Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
19e47e74
Commit
19e47e74
authored
Aug 04, 2018
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
modified dsi stats
parent
d9ea7668
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
11 deletions
+13
-11
MLStats.java
src/main/java/MLStats.java
+13
-11
No files found.
src/main/java/MLStats.java
View file @
19e47e74
...
@@ -70,7 +70,7 @@ public class MLStats {
...
@@ -70,7 +70,7 @@ public class MLStats {
double
pre_log_offs
=
0.01
;
// add before log to avoid -infinity
double
pre_log_offs
=
0.01
;
// add before log to avoid -infinity
double
log_sigma
=
2.00
;
// blur logarithm of the histogram (in bins)
double
log_sigma
=
2.00
;
// blur logarithm of the histogram (in bins)
double
mask_threshold
=
0.25
;
// relative tile population
double
mask_threshold
=
0.25
;
// relative tile population
double
log_sigma_d
=
2.00
;
// blur logarithm of the histogram in disparity pixels
double
log_sigma_d
=
0.5
;
// blur logarithm of the histogram in disparity pixels
double
log_sigma_s
=
0.01
;
// blur logarithm of the histogram in strength units
double
log_sigma_s
=
0.01
;
// blur logarithm of the histogram in strength units
int
result_disparity_step
=
10
;
// bins
int
result_disparity_step
=
10
;
// bins
...
@@ -259,7 +259,7 @@ public class MLStats {
...
@@ -259,7 +259,7 @@ public class MLStats {
total_tiles_used
+=
nut
;
total_tiles_used
+=
nut
;
}
}
System
.
out
.
println
(
"Total number of useful tiles: "
+
total_tiles_used
+
" of "
+
nfile
+
" files"
);
System
.
out
.
println
(
"Total number of useful tiles: "
+
total_tiles_used
+
" of "
+
nfile
+
" files"
);
String
[]
titles
=
{
"histogram"
,
"histogram_ideal"
,
"disp_err"
,
"disp_err9"
,
"masked_err"
,
"masked_err9"
};
String
[]
titles
=
{
"histogram"
,
"histogram_
masked"
,
"histogram_
ideal"
,
"disp_err"
,
"disp_err9"
,
"masked_err"
,
"masked_err9"
};
double
[][]
hist_double
=
new
double
[
titles
.
length
][
disparity_bins
*
strength_bins
];
double
[][]
hist_double
=
new
double
[
titles
.
length
][
disparity_bins
*
strength_bins
];
...
@@ -319,32 +319,34 @@ public class MLStats {
...
@@ -319,32 +319,34 @@ public class MLStats {
int
dbin
=
nTile
%
disparity_bins
;
int
dbin
=
nTile
%
disparity_bins
;
int
sbin
=
nTile
/
disparity_bins
;
int
sbin
=
nTile
/
disparity_bins
;
hist_double
[
1
][
nTile
]
=
mask_calc
[
nTile
];
hist_double
[
1
][
nTile
]
=
ds_mask
[
nTile
]
?
hist_double
[
0
][
nTile
]:
0.0
;
hist_double
[
2
][
nTile
]
=
mask_calc
[
nTile
];
if
(
ds_error
[
dbin
][
sbin
][
2
]
>
0.0
)
{
if
(
ds_error
[
dbin
][
sbin
][
2
]
>
0.0
)
{
hist_double
[
2
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
0
]/
ds_error
[
dbin
][
sbin
][
1
]);
hist_double
[
3
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
0
]/
ds_error
[
dbin
][
sbin
][
1
]);
}
else
{
}
else
{
hist_double
[
2
][
nTile
]
=
Double
.
NaN
;
hist_double
[
3
][
nTile
]
=
Double
.
NaN
;
}
}
if
(
ds_error
[
dbin
][
sbin
][
3
]
>
0.0
)
{
if
(
ds_error
[
dbin
][
sbin
][
3
]
>
0.0
)
{
hist_double
[
3
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
2
]/
ds_error
[
dbin
][
sbin
][
3
]);
hist_double
[
4
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
2
]/
ds_error
[
dbin
][
sbin
][
3
]);
}
else
{
}
else
{
hist_double
[
3
][
nTile
]
=
Double
.
NaN
;
hist_double
[
4
][
nTile
]
=
Double
.
NaN
;
}
}
if
(
ds_mask
[
nTile
]
&&
(
ds_error
[
dbin
][
sbin
][
2
]
>
0.0
))
{
if
(
ds_mask
[
nTile
]
&&
(
ds_error
[
dbin
][
sbin
][
2
]
>
0.0
))
{
hist_double
[
4
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
0
]/
ds_error
[
dbin
][
sbin
][
1
]);
hist_double
[
5
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
0
]/
ds_error
[
dbin
][
sbin
][
1
]);
}
else
{
}
else
{
hist_double
[
4
][
nTile
]
=
Double
.
NaN
;
hist_double
[
5
][
nTile
]
=
Double
.
NaN
;
}
}
if
(
ds_mask
[
nTile
]
&&
(
ds_error
[
dbin
][
sbin
][
3
]
>
0.0
))
{
if
(
ds_mask
[
nTile
]
&&
(
ds_error
[
dbin
][
sbin
][
3
]
>
0.0
))
{
hist_double
[
5
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
2
]/
ds_error
[
dbin
][
sbin
][
3
]);
hist_double
[
6
][
nTile
]
=
Math
.
sqrt
(
ds_error
[
dbin
][
sbin
][
2
]/
ds_error
[
dbin
][
sbin
][
3
]);
}
else
{
}
else
{
hist_double
[
5
][
nTile
]
=
Double
.
NaN
;
hist_double
[
6
][
nTile
]
=
Double
.
NaN
;
}
}
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment