Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
20af6366
Project 'Elphel/master' was moved to 'Elphel/image-compression'. Please update any links and bookmarks that may still have the old path.
Commit
20af6366
authored
Mar 29, 2022
by
Kelly Chang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
kelly push
parent
903776f0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
97 additions
and
44 deletions
+97
-44
Encoding_decoding.ipynb
Encoding_decoding.ipynb
+97
-44
No files found.
Encoding_decoding.ipynb
View file @
20af6366
...
...
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count":
1
,
"execution_count":
288
,
"id": "14f74f21",
"metadata": {},
"outputs": [],
...
...
@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 2
89
,
"id": "c16af61f",
"metadata": {},
"outputs": [],
...
...
@@ -79,7 +79,7 @@
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
290
,
"id": "aceba613",
"metadata": {},
"outputs": [],
...
...
@@ -106,7 +106,8 @@
" y2 = np.ravel(-z0-z1-z2-z3)\n",
" y = np.vstack((y0,y1,y2))\n",
" # use numpy solver to solve the system of equations all at once\n",
" predict = np.floor(np.linalg.solve(A,y)[-1])\n",
" #predict = np.floor(np.linalg.solve(A,y)[-1])\n",
" predict = np.round(np.round((np.linalg.solve(A,y)[-1]),1))\n",
" # flatten the neighbor pixlels and stack them together\n",
" z0 = np.ravel(z0)\n",
" z1 = np.ravel(z1)\n",
...
...
@@ -125,7 +126,7 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
291
,
"id": "6b965751",
"metadata": {},
"outputs": [],
...
...
@@ -173,7 +174,7 @@
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
292
,
"id": "b7561883",
"metadata": {},
"outputs": [],
...
...
@@ -247,16 +248,13 @@
" bins = [25,40,70]\n",
" \n",
" # return the huffman dictionary\n",
" return encode1, encode2, encode3, encode4, encode5, np.ravel(image), error, new_error, diff, boundary, bins\n",
" \n",
"scenes = file_extractor()\n",
"images = image_extractor(scenes)\n",
"encode1, encode2, encode3, encode4, encode5, image, error, new_error, diff, boundary, bins = huffman(images[0])"
" return encode1, encode2, encode3, encode4, encode5, np.ravel(image), error, new_error, diff, boundary, bins, predict\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
293
,
"id": "2eb774d2",
"metadata": {},
"outputs": [],
...
...
@@ -285,79 +283,134 @@
},
{
"cell_type": "code",
"execution_count":
7
,
"execution_count":
294
,
"id": "8eeb40d0",
"metadata": {},
"outputs": [],
"source": [
"def decoder(A, encoded_matrix,
encoding_dict
):\n",
"def decoder(A, encoded_matrix,
list_dic, bins
):\n",
" \"\"\"\n",
" Function that accecpts the prediction matrix A for the linear system,\n",
" the encoded matrix of error values, and the encoding dicitonary.\n",
" \"\"\"\n",
" the_keys = list(encode_dict.keys())\n",
" the_values = list(encode_dict.values())\n",
" error_matrix = encoded_matrix.copy()\n",
"\n",
" the_keys0 = list(list_dic[0].keys())\n",
" the_values0 = list(list_dic[0].values())\n",
" \n",
" the_keys1 = list(list_dic[1].keys())\n",
" the_values1 = list(list_dic[1].values())\n",
" \n",
" the_keys2 = list(list_dic[2].keys())\n",
" the_values2 = list(list_dic[2].values())\n",
" \n",
" the_keys3 = list(list_dic[3].keys())\n",
" the_values3 = list(list_dic[3].values())\n",
" \n",
" the_keys4 = list(list_dic[4].keys())\n",
" the_values4 = list(list_dic[4].values())\n",
" \n",
" error_matrix = np.zeros((512,640))\n",
" \n",
" for i in range(error_matrix.shape[0]):\n",
" for j in range(error_matrix.shape[1]):\n",
" if i == 0 and j == 0:\n",
" error_matrix[i][j] = int(the_keys
[the_values.index(error
_matrix[i,j])])\n",
" error_matrix[i][j] = int(the_keys
0[the_values0.index(encoded
_matrix[i,j])])\n",
" \n",
" elif i == 0 or i == error_matrix.shape[0]-1 or j == 0 or j == error_matrix.shape[1]-1:\n",
" error_matrix[i][j] = int(the_keys
[the_values.index(error
_matrix[i,j])]) + error_matrix[0][0]\n",
" error_matrix[i][j] = int(the_keys
0[the_values0.index(encoded
_matrix[i,j])]) + error_matrix[0][0]\n",
" else:\n",
" \"\"\"z0, z1, z2, z3 = error_matrix[i-1][j-1], error_matrix[i-1][j], \\\n",
" error_matrix[i-1][j+1], error_matrix[i][j-1]\n",
" y = np.vstack((-z0+z2-z3, z0+z1+z2, -z0-z1-z2-z3))\"\"\"\n",
" z0 = error_matrix[i-1][j-1]\n",
" z1 = error_matrix[i-1][j]\n",
" z2 = error_matrix[i-1][j+1]\n",
" z3 = error_matrix[i][j-1]\n",
" y0 = int(-z0+z2-z3)\n",
" y1 = int(z0+z1+z2)\n",
" y2 = int(-z0-z1-z2-z3)\n",
" y = np.vstack((y0,y1,y2))\n",
" difference = max(z0,z1,z2,z3) - min(z0,z1,z2,z3)\n",
" predict = np.round(np.round(np.linalg.solve(A,y)[-1][0],1))\n",
"\n",
" if difference <= bins[0]:\n",
" error_matrix[i][j] = int(the_keys1[the_values1.index(encoded_matrix[i,j])]) + int(predict)\n",
" elif difference <= bins[1] and difference > bins[0]:\n",
" error_matrix[i][j] = int(the_keys2[the_values2.index(encoded_matrix[i,j])]) + int(predict)\n",
" elif difference <= bins[2] and difference > bins[1]:\n",
" error_matrix[i][j] = int(the_keys3[the_values3.index(encoded_matrix[i,j])]) + int(predict)\n",
" else:\n",
" error_matrix[i][j] = int(the_keys4[the_values4.index(encoded_matrix[i,j])]) + int(predict)\n",
" \n",
" error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])])\n",
" \n",
" return error_matrix.astype(int)"
]
},
{
"cell_type": "code",
"execution_count":
8
,
"execution_count":
295
,
"id": "3e0e9742",
"metadata": {},
"outputs": [],
"source": [
"encode1, encode2, encode3, encode4, encode5, image, error, new_error, diff, bound, bins = huffman(images[0])\n",
"scenes = file_extractor()\n",
"images = image_extractor(scenes)\n",
"encode1, encode2, encode3, encode4, encode5, image, error, new_error, diff, bound, bins, predict = huffman(images[0])\n",
"encoded_matrix = encoder(np.reshape(new_error,(512,640)), [encode1, encode2, encode3, encode4, encode5], diff, bound, bins)\n",
"\n"
"
list_dic = [encode1, encode2, encode3, encode4, encode5]
\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e6ea4f99",
"execution_count": 296,
"id": "ceb0b957",
"metadata": {},
"outputs": [],
"source": [
"reconstruct_image = decoder(A, encoded_matrix, list_dic, bins)"
]
},
{
"cell_type": "code",
"execution_count": 297,
"id": "60297ad0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['01100010001' '11000110' '100101010' ... '101110011' '00010100'\n",
" '1111000100']\n",
" ['10011100' '100001' '111000' ... '10111011' '00111' '1111001101']\n",
" ['10101111' '100100' '100000' ... '111100' '111000' '00010100']\n",
" ...\n",
" ['110001000' '100001' '111011' ... '1010010' '100000' '10011000']\n",
" ['0100011101' '111010' '00110' ... '1000101' '1100100' '10011010']\n",
" ['00100010' '110111101' '110110100' ... '00010010' '10100000'\n",
" '110110101']]\n"
]
"data": {
"text/plain": [
"True"
]
},
"execution_count": 297,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"
print(encoded_matrix
)"
"
np.allclose(image.reshape(512,640), reconstruct_image
)"
]
},
{
"cell_type": "code",
"execution_count": 277,
"id": "f0948ab2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 277,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "
0c07a23e
",
"id": "
7bc6e808
",
"metadata": {},
"outputs": [],
"source": []
...
...
@@ -379,7 +432,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.
8.1
1"
"version": "3.
9.
1"
}
},
"nbformat": 4,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment