Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
96e5883b
Project 'Elphel/master' was moved to 'Elphel/image-compression'. Please update any links and bookmarks that may still have the old path.
Commit
96e5883b
authored
Jul 07, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
trying to convolve, don't know how to deconvolve
parent
5476cdb4
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
215 additions
and
59 deletions
+215
-59
.gitignore
.gitignore
+2
-1
FullTester.ipynb
FullTester.ipynb
+13
-18
Remove_Noise.py
Remove_Noise.py
+71
-16
VideoToImage.ipynb
VideoToImage.ipynb
+128
-23
WorkingPyDemo.py
WorkingPyDemo.py
+1
-1
second_dic.npy
second_dic.npy
+0
-0
No files found.
.gitignore
View file @
96e5883b
...
...
@@ -17,4 +17,5 @@ attic
*.corr-xml
*.DS_Store
lwir16.tar.gz
*.mp4
\ No newline at end of file
*.mp4
*.jpg
\ No newline at end of file
FullTester.ipynb
View file @
96e5883b
...
...
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
10
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -15,21 +15,21 @@
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
11
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"
3
\n",
"
3
\n",
"0.
5416965429002373
\n"
"
5
\n",
"
5
\n",
"0.
30596738362283216
\n"
]
}
],
"source": [
"scenes = file_extractor(\"
averaged_images(11)
\")\n",
"scenes = file_extractor(\"
betterimages
\")\n",
"images = image_extractor(scenes)\n",
"print(len(images))\n",
"newnamesforlater = []\n",
...
...
@@ -102,14 +102,15 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
12
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6922330946285837\n"
"0.5066909897511674\n",
"0.6485158723863795\n"
]
}
],
...
...
@@ -123,26 +124,20 @@
" writer = png.Writer(newimage.shape[1], newimage.shape[0], greyscale=True, bitdepth=16)\n",
" writer.write(f, newimage)\n",
" pngsizes.append(os.path.getsize(newnamesforlater[i][:-4] + \".png\"))\n",
"print(np.sum(pngsizes)/np.sum(file_sizes_old))\n"
"print(np.sum(pngsizes)/np.sum(file_sizes_old))\n",
"print(0.6485158723863795)"
]
},
{
"cell_type": "code",
"execution_count":
12
,
"execution_count":
8
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[-190.26562 -177.99805 -177.38672 ... -166.95898 -156.64062 -145.72461]\n",
" [-175.46094 -163.56055 -183.07617 ... -169.2207 -167.58789 -154.14062]\n",
" [-171.45898 -179.1582 -174.68164 ... -173.10547 -157.51758 -156.97461]\n",
" ...\n",
" [-143.66992 -127.69531 -143.9043 ... 156.90625 170.79102 165.55469]\n",
" [-139.97656 -134.71875 -152.26953 ... 169.49805 158.11914 172.49023]\n",
" [-145.33984 -127.59375 -134.07227 ... 182.88672 169.80273 183.32812]]\n",
"0.3016682254469224\n"
"0.6493572339400003\n"
]
}
],
...
...
Remove_Noise.py
View file @
96e5883b
from
audioop
import
mul
from
matplotlib.image
import
composite_images
from
WorkingPyDemo
import
*
from
scipy.ndimage.filters
import
gaussian_filter
...
...
@@ -102,24 +103,24 @@ def find_only_in_channel(images, channel_name = "10"):
def
adjust_to_original
(
new_image
,
average_image
):
original_image_min
=
np
.
min
(
new_image
)
original_image_max
=
np
.
max
(
new_image
)
#
average_image = average_image - np.mean(average_image)
average_image
=
average_image
-
np
.
mean
(
average_image
)
# adjusted_image = average_image - new_image
# adjusted_image = gaussian_filter(new_image,sigma=1)
adjusted_image
=
new_image
-
(
average_image
-
gaussian_filter
(
average_image
,
sigma
=
1
))
# adjusted_image = gaussian_filter(adjusted_image,sigma=20)
# adjusted_image = new_image + (average_image - np.array(Image.fromarray(average_image).convert("L").filter(ImageFilter.GaussianBlur(radius=4))))
plt
.
subplot
(
121
)
plt
.
imshow
(
color_adjust
((
adjusted_image
)),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
plt
.
subplot
(
122
)
plt
.
imshow
(
color_adjust
(
new_image
),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
plt
.
show
()
#
plt.subplot(121)
#
plt.imshow(color_adjust((adjusted_image)),cmap='gray',vmin = 0, vmax=1)
#
plt.subplot(122)
#
plt.imshow(color_adjust(new_image),cmap='gray',vmin = 0, vmax=1)
#
plt.show()
adjusted_image
=
adjusted_image
-
np
.
min
(
adjusted_image
)
adjusted_image
=
adjusted_image
*
(
original_image_max
-
original_image_min
)
/
np
.
max
(
adjusted_image
)
adjusted_image
=
adjusted_image
+
original_image_min
print
(
adjusted_image
.
dtype
)
#
print(adjusted_image.dtype)
return
adjusted_image
.
astype
(
np
.
uint16
)
def
color_adjust
(
visual_array
):
...
...
@@ -144,7 +145,7 @@ def create_testable_images(images, selected_channel, quantity_of_images):
images
=
find_only_in_channel
(
images
,
selected_channel
)
# image_locations = np.random.choice(len(images), quantity_of_images, replace=False)
image_locations
=
np
.
arange
(
quantity_of_images
)
+
10
000
image_locations
=
np
.
arange
(
quantity_of_images
)
+
5
000
selected_images
=
np
.
array
(
images
)[
image_locations
]
...
...
@@ -161,7 +162,7 @@ def create_testable_images(images, selected_channel, quantity_of_images):
wherelastslash
=
item
.
rfind
(
"/"
)
image
=
np
.
array
(
image
)[
1
:]
savable_original
=
Image
.
fromarray
(
image
)
# savable_original.save("averaged
_images(" + selected_channel + ")/innerfolder/original" + item[wherelastslash + 1:])
savable_original
.
save
(
"original
_images("
+
selected_channel
+
")/innerfolder/original"
+
item
[
wherelastslash
+
1
:])
altered_image
=
adjust_to_original
(
image
,
average_image
)
altered_image
=
Image
.
fromarray
(
altered_image
)
...
...
@@ -169,30 +170,84 @@ def create_testable_images(images, selected_channel, quantity_of_images):
# average_image = Image.fromarray(average_image)
sftp_client
.
close
()
def
save_new_gauss
():
"""
\
creates gaussian kernel with side length `l` and a sigma of `sig`
"""
# x,y = np.mgrid[-1:1:.003125, -1:1:.003125]
x
,
y
=
np
.
mgrid
[
-
1
:
1
:
.003911
,
-
1
:
1
:
.003911
]
# print(x.shape)
pos
=
np
.
dstack
((
x
,
y
))
# grid = np.zeros((l,l))
# gauss = np.exp(-0.5 * np.square(ax) / np.square(sig))
from
scipy.stats
import
multivariate_normal
# normal_grid = multivariate_normal.pdf(grid, mean = [0]*l, cov = [5]*l)
normal_grid
=
multivariate_normal
([
0
,
0
],
[[
2.0
,
0.3
],
[
0.3
,
0.5
]])
.
pdf
(
pos
)
normal_grid
=
normal_grid
/
np
.
sum
(
normal_grid
)
end_image
=
Image
.
fromarray
(
normal_grid
)
# fig2 = plt.figure()
# ax2 = fig2.add_subplot(111)
# ax2.contourf(x, y, normal_grid)
# plt.show()
# print(np.sum(np.array(end_image)))
end_image
.
save
(
"gaussian_kernel.tiff"
)
def
little_inverter
(
initial_matrix
):
n
=
initial_matrix
.
shape
[
0
]
initial_matrix
=
np
.
hstack
((
initial_matrix
,
np
.
zeros_like
(
initial_matrix
)))
print
(
initial_matrix
.
shape
)
initial_matrix
=
initial_matrix
.
tolist
()
for
i
in
range
(
n
):
for
j
in
range
(
n
):
if
i
==
j
:
initial_matrix
[
i
][
j
+
n
]
=
1
# Applying Guass Jordan Elimination
for
i
in
range
(
n
):
if
initial_matrix
[
i
][
i
]
==
0.0
:
sys
.
exit
(
'Divide by zero detected!'
)
for
j
in
range
(
n
):
if
i
!=
j
:
ratio
=
initial_matrix
[
j
][
i
]
/
initial_matrix
[
i
][
i
]
for
k
in
range
(
2
*
n
):
initial_matrix
[
j
][
k
]
=
initial_matrix
[
j
][
k
]
-
ratio
*
initial_matrix
[
i
][
k
]
# Row operation to make principal diagonal element to 1
for
i
in
range
(
n
):
divisor
=
initial_matrix
[
i
][
i
]
for
j
in
range
(
2
*
n
):
initial_matrix
[
i
][
j
]
=
initial_matrix
[
i
][
j
]
/
divisor
return
np
.
array
(
initial_matrix
)[:,
n
:]
if
__name__
==
"__main__"
:
# save_new_average(350,"11")
save_new_gauss
()
gaussian_kernel
=
np
.
array
(
Image
.
open
(
"gaussian_kernel.tiff"
))
scenes
=
remote_file_extractor
(
"/media/elphel/NVME/lwir16-proc/te0607/scenes/"
)
images
=
remote_image_extractor
(
scenes
)
images
=
find_only_in_channel
(
images
,
"11"
)
# average_image = np.array(Image.open("Average_On_Channel(" + "11" + ").tiff"))
create_testable_images
(
images
,
"11"
,
3
)
# create_testable_images(images,"11",6
)
# plt.imshow(color_adjust(average_image),cmap='gray',vmin = 0, vmax=1)
# plt.show()
#
print(len(images))
average_image
=
remote_create_average
(
images
[
10000
-
10
:
10
000
+
10
],
"11"
)
print
(
len
(
images
))
average_image
=
remote_create_average
(
images
[
5000
-
10
:
5
000
+
10
],
"11"
)
# plt.imshow(color_adjust((average_image - gaussian_filter(average_image,sigma=5))),cmap='gray',vmin = 0, vmax=1)
# plt.show()
sftp_client
=
setup_remote_sftpclient
()
print
(
len
(
images
))
#
print(len(images))
# print(images[10000])
test_image
=
sftp_client
.
open
(
images
[
100
00
])
test_image
=
sftp_client
.
open
(
images
[
47
00
])
test_image
=
Image
.
open
(
test_image
)
test_image
=
np
.
array
(
test_image
)[
1
:]
# print(test_image)
# plt.imshow(color_adjust(adjust_to_original(test_image,average_image)))
# plt.show()
plt
.
imshow
(
color_adjust
(
adjust_to_original
(
test_image
,
average_image
)),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
plt
.
show
()
little_more_blurred
=
gaussian_kernel
@
adjust_to_original
(
test_image
,
average_image
)
print
(
little_inverter
(
gaussian_kernel
)
@
gaussian_kernel
)
plt
.
imshow
(
color_adjust
(
little_inverter
(
gaussian_kernel
)
@
little_more_blurred
),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
plt
.
show
()
# newimage = Image.fromarray(test_image - average_image)
# newimage.save("NoInterference.tiff")
...
...
VideoToImage.ipynb
View file @
96e5883b
...
...
@@ -2,18 +2,14 @@
"cells": [
{
"cell_type": "code",
"execution_count":
8
,
"execution_count":
41
,
"metadata": {},
"outputs": [
{
"ename": "SystemError",
"evalue": "<built-in function imwrite> returned NULL without setting an error",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mSystemError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/home/bryce/git/master/VideoToImage.ipynb Cell 1'\u001b[0m in \u001b[0;36m<cell line: 5>\u001b[0;34m()\u001b[0m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/bryce/git/master/VideoToImage.ipynb#ch0000000?line=3'>4</a>\u001b[0m count \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/bryce/git/master/VideoToImage.ipynb#ch0000000?line=4'>5</a>\u001b[0m \u001b[39mwhile\u001b[39;00m success \u001b[39mand\u001b[39;00m count \u001b[39m<\u001b[39m \u001b[39m5\u001b[39m:\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/bryce/git/master/VideoToImage.ipynb#ch0000000?line=5'>6</a>\u001b[0m cv2\u001b[39m.\u001b[39;49mimwrite(\u001b[39m\"\u001b[39;49m\u001b[39mbetterimages/innerfolder/fram\u001b[39;49m\u001b[39m%d\u001b[39;49;00m\u001b[39m.jpg\u001b[39;49m\u001b[39m\"\u001b[39;49m \u001b[39m%\u001b[39;49m count, image, \u001b[39m0\u001b[39;49m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/bryce/git/master/VideoToImage.ipynb#ch0000000?line=6'>7</a>\u001b[0m success, image \u001b[39m=\u001b[39m vidcap\u001b[39m.\u001b[39mread()\n\u001b[1;32m <a href='vscode-notebook-cell:/home/bryce/git/master/VideoToImage.ipynb#ch0000000?line=7'>8</a>\u001b[0m count \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n",
"\u001b[0;31mSystemError\u001b[0m: <built-in function imwrite> returned NULL without setting an error"
"name": "stdout",
"output_type": "stream",
"text": [
"1190\n"
]
}
],
...
...
@@ -22,44 +18,153 @@
"vidcap = cv2.VideoCapture(\"concat_mono-fg_realtime.mp4\")\n",
"success,image = vidcap.read()\n",
"count = 0\n",
"while success and count < 5:\n",
" cv2.imwrite(\"betterimages/innerfolder/fram%d.jpg\" % count, image, 0)\n",
"while success :\n",
" grayimage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n",
" if count < 926 and count >= 920:\n",
" cv2.imwrite(\"betterimages/innerfolder/fram%d.jpg\" % count, grayimage)\n",
" success, image = vidcap.read()\n",
" count += 1"
" count += 1\n",
"print(count)"
]
},
{
"cell_type": "code",
"execution_count":
7
,
"execution_count":
42
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(512, 640, 3)\n",
"(512, 640, 3)\n",
"(512, 640, 3)\n",
"(512, 640, 3)\n",
"(512, 640, 3)\n"
"(512, 640)\n",
"(512, 640)\n",
"(512, 640)\n",
"(512, 640)\n",
"(512, 640)\n",
"(512, 640)\n"
]
}
],
"source": [
"from PIL import Image\n",
"import numpy as np\n",
"for i in range(
5
):\n",
" im = Image.open(\"betterimages/innerfolder/fram\" + str(i) + \".jpg\"
,
)\n",
"for i in range(
920,926
):\n",
" im = Image.open(\"betterimages/innerfolder/fram\" + str(i) + \".jpg\")\n",
" print(np.array(im).shape)\n",
" im.save(\"betterimages/innerfolder/fram\" + str(i) + \".tiff\", 'TIFF')"
]
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
8
,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"591360\n",
"327680\n"
]
}
],
"source": [
"print(672*880*1190)\n",
"print(512*640*1190)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.5541125541125541"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"327680/591360"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.421875"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"27/64"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(512, 512)\n",
"(512, 640)\n",
"(512, 640)\n"
]
}
],
"source": [
"im = Image.open(\"betterimages/innerfolder/fram\" + str(i) + \".jpg\")\n",
"def create_gaussian(l=5, sig=1.):\n",
" \"\"\"\n",
" creates gaussian kernel with side length `l` and a sigma of `sig`\n",
" \"\"\"\n",
" ax = np.linspace(-(l - 1) / 2., (l - 1) / 2., l)\n",
" gauss = np.exp(-0.5 * np.square(ax) / np.square(sig))\n",
" kernel = np.outer(gauss, gauss)\n",
" return kernel / np.sum(kernel)\n",
"\n",
"kernel = create_gaussian(512)\n",
"print(kernel.shape)\n",
"im = np.array(im)\n",
"print(im.shape)\n",
"print((kernel@im).shape)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"320.5"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"205120/640"
]
},
{
"cell_type": "code",
...
...
WorkingPyDemo.py
View file @
96e5883b
...
...
@@ -514,7 +514,7 @@ def text_to_tiff(filename, list_dic, bins):
if
__name__
==
"__main__"
:
scenes
=
file_extractor
(
"
betterimages
"
)
scenes
=
file_extractor
(
"
original_images(11)
"
)
images
=
image_extractor
(
scenes
)
newnamesforlater
=
[]
list_dic
,
bins
=
make_dictionary
(
images
,
4
,
False
)
...
...
second_dic.npy
View file @
96e5883b
No preview for this file type
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment