Commit 19e47e74 authored by Andrey Filippov's avatar Andrey Filippov

modified dsi stats

parent d9ea7668
......@@ -70,7 +70,7 @@ public class MLStats {
double pre_log_offs = 0.01; // add before log to avoid -infinity
double log_sigma = 2.00; // blur logarithm of the histogram (in bins)
double mask_threshold = 0.25; // relative tile population
double log_sigma_d = 2.00; // blur logarithm of the histogram in disparity pixels
double log_sigma_d = 0.5; // blur logarithm of the histogram in disparity pixels
double log_sigma_s = 0.01; // blur logarithm of the histogram in strength units
int result_disparity_step = 10; // bins
......@@ -259,7 +259,7 @@ public class MLStats {
total_tiles_used += nut;
}
System.out.println("Total number of useful tiles: "+total_tiles_used+ " of "+nfile+" files");
String [] titles = {"histogram", "histogram_ideal", "disp_err","disp_err9", "masked_err","masked_err9"};
String [] titles = {"histogram", "histogram_masked", "histogram_ideal", "disp_err","disp_err9", "masked_err","masked_err9"};
double [][] hist_double = new double [titles.length][disparity_bins*strength_bins];
......@@ -319,32 +319,34 @@ public class MLStats {
int dbin = nTile % disparity_bins;
int sbin = nTile / disparity_bins;
hist_double[1][nTile] = mask_calc[nTile];
hist_double[1][nTile] = ds_mask[nTile] ? hist_double[0][nTile]: 0.0;
hist_double[2][nTile] = mask_calc[nTile];
if (ds_error[dbin][sbin][2] > 0.0) {
hist_double[2][nTile] = Math.sqrt(ds_error[dbin][sbin][0]/ds_error[dbin][sbin][1]);
hist_double[3][nTile] = Math.sqrt(ds_error[dbin][sbin][0]/ds_error[dbin][sbin][1]);
} else {
hist_double[2][nTile] = Double.NaN;
hist_double[3][nTile] = Double.NaN;
}
if (ds_error[dbin][sbin][3] > 0.0) {
hist_double[3][nTile] = Math.sqrt(ds_error[dbin][sbin][2]/ds_error[dbin][sbin][3]);
hist_double[4][nTile] = Math.sqrt(ds_error[dbin][sbin][2]/ds_error[dbin][sbin][3]);
} else {
hist_double[3][nTile] = Double.NaN;
hist_double[4][nTile] = Double.NaN;
}
if (ds_mask[nTile] && (ds_error[dbin][sbin][2] > 0.0)) {
hist_double[4][nTile] = Math.sqrt(ds_error[dbin][sbin][0]/ds_error[dbin][sbin][1]);
hist_double[5][nTile] = Math.sqrt(ds_error[dbin][sbin][0]/ds_error[dbin][sbin][1]);
} else {
hist_double[4][nTile] = Double.NaN;
hist_double[5][nTile] = Double.NaN;
}
if (ds_mask[nTile] && (ds_error[dbin][sbin][3] > 0.0)) {
hist_double[5][nTile] = Math.sqrt(ds_error[dbin][sbin][2]/ds_error[dbin][sbin][3]);
hist_double[6][nTile] = Math.sqrt(ds_error[dbin][sbin][2]/ds_error[dbin][sbin][3]);
} else {
hist_double[5][nTile] = Double.NaN;
hist_double[6][nTile] = Double.NaN;
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment