 @@
},
{
"cell_type": "code",
"execution_count":
97
,
"execution_count":
141
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -486,7 +486,7 @@
},
{
"cell_type": "code",
"execution_count":
98
,
"execution_count":
142
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -576,7 +576,7 @@
},
{
"cell_type": "code",
"execution_count":
99
,
"execution_count":
143
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -587,7 +587,7 @@
},
{
"cell_type": "code",
"execution_count": 1
0
6,
"execution_count": 1
4
6,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -597,7 +597,7 @@
"oglist_dic, ogbins = make_dictionary(images[:10], 4, False)\n",
"file_size_ratios = []\n",
"np.save(\"first_dic.npy\", oglist_dic)\n",
"for i in range(10):\n",
"for i in range(10
,30
):\n",
" list_dic, image, new_error, diff, bound, predict, bins = huffman(images[i], 4, False)\n",
" encoded_string1 = encoder(new_error, oglist_dic, diff, bound, ogbins)\n",
" # reconstruct_image = decoder(A, encoded_string, list_dic, bins, False)\n",
...
...
@@ -615,14 +615,14 @@
},
{
"cell_type": "code",
"execution_count": 1
07
,
"execution_count": 1
45
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.395
3878365239038
\n"
"0.395
5133696593259
\n"
]
}
],
...
...
@@ -635,7 +635,9 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"0.39535481750525336"
]
},
{
"cell_type": "markdown",
...
...
@@ -663,9 +665,19 @@
},
{
"cell_type": "code",
"execution_count": 1
08
,
"execution_count": 1
27
,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n",
"True\n",
"True\n"
]
}
],
"source": [
"def bytes_to_bitstring(input_bytearray):\n",
" end_string = \"\"\n",
...
...
@@ -676,14 +688,73 @@
"oglist_dic = np.load(\"first_dic.npy\", allow_pickle=\"TRUE\")\n",
"\n",
"\n",
"ogbins = [12,60,180]\n",
"for i,item in enumerate(newnamesforlater[0:10]):\n",
"# ogbins = [12,60,180]\n",
"ogbins = [21,31,48]\n",
"for i,item in enumerate(newnamesforlater[0:3]):\n",
" list_dic, image, new_error, diff, bound, predict, bins = huffman(images[i], 4, False)\n",
" encoded_string2 = bytes_to_bitstring(read_from_file(item))\n",
" reconstruct_image = decoder(encoded_string2, oglist_dic, ogbins, False)\n",
" print(np.allclose(image, reconstruct_image))"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [],
"source": [
"def check_bin_size(tiff_image_path_list, num_bins=4, difference = True):\n",
" \"\"\"\n",
" This function is used to encode the error based on the difference\n",
" and split the difference into different bins\n",
" \n",
" Input:\n",
" tiff_image_path (string): path to the tiff file\n",
" num_bins (int): number of bins\n",
" \n",
" Return:\n",
" huffman_encoding_list list (num_bins + 1): a list of dictionary\n",
" image_array ndarray (512, 640): original image\n",
" new_error ndarray (512, 640): error that includes the boundary\n",
" diff ndarray (510, 638): difference of min and max of the 4 neighbors\n",
" boundary ndarray (2300,): the boundary values after subtracting the very first pixel value\n",
" predict ndarray (325380,): the list of predicted values\n",
" bins list (num_bins - 1,): a list of threshold to cut the bins\n",
" A ndarray (3 X 3): system of equation\n",
" \n",
" \"\"\"\n",
" all_bins = []\n",
" for i, tiff_image_path in enumerate(tiff_image_path_list):\n",
" # get the image_array, etc\n",
" image_array, predict, diff, error= predict_pix(tiff_image_path, difference)\n",
" \n",
" # calculate the number of points that will go in each bin\n",
" data_points_per_bin = diff.size // num_bins\n",
"\n",
" # sort the difference and create the bins\n",
" sorted_diff = np.sort(diff.copy())\n",
" bins = [sorted_diff[i*data_points_per_bin] for i in range(1,num_bins)]\n",
" all_bins.append(bins)\n",
" return np.mean(all_bins,axis = 0)\n"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[21.00404858 31.92712551 48.06477733]\n"
]
}
],
"source": [
"print(check_bin_size(images))"
]
},
{
"cell_type": "code",
"execution_count": null,
...
...
WorkingPyDemo.py
0 → 100644
View file @
96e7a95d
import
numpy
as
np
from
matplotlib
import
pyplot
as
plt
from
itertools
import
product
import
os
import
sys
from
PIL
import
Image
from
scipy.optimize
import
minimize
,
linprog
from
sklearn.neighbors
import
KernelDensity
from
collections
import
Counter
import
numpy.linalg
as
la
def
file_extractor
(
dirname
=
"images"
):
files
=
os
.
listdir
(
dirname
)
scenes
=
[]
for
file
in
files
:
if
file
==
'.DS_Store'
:
continue
else
:
scenes
.
append
(
os
.
path
.
join
(
dirname
,
file
))
return
scenes
def
image_extractor
(
scenes
):
image_folder
=
[]
for
scene
in
scenes
:
files
=
os
.
listdir
(
scene
)
for
file
in
files
:
if
file
[
-
5
:]
!=
".tiff"
or
file
[
-
7
:]
==
"_6.tiff"
:
continue
else
:
image_folder
.
append
(
os
.
path
.
join
(
scene
,
file
))
return
image_folder
#returns a list of file paths to .tiff files in the specified directory given in file_extractor
def
im_distribution
(
images
,
num
):
"""
Function that extracts tiff files from specific cameras and returns a list of all
the tiff files corresponding to that camera. i.e. all pictures labeled "_7.tiff" or otherwise
specified camera numbers.
Parameters:
images (list): list of all tiff files, regardless of classification. This is NOT a list of directories but
of specific tiff files that can be opened right away. This is the list that we iterate through and
divide.
num (str): a string designation for the camera number that we want to extract i.e. "14" for double digits
of "_1" for single digits.
Returns:
tiff (list): A list of tiff files that have the specified designation from num. They are the files extracted
from the 'images' list that correspond to the given num.
"""
tiff
=
[]
for
im
in
images
:
if
im
[
-
7
:
-
5
]
==
num
:
tiff
.
append
(
im
)
return
tiff
def
predict_pix
(
tiff_image_path
,
difference
=
True
):
"""
This function predict the pixel values excluding the boundary.
Using the 4 neighbor pixel values and MSE to predict the next pixel value
(-1,1) (0,1) (1,1) => relative position of the 4 other given values
(-1,0) (0,0) => (0,0) is the one we want to predict
take the derivative of mean square error to solve for the system of equation
A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])
A @ [a, b, c] = [-z0+z2-z3, z0+z1+z2, -z0-z1-z2-z3] where z0 = (-1,1), z1 = (0,1), z2 = (1,1), z3 = (-1,0)
and the predicted pixel value is c.
Input:
tiff_image_path (string): path to the tiff file
Return:
image ndarray(512 X 640): original image
predict ndarray(325380,): predicted image excluding the boundary
diff. ndarray(325380,): IF difference = TRUE, difference between the min and max of four neighbors exclude the boundary
ELSE: the residuals of the four nearest pixels to a fitted hyperplane
error ndarray(325380,): difference between the original image and predicted image
A ndarray(3 X 3): system of equation
"""
image_obj
=
Image
.
open
(
tiff_image_path
)
#Open the image and read it as an Image object
image_array
=
np
.
array
(
image_obj
)[
1
:,:]
.
astype
(
int
)
#Convert to an array, leaving out the first row because the first row is just housekeeping data
# image_array = image_array.astype(int)
A
=
np
.
array
([[
3
,
0
,
-
1
],[
0
,
3
,
3
],[
1
,
-
3
,
-
4
]])
# the matrix for system of equation
# where z0 = (-1,1), z1 = (0,1), z2 = (1,1), z3 = (-1,0)
z0
=
image_array
[
0
:
-
2
,
0
:
-
2
]
# get all the first pixel for the entire image
z1
=
image_array
[
0
:
-
2
,
1
:
-
1
]
# get all the second pixel for the entire image
z2
=
image_array
[
0
:
-
2
,
2
::]
# get all the third pixel for the entire image
z3
=
image_array
[
1
:
-
1
,
0
:
-
2
]
# get all the forth pixel for the entire image
# calculate the out put of the system of equation
y0
=
np
.
ravel
(
-
z0
+
z2
-
z3
)
y1
=
np
.
ravel
(
z0
+
z1
+
z2
)
y2
=
np
.
ravel
(
-
z0
-
z1
-
z2
-
z3
)
y
=
np
.
vstack
((
y0
,
y1
,
y2
))
# use numpy solver to solve the system of equations all at once
#predict = np.floor(np.linalg.solve(A,y)[-1])
predict
=
np
.
round
(
np
.
round
((
np
.
linalg
.
solve
(
A
,
y
)[
-
1
]),
1
))
#Matrix system of points that will be used to solve the least squares fitting hyperplane
points
=
np
.
array
([[
-
1
,
-
1
,
1
],
[
-
1
,
0
,
1
],
[
-
1
,
1
,
1
],
[
0
,
-
1
,
1
]])
# flatten the neighbor pixlels and stack them together
z0
=
np
.
ravel
(
z0
)
z1
=
np
.
ravel
(
z1
)
z2
=
np
.
ravel
(
z2
)
z3
=
np
.
ravel
(
z3
)
neighbor
=
np
.
vstack
((
z0
,
z1
,
z2
,
z3
))
.
T
if
difference
:
# calculate the difference
diff
=
np
.
max
(
neighbor
,
axis
=
1
)
-
np
.
min
(
neighbor
,
axis
=
1
)
else
:
#Compute the best fitting hyperplane using least squares
#The res is the residuals of the four points used to fit the hyperplane (summed distance of each of the
#points to the hyperplane), it is a measure of gradient
f
,
diff
,
rank
,
s
=
la
.
lstsq
(
points
,
neighbor
.
T
,
rcond
=
None
)
diff
=
diff
.
astype
(
int
)
# calculate the error
error
=
np
.
ravel
(
image_array
[
1
:
-
1
,
1
:
-
1
])
-
predict
return
image_array
,
predict
,
diff
,
error
"""
this huffman encoding code is found online
https://favtutor.com/blogs/huffman-coding
"""
class
NodeTree
(
object
):
def
__init__
(
self
,
left
=
None
,
right
=
None
):
self
.
left
=
left
self
.
right
=
right
def
children
(
self
):
return
self
.
left
,
self
.
right
def
__str__
(
self
):
return
self
.
left
,
self
.
right
def
huffman_code_tree
(
node
,
binString
=
''
):
'''
Function to find Huffman Code
'''
if
type
(
node
)
is
str
:
return
{
node
:
binString
}
(
l
,
r
)
=
node
.
children
()
d
=
dict
()
d
.
update
(
huffman_code_tree
(
l
,
binString
+
'0'
))
d
.
update
(
huffman_code_tree
(
r
,
binString
+
'1'
))
return
d
def
make_tree
(
nodes
):
'''
Function to make tree
:param nodes: Nodes
:return: Root of the tree
'''
while
len
(
nodes
)
>
1
:
(
key1
,
c1
)
=
nodes
[
-
1
]
(
key2
,
c2
)
=
nodes
[
-
2
]
nodes
=
nodes
[:
-
2
]
node
=
NodeTree
(
key1
,
key2
)
nodes
.
append
((
node
,
c1
+
c2
))
#reverse True, decending order
nodes
=
sorted
(
nodes
,
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)
return
nodes
[
0
][
0
]
def
decode_string
(
huffman_string
,
the_keys
,
the_values
):
for
i
in
range
(
len
(
huffman_string
)):
try
:
return
(
int
(
the_keys
[
the_values
.
index
(
huffman_string
[:
i
+
1
])]),
huffman_string
[
i
+
1
:])
except
:
pass
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment