Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
b80e5500
Commit
b80e5500
authored
Jul 27, 2018
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added error for 3x3 tiles averaging to metrics
parent
c61cd18c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
48 additions
and
13 deletions
+48
-13
MLStats.java
src/main/java/MLStats.java
+48
-13
No files found.
src/main/java/MLStats.java
View file @
b80e5500
...
...
@@ -127,7 +127,8 @@ public class MLStats {
}
int
[][]
hist
=
new
int
[
disparity_bins
][
strength_bins
];
int
[]
slices
=
{
TwoQuadCLT
.
DSI_DISPARITY_RIG
,
TwoQuadCLT
.
DSI_STRENGTH_RIG
,
TwoQuadCLT
.
DSI_DISPARITY_MAIN
,
TwoQuadCLT
.
DSI_STRENGTH_MAIN
};
double
[][][]
ds_error
=
new
double
[
disparity_bins
][
strength_bins
][
2
];
double
[][][]
ds_error
=
new
double
[
disparity_bins
][
strength_bins
][
4
];
// adding averaged with neighbors
double
[]
dir_weights
=
{
0.7
,
0.5
};
// center weight = 1.0
double
disparity_outlier2
=
disparity_outlier
*
disparity_outlier
;
double
disparity_step
=
(
disparity_max_clip
-
disparity_min_clip
)
/
disparity_bins
;
double
strength_step
=
(
strength_max_clip
-
strength_min_clip
)
/
strength_bins
;
...
...
@@ -137,6 +138,9 @@ public class MLStats {
for
(
Path
p:
files
)
{
ImagePlus
imp_dsi
=
new
ImagePlus
(
p
.
normalize
().
toString
());
ImageStack
dsi_stack
=
imp_dsi
.
getStack
();
int
width
=
dsi_stack
.
getWidth
();
int
height
=
dsi_stack
.
getHeight
();
TileNeibs
tnImage
=
new
TileNeibs
(
width
,
height
);
float
[][]
dsi_float
=
new
float
[
slices
.
length
][];
int
nLayers
=
dsi_stack
.
getSize
();
for
(
int
nl
=
0
;
nl
<
nLayers
;
nl
++){
...
...
@@ -169,8 +173,7 @@ public class MLStats {
nut
++;
double
dm
=
dsi_float
[
2
][
nTile
];
double
sm
=
dsi_float
[
3
][
nTile
]
-
master_weight_floor
;
double
de2
=
(
dm
-
d
);
de2
*=
de2
;
double
de2
=
(
dm
-
d
)
*
(
dm
-
d
);
if
((
de2
<=
disparity_outlier2
)
&&
(
sm
>
0.0
))
{
double
w
=
1.0
;
if
(
master_weight_power
>
0.0
)
{
...
...
@@ -178,9 +181,41 @@ public class MLStats {
if
(
master_weight_power
!=
1.0
)
{
w
=
Math
.
pow
(
w
,
master_weight_power
);
}
ds_error
[
dbin
][
sbin
][
0
]
+=
w
*
de2
;
ds_error
[
dbin
][
sbin
][
1
]
+=
w
;
}
ds_error
[
dbin
][
sbin
][
0
]
+=
w
*
de2
;
ds_error
[
dbin
][
sbin
][
1
]
+=
w
;
// combine with neighbors
double
sw
=
w
;
double
sew
=
w
*
(
dm
-
d
);
for
(
int
direction
=
0
;
direction
<
8
;
direction
++)
{
int
nTile1
=
tnImage
.
getNeibIndex
(
nTile
,
direction
);
if
(
nTile1
>=
0
)
{
d
=
dsi_float
[
0
][
nTile1
];
s
=
dsi_float
[
1
][
nTile1
]
-
strength_min_drop
;
if
(
s
>
0.0
)
{
sm
=
dsi_float
[
3
][
nTile1
]
-
master_weight_floor
;
if
(
sm
>
0.0
)
{
double
de
=
dsi_float
[
2
][
nTile1
]
-
d
;
de2
=
de
*
de
;
if
(
de2
<
disparity_outlier2
)
{
w
=
1.0
;
if
(
master_weight_power
>
0.0
)
{
w
=
sm
;
if
(
master_weight_power
!=
1.0
)
{
w
=
Math
.
pow
(
w
,
master_weight_power
);
}
}
w
*=
dir_weights
[
direction
&
1
]
*
s
;
//
sw
+=
w
;
sew
+=
w
*
de
;
}
}
}
}
}
// sew /= sw;
ds_error
[
dbin
][
sbin
][
2
]
+=
sew
*
sew
/
sw
;
ds_error
[
dbin
][
sbin
][
3
]
+=
sw
;
}
}
}
...
...
@@ -188,13 +223,11 @@ public class MLStats {
total_tiles_used
+=
nut
;
}
System
.
out
.
println
(
"Total number of useful tiles: "
+
total_tiles_used
);
double
[][]
hist_double
=
new
double
[
2
][
disparity_bins
*
strength_bins
];
double
[][]
hist_double
=
new
double
[
3
][
disparity_bins
*
strength_bins
];
double
scale
=
1.0
;
if
(
normalize
)
{
scale
*=
(
1.0
*
disparity_bins
*
strength_bins
)
/
total_tiles_used
;
}
// ds_error[dbin][sbin][0] += w* de2;
// ds_error[dbin][sbin][1] += w;
for
(
int
nTile
=
0
;
nTile
<
hist_double
[
0
].
length
;
nTile
++)
{
int
dbin
=
nTile
%
disparity_bins
;
...
...
@@ -205,16 +238,18 @@ public class MLStats {
}
else
{
hist_double
[
1
][
nTile
]
=
Double
.
NaN
;
}
if
(
ds_error
[
dbin
][
sbin
][
3
]
>
0.0
)
{
hist_double
[
2
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
2
]/
ds_error
[
dbin
][
sbin
][
3
]);
}
else
{
hist_double
[
2
][
nTile
]
=
Double
.
NaN
;
}
}
// ImagePlus imp= makeArrays(pixels, width, height, title);
// if (imp!=null) imp.show();
// ImagePlus imp = (new showDoubleFloatArrays()).makeArrays(dsi,quadCLT_main.tp.getTilesX(), quadCLT_main.tp.getTilesY(), title, DSI_SLICES);
String
[]
titles
=
{
"histogram"
,
"disp_err"
};
String
[]
titles
=
{
"histogram"
,
"disp_err"
,
"disp_err9"
};
ImagePlus
imp
=
(
new
showDoubleFloatArrays
()).
makeArrays
(
hist_double
,
disparity_bins
,
strength_bins
,
"DSI_
histogram
"
,
"DSI_
metrics
"
,
titles
);
imp
.
setProperty
(
"disparity_bins"
,
disparity_bins
+
""
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment