Distortions.java 523 KB
Newer Older
Andrey Filippov's avatar
Andrey Filippov committed
1
package com.elphel.imagej.calibration;
Andrey Filippov's avatar
Andrey Filippov committed
2 3 4 5
/*
 **
 ** Distortions.java - Calculate lens distortion parameters from the pattern image
 **
6
 ** Copyright (C) 2011-2014 Elphel, Inc.
Andrey Filippov's avatar
Andrey Filippov committed
7 8
 **
 ** -----------------------------------------------------------------------------**
Andrey Filippov's avatar
Andrey Filippov committed
9
 **
10
 **  Distortions.java is free software: you can redistribute it and/or modify
Andrey Filippov's avatar
Andrey Filippov committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 **  it under the terms of the GNU General Public License as published by
 **  the Free Software Foundation, either version 3 of the License, or
 **  (at your option) any later version.
 **
 **  This program is distributed in the hope that it will be useful,
 **  but WITHOUT ANY WARRANTY; without even the implied warranty of
 **  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 **  GNU General Public License for more details.
 **
 **  You should have received a copy of the GNU General Public License
 **  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 ** -----------------------------------------------------------------------------**
 **
 */

26
import java.awt.Point;
Andrey Filippov's avatar
Andrey Filippov committed
27 28
import java.awt.Rectangle;
import java.awt.geom.Point2D;
Andrey Filippov's avatar
Andrey Filippov committed
29
import java.util.ArrayList;
30
//import java.util.Arrays;
Andrey Filippov's avatar
Andrey Filippov committed
31 32 33 34 35 36 37 38
//import java.io.StringWriter;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

import javax.swing.SwingUtilities;

39
import com.elphel.imagej.calibration.hardware.CamerasInterface;
40 41
import com.elphel.imagej.cameras.EyesisCameraParameters;
import com.elphel.imagej.cameras.EyesisSubCameraParameters;
Andrey Filippov's avatar
Andrey Filippov committed
42
import com.elphel.imagej.common.DoubleGaussianBlur;
43
import com.elphel.imagej.common.PolynomialApproximation;
44
import com.elphel.imagej.common.ShowDoubleFloatArrays;
45
import com.elphel.imagej.common.WindowTools;
Andrey Filippov's avatar
Andrey Filippov committed
46 47
import com.elphel.imagej.jp4.JP46_Reader_camera;

Andrey Filippov's avatar
Andrey Filippov committed
48 49
import Jama.LUDecomposition;
import Jama.Matrix;
Andrey Filippov's avatar
Andrey Filippov committed
50 51 52 53 54 55
import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.Prefs;
//import ij.process.*;
import ij.gui.GenericDialog;
56
import ij.gui.PointRoi;
Andrey Filippov's avatar
Andrey Filippov committed
57 58 59 60 61
import ij.io.FileSaver;
import ij.io.Opener;
import ij.process.FloatProcessor;
import ij.process.ImageProcessor;
import ij.text.TextWindow;
Andrey Filippov's avatar
Andrey Filippov committed
62 63 64 65 66
//import src.java.org.apache.commons.configuration.*;
// to work both in Eclipse and ImageJ:
// 1 - put commons-configuration-1.7.jar under ImageJ plugins directory (I used ImageJ-Elphel)
// 2 - in Eclipse project properties -> Build Path -> Libraries -> Add External jar
public class Distortions {
67
	final public double hintedMaxRelativeRadius=1.2; // make adjustable?
68
	private ShowDoubleFloatArrays SDFA_INSTANCE=new ShowDoubleFloatArrays(); // just for debugging?
69 70
//    int numInputs=27; // with A8...// 24;   // parameters in subcamera+...
//    int numOutputs=16; // with A8...//13;  // parameters in a single camera
Andrey Filippov's avatar
Andrey Filippov committed
71 72 73 74 75
	public PatternParameters patternParameters;
	public LensDistortionParameters lensDistortionParameters;
	public RefineParameters refineParameters= new RefineParameters(); //create with default values
	public FittingStrategy fittingStrategy=null;
    public double [][][][] gridOnSensor =null; // [v][u][px,py][0-value, 1..14 - derivative]
76
    public double [][] interParameterDerivatives=null; //new double[this.numInputs][]; //partial derivative matrix from subcamera-camera-goniometer to single camera (12x21)
Andrey Filippov's avatar
Andrey Filippov committed
77 78 79 80
    public double []   currentVector; // current variable parameter vector
    public double []   Y=null; // array of "y" - for each grid image, each defined grid node - 2 elements
    public int    []   imageStartIndex=null; // elements containing index of the start point of the selected image, first element 0, last - total number of points.
    public double []   weightFunction=null; //  array of weights for pixels (to fade values near borders), corresponding to Y array
81

Andrey Filippov's avatar
Andrey Filippov committed
82
    public double      sumWeights;
Andrey Filippov's avatar
Andrey Filippov committed
83
    public double [][] targetXYZ=null; // array of target {x,y,z} matching each image each grid point
Andrey Filippov's avatar
Andrey Filippov committed
84 85 86 87
    public double [][] jacobian=null; // partial derivatives of fX (above) by parameters to be adjusted (rows)
    public double []   nextVector; // next variable parameter vector
    public double []   currentfX=null; // array of "f(x)" - simulated data for all images, combining pixel-X and pixel-Y (odd/even)
    public double []   nextfX=null; // array of "f(x)" - simulated data for all images, combining pixel-X and pixel-Y (odd/even)
88

Andrey Filippov's avatar
Andrey Filippov committed
89 90 91 92 93 94 95
    public double      currentRMS=-1.0; // calculated RMS for the currentVector->currentfX
    public double      nextRMS=-1.0; // calculated RMS for the nextVector->nextfX
    public double      firstRMS=-1.0; // RMS before current series of LMA started

    public double      currentRMSPure=-1.0; // calculated RMS for the currentVector->currentfX
    public double      nextRMSPure=-1.0; // calculated RMS for the nextVector->nextfX
    public double      firstRMSPure=-1.0; // RMS before current series of LMA started
Andrey Filippov's avatar
Andrey Filippov committed
96

Andrey Filippov's avatar
Andrey Filippov committed
97 98
    public double lambdaStepUp=   8.0; // multiply lambda by this if result is worse
    public double lambdaStepDown= 0.5; // multiply lambda by this if result is better
Andrey Filippov's avatar
Andrey Filippov committed
99
    public double thresholdFinish=0.001; // (copied from series) stop iterations if 2 last steps had less improvement (but not worsening )
Andrey Filippov's avatar
Andrey Filippov committed
100 101
    public int    numIterations=  100; // maximal number of iterations
    public double maxLambda=      100.0;  // max lambda to fail
Andrey Filippov's avatar
Andrey Filippov committed
102

Andrey Filippov's avatar
Andrey Filippov committed
103 104 105 106 107 108 109 110 111 112
    public double lambda=0.001;        // copied from series
    public double [] lastImprovements= {-1.0,-1.0}; // {last improvement, previous improvement}. If both >0 and < thresholdFinish - done
    public int    iterationStepNumber=0;
    public boolean stopEachStep=  true;  // open dialog after each fitting step
    public boolean stopEachSeries=true;  // open dialog when each fitting series finished
    public boolean stopOnFailure= true;  // open dialog when fitting series failed
    public boolean showParams=   false;   // show modified parameters
    public boolean showThisImages=false; // show debug images for the current ("this" state,before correction) state of parameters
    public boolean showNextImages=false; // show debug images for the current (after correction) state of parameters
    public boolean askFilter=     false; // show debug images for the current (after correction) state of parameters
Andrey Filippov's avatar
Andrey Filippov committed
113

Andrey Filippov's avatar
Andrey Filippov committed
114 115 116
 //   public boolean showGridCorr=  true;  // show grid correction
 //   public boolean showIndividual=true;  // show individual image residuals
 //   public double  corrScale=     1.0;   // scale grid correction before applying
Andrey Filippov's avatar
Andrey Filippov committed
117

Andrey Filippov's avatar
Andrey Filippov committed
118 119 120 121
    public int     seriesNumber=0; // just for the dialog
    public boolean saveSeries=false;   // just for the dialog
    public double [][][] pixelCorrection=null; // for each sensor: corr-X, corr-Y, mask, flat-field-Red, flat-field-Green, flat-field-Blue
    public String []  pathNames=null;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    // Will have to chage for different resolution
//    public int [][]   pixelCorrectionWHD= null; // For each sensor -width, height, decimation
//    public int        defaultPixelCorrectionDecimation=   1;
//   public int        defaultPixelCorrectionWidth=     2592;
//    public int        defaultPixelCorrectionHeight=    1936;

//    @Deprecated
//    public int        pixelCorrectionDecimation=   1;
//    @Deprecated
//    public int        pixelCorrectionWidth=     2592;
//    @Deprecated
//    public int        pixelCorrectionHeight=    1936;




Andrey Filippov's avatar
Andrey Filippov committed
139
    public double     RMSscale=Math.sqrt(2.0); // errors for x and y are calculated separately, so actual error is larger
Andrey Filippov's avatar
Andrey Filippov committed
140

Andrey Filippov's avatar
Andrey Filippov committed
141 142 143 144 145 146 147 148 149
    public boolean  showIndex=true;
    public boolean  showRMS=true;
    public boolean  showPoints=true;
    public boolean  showLensLocation=true;
    public boolean  showEyesisParameters=true;
    public boolean  showIntrinsicParameters=true;
    public boolean  showExtrinsicParameters=true;
    public int      extraDecimals=0;

Andrey Filippov's avatar
Andrey Filippov committed
150
    public boolean   threadedLMA=true; // use threaded/partial method to solve LMA
Andrey Filippov's avatar
Andrey Filippov committed
151 152 153 154 155 156 157
    public LMAArrays lMAArrays=null;
    public LMAArrays  savedLMAArrays=null;
    public long startTime=0;
    public int debugLevel=2;
    public boolean updateStatus=true;
    public int threadsMax=100;
    public AtomicInteger stopRequested=null; // 1 - stop now, 2 - when convenient
Andrey Filippov's avatar
Andrey Filippov committed
158 159

    public String [] status ={"",""};
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


    public int getSensorWidth(int subCam) { return fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorWidth(subCam);} // for the future? different sensors
    public int getSensorHeight(int subCam) { return fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorHeight(subCam);}// for the future? different sensors
    public int getDecimateMasks(int subCam) { return fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getDecimateMasks(subCam);}// for the future? different sensors

    public int getSensorWidth() { return fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorWidth();} // for the future? different sensors
    public int getSensorHeight() { return fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorHeight();}// for the future? different sensors
    public int getDecimateMasks() { return fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getDecimateMasks();}// for the future? different sensors

    public int getSensorCorrWidth(int subCam) { return(getSensorWidth(subCam)-1)/getDecimateMasks(subCam)+1;}
    public int getSensorCorrWidth() { return(getSensorWidth()-1)/getDecimateMasks()+1;}

    public void setSensorWidth(int subCam, int v)  {
    	fittingStrategy.distortionCalibrationData.eyesisCameraParameters.setSensorWidth(subCam, v);
Andrey Filippov's avatar
Andrey Filippov committed
175
    }
176 177 178 179 180
    public void setSensorHeight(int subCam, int v) {fittingStrategy.distortionCalibrationData.eyesisCameraParameters.setSensorHeight(subCam, v);}
    public void setDecimateMasks(int subCam, int v){fittingStrategy.distortionCalibrationData.eyesisCameraParameters.setDecimateMasks(subCam, v);}



Andrey Filippov's avatar
Andrey Filippov committed
181 182 183
    public class LMAArrays {
        public double [][] jTByJ=  null; // jacobian multiplied by Jacobian transposed
        public double []   jTByDiff=null; // jacobian multiplied difference vector
Andrey Filippov's avatar
Andrey Filippov committed
184 185
        @Override
		public LMAArrays clone() {
Andrey Filippov's avatar
Andrey Filippov committed
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        	LMAArrays lma=new LMAArrays();
        	lma.jTByJ = this.jTByJ.clone();
        	for (int i=0;i<this.jTByJ.length;i++) lma.jTByJ[i]=this.jTByJ[i].clone();
        	lma.jTByDiff=this.jTByDiff.clone();
        	return lma;
        }
    }
    public Distortions (){}
	public Distortions (
			LensDistortionParameters lensDistortionParameters,
			PatternParameters patternParameters,
			RefineParameters refineParameters,
			AtomicInteger stopRequested
	){
//		this.patternParameters=patternParameters.clone();  // why clone here?
//		this.lensDistortionParameters=lensDistortionParameters.clone();
		this.patternParameters=patternParameters;  // why clone here?
		this.lensDistortionParameters=lensDistortionParameters;
		this.refineParameters=refineParameters;
		this.stopRequested=stopRequested;
206 207 208
		if (this.lensDistortionParameters!=null) {
			interParameterDerivatives=new double[this.lensDistortionParameters.getNumInputs()][];
		}
Andrey Filippov's avatar
Andrey Filippov committed
209

Andrey Filippov's avatar
Andrey Filippov committed
210
	}
211 212
//	public int getNumInputs(){return numInputs;}
//	public int getNumOutputs(){return numOutputs;}
Andrey Filippov's avatar
Andrey Filippov committed
213 214 215
/**
 * Prerequisites:
 * this.patternParameters, this.fittingStrategy are already initialized
Andrey Filippov's avatar
Andrey Filippov committed
216
 *
Andrey Filippov's avatar
Andrey Filippov committed
217 218 219 220 221 222
 */
	/*
	private void initImageSetAndGrids(){  // never used??
// Calculate patter x,y,z==0 and alpha (1.0 - inside, 0.0 - outside) for the grid
// TODO: and save/restore to file to account for non-perfect grid
		patternParameters.calculateGridGeometry();
Andrey Filippov's avatar
Andrey Filippov committed
223
//  Read all grid data files (4-slice TIFF images) and create  pixelsXY and  pixelsUV arrays
Andrey Filippov's avatar
Andrey Filippov committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
		fittingStrategy.distortionCalibrationData.readAllGrids(patternParameters);
		if (this.debugLevel>3) {
			for (int n=0;n<fittingStrategy.distortionCalibrationData.pixelsXY.length;n++) {
				for (int i=0;i<fittingStrategy.distortionCalibrationData.pixelsXY[n].length;i++){
					System.out.println(n+":"+i+"  "+
							fittingStrategy.distortionCalibrationData.pixelsUV[n][i][0]+"/"+
							fittingStrategy.distortionCalibrationData.pixelsUV[n][i][1]+"  "+
							IJ.d2s(fittingStrategy.distortionCalibrationData.pixelsXY[n][i][0], 2)+"/"+
							IJ.d2s(fittingStrategy.distortionCalibrationData.pixelsXY[n][i][1], 2)
					);
				}
			}
		}
	}
	*/
Andrey Filippov's avatar
Andrey Filippov committed
239

240 241 242 243
	public DistortionCalibrationData getDistortionCalibrationData() {
		return (fittingStrategy == null)?null:fittingStrategy.distortionCalibrationData;
	}

Andrey Filippov's avatar
Andrey Filippov committed
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	public void resetGridImageMasks(){
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		System.out.println("resetGridImageMasks()");
		for (int imgNum=0;imgNum<numImg;imgNum++){
			fittingStrategy.distortionCalibrationData.gIP[imgNum].resetMask();
		}
	}
	// TODO - make station-dependent? Pass sensor mask and combine it?
	public void calculateGridImageMasks(
			final double minContrast,
			final double shrinkBlurSigma,
			final double shrinkBlurLevel,
			final int threadsMax,
			final boolean updateStatus
			){
		final int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		final  DistortionCalibrationData.GridImageParameters [] distortionCalibrationData=this.fittingStrategy.distortionCalibrationData.gIP;
		if (updateStatus) IJ.showStatus("Calculating grid image masks...");
		System.out.print("Calculating grid image masks...");
		System.out.print(" minContrast="+minContrast+" shrinkBlurSigma="+shrinkBlurSigma+" shrinkBlurLevel="+shrinkBlurLevel);

   		final AtomicInteger imageNumberAtomic = new AtomicInteger(0);
   		final AtomicInteger imageFinishedAtomic = new AtomicInteger(0);
   		final Thread[] threads = newThreadArray(threadsMax);
   		for (int ithread = 0; ithread < threads.length; ithread++) {
   			threads[ithread] = new Thread() {
Andrey Filippov's avatar
Andrey Filippov committed
270 271
   				@Override
				public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
272
   					for (int imgNum=imageNumberAtomic.getAndIncrement(); imgNum<numImg;imgNum=imageNumberAtomic.getAndIncrement()){
273 274 275
//   						if (imgNum == 443) {
//   							System.out.println("calculateGridImageMasks(), imgNum="+imgNum);
//   						}
Andrey Filippov's avatar
Andrey Filippov committed
276 277 278 279 280 281
   						distortionCalibrationData[imgNum].calculateMask(
   			        			minContrast,
   			        			shrinkBlurSigma,
   			        			shrinkBlurLevel);
							final int numFinished=imageFinishedAtomic.getAndIncrement();
   							SwingUtilities.invokeLater(new Runnable() {
Andrey Filippov's avatar
Andrey Filippov committed
282 283
   								@Override
								public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
   									if (updateStatus) IJ.showProgress(numFinished,numImg);
   								}
   							});

   					} // for (int numImage=imageNumberAtomic.getAndIncrement(); ...
   				} // public void run() {
   			};
   		}
   		startAndJoin(threads);
		if (updateStatus) IJ.showProgress(0);
		if (updateStatus) IJ.showStatus("Calculating grid image masks... DONE");
		System.out.println("  Done");

	}

Andrey Filippov's avatar
Andrey Filippov committed
299

Andrey Filippov's avatar
Andrey Filippov committed
300 301 302 303
/**
 * once per fitting strategy series:
 *   1) repeat for each image/point patternParameters.getXYZM(int u, int v) and create
 *      this.targetXYZ;
Andrey Filippov's avatar
Andrey Filippov committed
304 305
 *
 *   2)fittingStrategy.buildParameterMap (int numSeries)
Andrey Filippov's avatar
Andrey Filippov committed
306 307
 *   Creates map from the parameter vector index to the {grid image number, parameter number}
 *   When the parameter is shared by several images, the map points to the one which value will be used
Andrey Filippov's avatar
Andrey Filippov committed
308
 *   (they might be different). Timestamp of the masterImages[] is used to determine which image to use.
Andrey Filippov's avatar
Andrey Filippov committed
309 310
 *   Simultaneously creates this.reverseParameterMap that maps each of the image/parameter to the parameter vector
 *   Needs to be run for each new strategy series
Andrey Filippov's avatar
Andrey Filippov committed
311
 *
Andrey Filippov's avatar
Andrey Filippov committed
312 313 314 315 316
 * 	 3)this.currentVector=fittingStrategy.getSeriesVector(); // and save it in the class instance
 *   Calculate vector of the parameters used in LMA algorithm, extracted from the
 *   individual data, using parameter map (calculated once after changing series)
 *
 *    public double []   currentVector; // current variable parameter vector
Andrey Filippov's avatar
Andrey Filippov committed
317
 *
Andrey Filippov's avatar
Andrey Filippov committed
318 319 320 321 322 323 324 325
 */
	final public int filterMulti=            1;
	final public int filterContrast=         2;
	final public int filterSensor=           4;
	final public int filterTargetMask=       8;
	final public int filterTargetAlpha=     16;
	final public int filterTargetErrors=    32;
	final public int filterMaskBadNodes=    64;
Andrey Filippov's avatar
Andrey Filippov committed
326 327 328
	final public int filterDiameter=       128; // use measured grid "diameter" to change image weight
	final public int filterChannelWeights= 256; // different weights for channels (higher weight for bottom sensors)
	final public int filterYtoX=           512; // different weights for channels (higher weight for bottom sensors)
Andrey Filippov's avatar
Andrey Filippov committed
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	final public int filterForAll=             filterMulti+filterContrast+filterSensor+filterTargetMask+filterTargetAlpha+filterTargetErrors+filterMaskBadNodes+
	filterDiameter+filterChannelWeights+filterYtoX;
	final public int filterForSensor=          filterMulti+filterContrast             +filterTargetMask+filterTargetAlpha+filterTargetErrors+filterMaskBadNodes+
	filterDiameter+filterChannelWeights+filterYtoX;
	final public int filterForTargetGeometry=  filterMulti+filterContrast+filterSensor+filterMaskBadNodes+filterDiameter+filterChannelWeights+filterYtoX;
	final public int filterForTargetFlatField= filterMulti+filterContrast+filterSensor+filterMaskBadNodes+filterDiameter+filterChannelWeights+filterYtoX;

	public int selectFilter(int dfltFilter){
		GenericDialog gd = new GenericDialog("Select series to process");
		int filter=    dfltFilter;
		gd.addCheckbox("filterMulti",         (filterForAll & filterMulti)!=0);
		gd.addCheckbox("filterContrast",      (filterForAll & filterContrast)!=0);
		gd.addCheckbox("filterSensor",        (filterForAll & filterSensor)!=0);
		gd.addCheckbox("filterTargetMask",    (filterForAll & filterTargetMask)!=0);
		gd.addCheckbox("filterTargetAlpha",   (filterForAll & filterTargetAlpha)!=0);
		gd.addCheckbox("filterTargetErrors",  (filterForAll & filterTargetErrors)!=0);
		gd.addCheckbox("filterMaskBadNodes",  (filterForAll & filterMaskBadNodes)!=0);
Andrey Filippov's avatar
Andrey Filippov committed
347 348 349 350 351 352
		gd.addCheckbox("filterDiameter",      (filterForAll & filterDiameter)!=0);
		gd.addCheckbox("filterChannelWeights",(filterForAll & filterChannelWeights)!=0);
		gd.addCheckbox("filterYtoX",          (filterForAll & filterYtoX)!=0);



Andrey Filippov's avatar
Andrey Filippov committed
353 354 355 356 357 358 359 360 361 362
		gd.showDialog();
		if (gd.wasCanceled()) return filter;
		filter=0;
		if (gd.getNextBoolean()) filter |= filterMulti;
		if (gd.getNextBoolean()) filter |= filterContrast;
		if (gd.getNextBoolean()) filter |= filterSensor;
		if (gd.getNextBoolean()) filter |= filterTargetMask;
		if (gd.getNextBoolean()) filter |= filterTargetAlpha;
		if (gd.getNextBoolean()) filter |= filterTargetErrors;
		if (gd.getNextBoolean()) filter |= filterMaskBadNodes;
Andrey Filippov's avatar
Andrey Filippov committed
363 364 365
		if (gd.getNextBoolean()) filter |= filterDiameter;
		if (gd.getNextBoolean()) filter |= filterChannelWeights;
		if (gd.getNextBoolean()) filter |= filterYtoX;
Andrey Filippov's avatar
Andrey Filippov committed
366 367 368
		if (this.debugLevel>1) System.out.println("Using filter bitmap: "+filter);
		return filter;
    }
Andrey Filippov's avatar
Andrey Filippov committed
369

Andrey Filippov's avatar
Andrey Filippov committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	public void initFittingSeries(
			boolean justSelection, // use series to get selection only
			int filter,
			int numSeries) {
		if (initFittingSeries(
			justSelection, // use series to get selection only
			filter,
			numSeries,
			1)){
			initFittingSeries(
					justSelection, // use series to get selection only
					filter,
					numSeries,
					2);
		}
Andrey Filippov's avatar
Andrey Filippov committed
385

Andrey Filippov's avatar
Andrey Filippov committed
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	}
	//returns true if some images were disabled and re-calculation is needed
	public boolean initFittingSeries(
			boolean justSelection, // use series to get selection only
			int filter,
			int numSeries,
			int pass) {
		boolean skipMinVal=this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.minimalValidNodes<0;
		if ((pass>1) && skipMinVal){ System.out.println("initFittingSeries("+justSelection+","+filter+","+numSeries+"), skipMinVal="+skipMinVal); return false;} // debug - skipping new functionality
		System.out.println("initFittingSeries("+justSelection+","+filter+","+numSeries+"), pass="+pass);
		//TODO: ********* Implement comments above ************
		  // calculate total number of x/y pairs in the selected images
		if (numSeries<0)justSelection=true;
		if ((pass==1) && (numSeries>=0)) fittingStrategy.invalidateSelectedImages(numSeries); // next selectedImages() will select all, including empty
		if (!justSelection) {
			fittingStrategy.buildParameterMap (numSeries); // also sets currentSeriesNumber
		} else{
			fittingStrategy.currentSeriesNumber=numSeries;
		}
Andrey Filippov's avatar
Andrey Filippov committed
405
		int numXYPairs=0;
Andrey Filippov's avatar
Andrey Filippov committed
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		if (this.debugLevel>3)	System.out.println("initFittingSeries("+numSeries+"), numImg="+numImg);
		if ((pass==1) && (numSeries>=0) && !skipMinVal) fittingStrategy.initSelectedValidImages(numSeries); // copy from selected images

		boolean [] selectedImages=fittingStrategy.selectedImages(numSeries); // -1 OK, will select all
		if (this.debugLevel>3)	System.out.println("initFittingSeries("+numSeries+"), selectedImages.length="+selectedImages.length);
		for (int imgNum=0;imgNum<numImg;imgNum++) if (selectedImages[imgNum]) {
			numXYPairs+=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;
		}
		this.targetXYZ=new double[numXYPairs][3];
		this.Y= new double[numXYPairs*2];
		this.weightFunction=new double[numXYPairs*2];
		this.sumWeights=0.0;
		this.imageStartIndex=new int [numImg+1];
		// added here, was using pixelCorrectionDecimation==1
421 422 423 424
///		this.pixelCorrectionDecimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getDecimateMasks();
///		this.pixelCorrectionWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorWidth();
///		this.pixelCorrectionHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorHeight();
///		int sensorCorrWidth= (this.pixelCorrectionWidth-1)/this.pixelCorrectionDecimation+1;
Andrey Filippov's avatar
Andrey Filippov committed
425

Andrey Filippov's avatar
Andrey Filippov committed
426 427 428 429 430 431 432 433 434 435 436 437 438
		double [] multiWeight=new double [numImg];
		for (int imgNum=0;imgNum<numImg;imgNum++) multiWeight[imgNum]=0.0;
        double minimalGridContrast=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.minimalGridContrast;
        double shrinkBlurSigma=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.shrinkBlurSigma;
        double shrinkBlurLevel=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.shrinkBlurLevel;
        calculateGridImageMasks(
        		minimalGridContrast, // final double minContrast,
        		shrinkBlurSigma, //final double shrinkBlurSigma,
        		shrinkBlurLevel, //final double shrinkBlurLevel,
    			100, //final int threadsMax,
    			true //final boolean updateStatus
    			);
//        this.imageSetWeight=new double[this.fittingStrategy.distortionCalibrationData.gIS.length];
Andrey Filippov's avatar
Andrey Filippov committed
439

Andrey Filippov's avatar
Andrey Filippov committed
440 441 442
        if ((filter & this.filterChannelWeights)!=0) calculateChannelsWeights(
        		this.fittingStrategy.currentSeriesNumber,
        		fittingStrategy.distortionCalibrationData.eyesisCameraParameters.balanceChannelWeightsMode);
Andrey Filippov's avatar
Andrey Filippov committed
443

Andrey Filippov's avatar
Andrey Filippov committed
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        for (int imgSet=0;imgSet<this.fittingStrategy.distortionCalibrationData.gIS.length;imgSet++){
        	this.fittingStrategy.distortionCalibrationData.gIS[imgSet].setWeight=0.0;
        	int numUsed=0;
        	int stationNumber=0;
        	int numInSet=((this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet!=null)?
        			this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet.length:0);
        	for (int i=0;i<numInSet;i++){
        		if (this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet[i]!=null) {
        			stationNumber=this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet[i].getStationNumber(); // should be the same for all images
        			int imgNum=this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet[i].imgNumber;
        			if ((imgNum>=0) && selectedImages[imgNum]) numUsed++; // counting only selected in this fitting series, not all enabled !
        		}
        	}
        	if (numUsed>0) {
        		double d;
        		switch (fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightMultiImageMode){
        		case 0: d=1.0; break;
        		case 1: d=Math.pow(numUsed,fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightMultiExponent);
Andrey Filippov's avatar
Andrey Filippov committed
462
        		break;
Andrey Filippov's avatar
Andrey Filippov committed
463 464 465 466 467
        		case 2: d=(numUsed>1)?(Math.pow(numUsed,fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightMultiExponent)):0.001; break; // virtually eliminate single-image sets, but prevent errors
        		case 3: d=numUsed*numUsed; break;
        		default: d=1.0;
        		}
        		d*=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.stationWeight[stationNumber];
Andrey Filippov's avatar
Andrey Filippov committed
468
//        		set weight will be calculated as sum of all points weights
Andrey Filippov's avatar
Andrey Filippov committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//        		this.fittingStrategy.distortionCalibrationData.gIS[imgSet].setWeight=d;
        		for (int i=0;i<numInSet;i++){
        			if (this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet[i]!=null) {
        				int imgNum=this.fittingStrategy.distortionCalibrationData.gIS[imgSet].imageSet[i].imgNumber;
        				if ((imgNum>=0) && selectedImages[imgNum]) multiWeight[imgNum]= d;
        			}
        		}
        	}
        }
        int patternMaskIndex=3;
        int patternAlphaIndex=7;
        int patternErrorMaskIndex=8;
		int index=0;
		double weightScaleX=1.0,weightScaleY=1.0;
		if (((filter & this.filterYtoX)!=0) && (this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightYtoX!=1.0)) {
			weightScaleX/=Math.sqrt(this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightYtoX);
			weightScaleY*=Math.sqrt(this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightYtoX);
		}
		double weightSumXY=weightScaleX+weightScaleY;
		for (int imgNum=0;imgNum<numImg;imgNum++){
			this.imageStartIndex[imgNum]=index;
			if (selectedImages[imgNum]) {
				int chnNum=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
				int station=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
				int setNumber=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getSetNumber();
				double [] gridWeight=fittingStrategy.distortionCalibrationData.gIP[imgNum].getGridWeight();
				double gridImageWeight=1.0;
				if (((filter & this.filterDiameter)!=0) && (fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightDiameterExponent>0.0)) {
					gridImageWeight*=Math.pow(setImageDiameter(imgNum),fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightDiameterExponent);
				}
				if ((filter & this.filterChannelWeights)!=0) {
					gridImageWeight*=this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[station][chnNum].getChannelWeightCurrent();
				}
				for (int pointNumber=0;pointNumber<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;pointNumber++){

					double [] XYZMP=patternParameters.getXYZMPE(
Andrey Filippov's avatar
Andrey Filippov committed
505
							fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[pointNumber][0],
Andrey Filippov's avatar
Andrey Filippov committed
506 507 508 509 510 511
							fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[pointNumber][1],
							station,
							chnNum,
							false);
//		 * @return null if out of grid, otherwise X,Y,Z,mask (binary),R (~0.5..1.2),G,B,alpha (0.0..1.0)
/*					double [] XYZM=patternParameters.getXYZM( // will throw if outside or masked out
Andrey Filippov's avatar
Andrey Filippov committed
512
							fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[pointNumber][0],
Andrey Filippov's avatar
Andrey Filippov committed
513 514 515 516 517 518 519 520 521 522 523 524 525 526
							fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[pointNumber][1]);*/
					this.targetXYZ[index][0]=XYZMP[0];
					this.targetXYZ[index][1]=XYZMP[1];
					this.targetXYZ[index][2]=XYZMP[2];
					double weight=1.0;
					if ((filter & this.filterSensor)!=0) {
						weight*=fittingStrategy.distortionCalibrationData.getMask( // returns 1.0 if sensor mask is not available
								chnNum,
								fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][0],
								fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][1]);
					}
//					Individual image mask is needed as some parts can be obscured by moving parts - not present on  all images.
//					grid "contrast" may be far from 1.0 but probably should work OK
///					double gridContrast= fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][2]-minimalGridContrast;//minimalGridContrast\
527 528 529 530 531
					double dbg;
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}
Andrey Filippov's avatar
Andrey Filippov committed
532 533 534 535 536
					if ((filter & this.filterContrast)!=0) {
						double gridContrast= gridWeight[pointNumber];
						weight*=gridContrast;
						if (Double.isNaN(gridContrast) && (this.debugLevel>1)) System.out.println("gridContrast=NaN, imgNum="+imgNum);
					}
537 538 539 540 541
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}

Andrey Filippov's avatar
Andrey Filippov committed
542 543 544 545
					if ((filter & this.filterTargetMask)!=0) {
						weight*=XYZMP[patternMaskIndex];//DONE: Use grid mask also (fade out outer grid nodes?)
						if (Double.isNaN(XYZMP[patternMaskIndex]) && (this.debugLevel>1)) System.out.println("XYZMP["+patternMaskIndex+"]=NaN, imgNum="+imgNum);
					}
546 547 548 549
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}
Andrey Filippov's avatar
Andrey Filippov committed
550 551 552 553
					if ((filter & this.filterTargetAlpha)!=0) {
						weight*=XYZMP[patternAlphaIndex];//DONE: Use grid mask also (fade out outer grid nodes?)
						if (Double.isNaN(XYZMP[patternAlphaIndex]) && (this.debugLevel>1)) System.out.println("XYZMP["+patternAlphaIndex+"]=NaN, imgNum="+imgNum);
					}
554 555 556 557
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}
Andrey Filippov's avatar
Andrey Filippov committed
558 559 560 561
					if ((filter & this.filterTargetErrors)!=0) {
						weight*=XYZMP[patternErrorMaskIndex];//DONE: Use grid mask also (fade out outer grid nodes?)
						if (Double.isNaN(XYZMP[patternErrorMaskIndex]) && (this.debugLevel>1)) System.out.println("XYZMP["+patternErrorMaskIndex+"]=NaN, imgNum="+imgNum);
					}
562 563 564 565
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}
Andrey Filippov's avatar
Andrey Filippov committed
566 567 568
					if ((filter & this.filterMulti)!=0) {
						weight*=multiWeight[imgNum];
						if (Double.isNaN(multiWeight[imgNum]) && (this.debugLevel>1)) System.out.println("multiWeight["+imgNum+"]=NaN, imgNum="+imgNum);
Andrey Filippov's avatar
Andrey Filippov committed
569
					}
570 571 572 573
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}
Andrey Filippov's avatar
Andrey Filippov committed
574 575 576
					if ((filter & this.filterMaskBadNodes)!=0) {
						if (fittingStrategy.distortionCalibrationData.gIP[imgNum].isNodeBad(pointNumber)) weight=0.0;
					}
577 578 579 580
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight; // got here
					}
Andrey Filippov's avatar
Andrey Filippov committed
581

Andrey Filippov's avatar
Andrey Filippov committed
582 583 584 585 586
					//fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightMultiExponent)
					if (((filter & this.filterDiameter)!=0) && (fittingStrategy.distortionCalibrationData.eyesisCameraParameters.weightDiameterExponent>0.0)) {
						weight*=gridImageWeight;
						if (Double.isNaN(gridImageWeight) && (this.debugLevel>1)) System.out.println("gridImageWeight=NaN, imgNum="+imgNum);
					}
587 588 589 590
//					if (weight > 0) {
					if ((weight > 0) && (imgNum == 244)) {
						dbg = weight;
					}
Andrey Filippov's avatar
Andrey Filippov committed
591 592 593 594 595
					if (Double.isNaN(weight)) {
						weight=0.0; // find who makes it NaN
						if (Double.isNaN(multiWeight[imgNum])) System.out.println("weight is null, imgNum="+imgNum);
					}

Andrey Filippov's avatar
Andrey Filippov committed
596

Andrey Filippov's avatar
Andrey Filippov committed
597 598 599 600 601 602 603 604
					this.weightFunction[2*index]=  weight*weightScaleX;
					this.weightFunction[2*index+1]=weight*weightScaleY;
					this.sumWeights+=              weight*weightSumXY;
	        		this.fittingStrategy.distortionCalibrationData.gIS[setNumber].setWeight+=2.0*weight;  // used for variances - proportional to the set weight
					if (this.pixelCorrection==null){
						this.Y[2*index]=  fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][0];
						this.Y[2*index+1]=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][1];
					} else {
Andrey Filippov's avatar
Andrey Filippov committed
605
// TODO: remove and use new code (if tested OK)
Andrey Filippov's avatar
Andrey Filippov committed
606 607 608 609
						double [] pXY={
								fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][0],
								fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][1]
						};
Andrey Filippov's avatar
Andrey Filippov committed
610
// TODO: Should it be interpolated? Correction is normally small/smooth, so it may be not important
611 612
						int indexXY=((int) Math.floor(pXY[0]/getDecimateMasks(chnNum))) +
						((int) Math.floor(pXY[1]/getDecimateMasks(chnNum)))*getSensorCorrWidth(chnNum);
Andrey Filippov's avatar
Andrey Filippov committed
613 614 615
						if (this.pixelCorrection[chnNum][0].length<=indexXY){
							System.out.println("initFittingSeries("+numSeries+") bug:");
							System.out.println("this.pixelCorrection["+chnNum+"][0].length="+this.pixelCorrection[chnNum][0].length);
616
							System.out.println("indexXY="+indexXY+" pXY[0]="+pXY[0]+", pXY[1]="+pXY[1]+" sensorCorrWidth="+getSensorCorrWidth(chnNum));
Andrey Filippov's avatar
Andrey Filippov committed
617

Andrey Filippov's avatar
Andrey Filippov committed
618 619 620 621
						} else {
							this.Y[2*index]=  pXY[0]-this.pixelCorrection[chnNum][0][indexXY]; //java.lang.ArrayIndexOutOfBoundsException: 3204663
							this.Y[2*index+1]=pXY[1]-this.pixelCorrection[chnNum][1][indexXY];
						}
Andrey Filippov's avatar
Andrey Filippov committed
622 623
// TODO: remove above and un-comment below	(after testing)
/*
Andrey Filippov's avatar
Andrey Filippov committed
624 625 626 627 628 629 630 631 632 633 634 635 636
						double [] vector=interpolateCorrectionVector(
								chnNum,
								fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][0],
								fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[pointNumber][1]);
						this.Y[2*index]=  pXY[0]-vector[0];
						this.Y[2*index+1]=pXY[1]-vector[1];
*/
					}
					index++;
				}
//				numXYPairs+=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length; ??
			}
		}
Andrey Filippov's avatar
Andrey Filippov committed
637
		this.imageStartIndex[numImg]=index; // one after last
Andrey Filippov's avatar
Andrey Filippov committed
638
		if ((pass==1) && (numSeries>=0) && !skipMinVal){
639
    		// count non-zero weight nodes for each image, disable image if this number is less than
Andrey Filippov's avatar
Andrey Filippov committed
640 641 642 643 644 645 646 647 648 649
    		int needReCalc=0;
    		for (int imgNum=0;imgNum<numImg;imgNum++) if (selectedImages[imgNum]) {
    			index=this.imageStartIndex[imgNum];
    			int numValidNodes=0;
    			for (int pointNumber=0;pointNumber<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;pointNumber++){
    				if (2*(index+pointNumber)>=this.weightFunction.length){
    					System.out.println("BUG@535: this.weightFunction.length="+this.weightFunction.length+" index="+index+
    							" pointNumber="+pointNumber+" imgNum="+imgNum+" pixelsUV.length="+
    							fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length+
    							" numXYPairs="+numXYPairs);
Andrey Filippov's avatar
Andrey Filippov committed
650

Andrey Filippov's avatar
Andrey Filippov committed
651 652
    					continue;
    				}
653 654 655
    				if (this.weightFunction[2*(index+pointNumber)]>0.0) {
    					numValidNodes++; //OOB 5064
    				}
Andrey Filippov's avatar
Andrey Filippov committed
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    			}
    			if (numValidNodes<this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.minimalValidNodes){
    				this.fittingStrategy.invalidateSelectedImage(numSeries,imgNum);
    				needReCalc++;
    				if (this.debugLevel>1){
    					System.out.println("Number of valid nodes in image #"+imgNum+" is "+numValidNodes+" < "+
    							this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.minimalValidNodes+
    							", this image will be temporarily disabled");
    				}
    			}
    		}
    		if (needReCalc>0) {
    			if (this.debugLevel>1) System.out.println("Number of temporarily disabled images="+needReCalc );
    			return true; // will need a second pass
    		} else {
    			if (this.debugLevel>1) System.out.println("No images disabled, no need for pass #2");
    		}
    	}
		// Normalize set weights
		int numSetsUsed=0;
		double totalSetWeight=0.0;
        for (int imgSet=0;imgSet<this.fittingStrategy.distortionCalibrationData.gIS.length;imgSet++){
        	if (this.fittingStrategy.distortionCalibrationData.gIS[imgSet].setWeight>0){
        		numSetsUsed++;
        		totalSetWeight+=this.fittingStrategy.distortionCalibrationData.gIS[imgSet].setWeight;
        	}
        }
        double setWeightScale=numSetsUsed/totalSetWeight;
        if (numSetsUsed>0){
            for (int imgSet=0;imgSet<this.fittingStrategy.distortionCalibrationData.gIS.length;imgSet++){
            	if (this.fittingStrategy.distortionCalibrationData.gIS[imgSet].setWeight>0){
            		numSetsUsed++;
            		this.fittingStrategy.distortionCalibrationData.gIS[imgSet].setWeight*=setWeightScale;
            	}
            }
        }
Andrey Filippov's avatar
Andrey Filippov committed
692 693
// last? not here!
//		this.imageStartIndex[numImg]=index;
Andrey Filippov's avatar
Andrey Filippov committed
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		if (justSelection) {
			this.currentVector = null;
			this.lambda=0.0;

		} else {
			this.currentVector =fittingStrategy.getSeriesVector(); // here?
			// for now - use common parameters, later maybe restore /add individual
			//    	this.lambda=fittingStrategy.getLambda();
			//    	was commented out???

			this.lambda=fittingStrategy.getLambda();
		   	if ((this.fittingStrategy.varianceModes!=null)
		   			&& (this.fittingStrategy.varianceModes[numSeries]!=this.fittingStrategy.varianceModeDisabled)) fittingStrategy.buildVariancesMaps (numSeries); // return value lost
		}
//    	this.thresholdFinish=fittingStrategy.getStepDone();
    	this.iterationStepNumber=0;
    	// should be calculated after series weights are set
//    public int    []   imageStartIndex=null; // elements containing index of the start point of the selected image, first element 0, last - total number of points.
Andrey Filippov's avatar
Andrey Filippov committed
712
// TODO: add copying  lambdaStepUp,lambdaStepDown?
Andrey Filippov's avatar
Andrey Filippov committed
713 714
    	return false;
	}
Andrey Filippov's avatar
Andrey Filippov committed
715 716


Andrey Filippov's avatar
Andrey Filippov committed
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	public void calculateChannelsWeights(
			int numSeries,
			double balanceChannelWeightsMode){
		if (balanceChannelWeightsMode==0) return; // keep current weights
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		int numStations=fittingStrategy.distortionCalibrationData.getNumStations();
		int numChannels=fittingStrategy.distortionCalibrationData.getNumChannels();

		if (balanceChannelWeightsMode<0) { //copy specified defaults to current values
			for (int station=0;station<numStations;station++){
				for (int chn=0;chn<numChannels;chn++){
					this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[station][chn].setChannelWeightCurrent(
							this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][chn].getChannelWeightDefault()); // from station 0
				}
			}
		} else {
			double exp=balanceChannelWeightsMode;
			double [][] sumChnWeights=new double [numStations][numChannels];
			double [] avgWeights=new double [numStations];
			int [] numNonzeroChannels=new int [numStations];
			for (int station=0;station<numStations;station++){
				avgWeights[station] =0.0;
				numNonzeroChannels[station] =0;
				for (int chn=0;chn<numChannels;chn++) sumChnWeights[station][chn] =0.0;
			}
			boolean [] selectedImages=fittingStrategy.selectedImages(numSeries); // -1 OK, will select all
			for (int imgNum=0;imgNum<numImg;imgNum++)if (selectedImages[imgNum]) {
					int chn=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
					int station=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
					sumChnWeights[station][chn]+=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getNumContrastNodes(
							this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.minimalGridContrast);
			}
			for (int station=0;station<numStations;station++){
				for (int chn=0;chn<numChannels;chn++) if (sumChnWeights[station][chn]>0) {
					avgWeights[station]+=sumChnWeights[station][chn];
					numNonzeroChannels[station]++;
				}
				if (numNonzeroChannels[station]>0) avgWeights[station]/=numNonzeroChannels[station];
			}
			for (int station=0;station<numStations;station++){
				for (int chn=0;chn<numChannels;chn++) if (sumChnWeights[station][chn]>0) {
					double weight=(sumChnWeights[station][chn]>0.0)?Math.pow(avgWeights[station]/sumChnWeights[station][chn],exp):0.0;
					this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[station][chn].setChannelWeightCurrent(
							weight);
				}
			}
Andrey Filippov's avatar
Andrey Filippov committed
763

Andrey Filippov's avatar
Andrey Filippov committed
764
		}
Andrey Filippov's avatar
Andrey Filippov committed
765

Andrey Filippov's avatar
Andrey Filippov committed
766
	}
Andrey Filippov's avatar
Andrey Filippov committed
767

Andrey Filippov's avatar
Andrey Filippov committed
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	public double setImageDiameter(int imgNum){
		int debugThreshold=2;
		int chnNum=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
        double minimalGridContrast=this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.minimalGridContrast;
		int station=this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
		EyesisSubCameraParameters esp=this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[station][chnNum];
        double r0pix=1000.0*esp.distortionRadius/esp.pixelSize;
        this.fittingStrategy.distortionCalibrationData.gIP[imgNum].setImageDiameter( // need to get image center px,py. Maybe r0 - use to normalize result diameter
    			esp.px0, // double xc,
    			esp.py0, // double yc,
    			r0pix,   // double r0,
    			minimalGridContrast,//  double minContrast
    			(this.debugLevel>debugThreshold)?imgNum:-1);
        return this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getGridDiameter();
	}
Andrey Filippov's avatar
Andrey Filippov committed
783

784
	public void listImageSets(int mode){ // TODO: use series -1 - should work now
Andrey Filippov's avatar
Andrey Filippov committed
785 786 787 788 789
//		boolean [] oldSelection=this.fittingStrategy.selectAllImages(0); // enable all images in series 0
		if (this.fittingStrategy.distortionCalibrationData.gIS!=null){
			if (this.debugLevel>2){
				System.out.println("listImageSets() 1: ");
				for (int is=0;is<this.fittingStrategy.distortionCalibrationData.gIS.length;is++){
790 791 792 793 794
					System.out.println("listImageSets() 1: "+is+
							": tilt="+    this.fittingStrategy.distortionCalibrationData.gIS[is].goniometerTilt+
							" axial="+    this.fittingStrategy.distortionCalibrationData.gIS[is].goniometerAxial+
							" interAxis="+this.fittingStrategy.distortionCalibrationData.gIS[is].interAxisAngle+
							" estimated="+this.fittingStrategy.distortionCalibrationData.gIS[is].orientationEstimated);
Andrey Filippov's avatar
Andrey Filippov committed
795 796 797 798 799 800 801 802 803 804 805
				}
			}
		}

		int filter=this.filterForAll;
		if (this.askFilter) filter=selectFilter(filter);
		initFittingSeries(false,filter,-1); // first step in series
		if (this.fittingStrategy.distortionCalibrationData.gIS!=null){
			if (this.debugLevel>2){
				System.out.println("listImageSets() 2: ");
				for (int is=0;is<this.fittingStrategy.distortionCalibrationData.gIS.length;is++){
806 807 808 809 810
					System.out.println("listImageSets() 2: "+is+
							": tilt="+    this.fittingStrategy.distortionCalibrationData.gIS[is].goniometerTilt+
							" axial="+    this.fittingStrategy.distortionCalibrationData.gIS[is].goniometerAxial+
							" interAxis="+this.fittingStrategy.distortionCalibrationData.gIS[is].interAxisAngle+
							" estimated="+this.fittingStrategy.distortionCalibrationData.gIS[is].orientationEstimated);
Andrey Filippov's avatar
Andrey Filippov committed
811 812 813 814 815 816 817
				}
			}
		}
//	    initFittingSeries(true,this.filterForAll,0); // will set this.currentVector
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
		double [] errors=calcErrors(calcYminusFx(this.currentfX));
		int [] numPairs=calcNumPairs();
Andrey Filippov's avatar
Andrey Filippov committed
818

Andrey Filippov's avatar
Andrey Filippov committed
819
	    int [][] imageSets=this.fittingStrategy.distortionCalibrationData.listImages(false); // true - only enabled images
820 821 822 823
	    boolean hasLWIR = this.fittingStrategy.distortionCalibrationData.hasSmallSensors();

	    int [] numSetPoints=new int [imageSets.length*(hasLWIR?2:1)];
	    double [] rmsPerSet=new double[imageSets.length*(hasLWIR?2:1)];
824 825 826 827
	    int [][] numImgPoints=new int [imageSets.length][this.fittingStrategy.distortionCalibrationData.getNumSubCameras()];
	    double [][] rmsPerImg=new double[imageSets.length][this.fittingStrategy.distortionCalibrationData.getNumSubCameras()];


828 829 830 831 832 833 834 835 836 837 838
	    boolean [] hasNaNInSet=new boolean[imageSets.length*(hasLWIR?2:1)];
	    if (hasLWIR) {
	    	for (int setNum=0;setNum<imageSets.length;setNum++){
	    		double [] error2= {0.0,0.0};
	    		int [] numInSet= {0,0};
	    		hasNaNInSet[2*setNum]=false;
	    		hasNaNInSet[2*setNum+1]=false;
	    		for (int imgInSet=0;imgInSet<imageSets[setNum].length;imgInSet++) {
	    			int imgNum=imageSets[setNum][imgInSet];
	    			int isLwir = this.fittingStrategy.distortionCalibrationData.isSmallSensor(imgNum)?1:0;
	    			int num=numPairs[imgNum];
839 840
	    			rmsPerImg[setNum][imgInSet] = errors[imgNum];
	    			numImgPoints[setNum][imgInSet] = num;
841 842 843 844 845 846
	    			if (Double.isNaN(errors[imgNum])){
	    				hasNaNInSet[2 * setNum + isLwir]=true;
	    			} else {
	    				error2[isLwir]+=errors[imgNum]*errors[imgNum]*num;
	    				numInSet[isLwir]+=num;
	    			}
Andrey Filippov's avatar
Andrey Filippov committed
847
	    		}
848 849 850 851 852 853 854 855 856 857 858 859 860 861
	    		numSetPoints[2 * setNum + 0]= numInSet[0];
	    		rmsPerSet   [2 * setNum + 0]= Math.sqrt(error2[0]/numInSet[0]);
	    		numSetPoints[2 * setNum + 1]= numInSet[1];
	    		rmsPerSet   [2 * setNum + 1]= Math.sqrt(error2[1]/numInSet[1]);
	    	}

	    } else {
	    	for (int setNum=0;setNum<imageSets.length;setNum++){
	    		double error2=0.0;
	    		int numInSet=0;
	    		hasNaNInSet[setNum]=false;
	    		for (int imgInSet=0;imgInSet<imageSets[setNum].length;imgInSet++) {
	    			int imgNum=imageSets[setNum][imgInSet];
	    			int num=numPairs[imgNum];
862 863
	    			rmsPerImg[setNum][imgInSet] = errors[imgNum];
	    			numImgPoints[setNum][imgInSet] = num;
864 865 866 867 868 869 870 871 872
	    			if (Double.isNaN(errors[imgNum])){
	    				hasNaNInSet[setNum]=true;
	    			} else {
	    				error2+=errors[imgNum]*errors[imgNum]*num;
	    				numInSet+=num;
	    			}
	    		}
	    		numSetPoints[setNum]=numInSet;
	    		rmsPerSet[setNum]=Math.sqrt(error2/numInSet);
Andrey Filippov's avatar
Andrey Filippov committed
873 874
	    	}
	    }
875 876 877 878
	    this.fittingStrategy.distortionCalibrationData.listImageSet(
	    		mode,
	    		numSetPoints,
	    		rmsPerSet,
879 880 881 882
	    		hasNaNInSet,
    			numImgPoints,
    			rmsPerImg
	    		);
Andrey Filippov's avatar
Andrey Filippov committed
883 884
//		this.fittingStrategy.setImageSelection(0, oldSelection); // restore original selection in series 0
	}
Andrey Filippov's avatar
Andrey Filippov committed
885 886


Andrey Filippov's avatar
Andrey Filippov committed
887 888 889 890 891 892 893 894 895 896
	public void updateSensorMasks(){
		int alphaIndex=2;
		if (this.pixelCorrection==null){
			System.out.println("Sensor data is null, can not update sensor masks");
			return;
		}
		if (this.debugLevel>0) System.out.println("Updating sensor masks in sensor data");
		for (int i=0;(i<this.fittingStrategy.distortionCalibrationData.sensorMasks.length) && (i<this.pixelCorrection.length);i++){
			this.pixelCorrection[i][alphaIndex]=this.fittingStrategy.distortionCalibrationData.sensorMasks[i].clone();
		}
Andrey Filippov's avatar
Andrey Filippov committed
897

Andrey Filippov's avatar
Andrey Filippov committed
898 899 900 901 902 903 904 905 906 907 908 909 910
	}

	public boolean correctPatternFlatField(boolean enableShow){
		if (this.debugLevel>0) System.out.println("=== Performing pattern flat field correction");
		this.patternParameters.updateNumStations(this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getNumStations());
		//		if (this.refineParameters.flatFieldUseSelectedChannels && (ABERRATIONS_PARAMETERS!=null))selectedChannels=ABERRATIONS_PARAMETERS.selectedChannels;
		double [][] masks= nonVignettedMasks(
				this.refineParameters.flatFieldShrink,
				this.refineParameters.flatFieldNonVignettedRadius,
				this.refineParameters.flatFieldMinimalAlpha);
		/*	    if (selectedChannels!=null){
	    	for (int nChn=0;nChn<masks.length;nChn++) if ((nChn<selectedChannels.length)&&!selectedChannels[nChn]) masks[nChn]=null;
	    }
Andrey Filippov's avatar
Andrey Filippov committed
911
		 */
912 913 914 915 916 917 918
		boolean same_size = true;
		for (int nChn=1; nChn < masks.length; nChn++) same_size &= (masks[nChn].length == masks[0].length);


		if (enableShow && this.refineParameters.flatFieldShowSensorMasks) {
			if (same_size) {
			(new ShowDoubleFloatArrays()).showArrays( //java.lang.ArrayIndexOutOfBoundsException: 313632
Andrey Filippov's avatar
Andrey Filippov committed
919
				masks,
920 921
				getSensorWidth(0)/ getDecimateMasks(0),
				getSensorHeight(0)/getDecimateMasks(0),
Andrey Filippov's avatar
Andrey Filippov committed
922 923
				true,
		"nonVinetting masks");
924 925 926 927 928 929
			} else {
				System.out.println ("Can not display different saze masks in a stack");
			}
		}


Andrey Filippov's avatar
Andrey Filippov committed
930 931 932 933 934 935 936 937 938 939 940 941 942 943
		double [][][][] sensorGrids=calculateGridFlatField(
				this.refineParameters.flatFieldSerNumber,
				masks,
				this.refineParameters.flatFieldMinimalContrast,
				this.refineParameters.flatFieldMinimalAccumulate,
				this.refineParameters.flatFieldUseInterpolate,
				this.refineParameters.flatFieldMaskThresholdOcclusion, // suspect occlusion only if grid is missing in the area where sensor mask is above this threshold
				this.refineParameters.flatFieldShrinkOcclusion,
				this.refineParameters.flatFieldFadeOcclusion,
				this.refineParameters.flatFieldIgnoreSensorFlatField);
		double [][][] geometry= patternParameters.getGeometry();
		if (enableShow && this.refineParameters.flatFieldShowIndividual){
			for (int station=0;station<sensorGrids.length;station++) if (sensorGrids[station]!=null){
				for (int i=0;i<sensorGrids[station].length;i++) if (sensorGrids[station][i]!=null){
944
					(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
							sensorGrids[station][i],
							geometry[0].length,
							geometry.length,
							true,
							"chn"+i+":"+station+"-pattern");
				}
			}
		}
		double [][][][] patternArray= combineGridFlatField(
				this.refineParameters.flatFieldReferenceStation,
				sensorGrids,
				this.refineParameters.flatFieldShrinkForMatching,
				this.refineParameters.flatFieldResetMask,
				this.refineParameters.flatFieldMaxRelDiff,
				this.refineParameters.flatFieldShrinkMask,
				this.refineParameters.flatFieldFadeBorder);
		if (enableShow && this.refineParameters.flatFieldShowResult) {
			String [] titles={"Alpha","Red","Green","Blue","Number of images used"};
			for (int station=0;station<patternArray.length;station++) if (patternArray[station]!=null){
				for (int nView=0;nView<patternArray[station].length;nView++) if (patternArray[station][nView]!=null){
965
					(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
966 967 968 969 970 971 972 973 974 975 976 977
							patternArray[station][nView],
							geometry[0].length,
							geometry.length,
							true,
							"St"+station+"_V"+nView+"_Pattern_Colors "+this.refineParameters.flatFieldMaxRelDiff,
							titles);
				}
			}
		}
		if (this.refineParameters.flatFieldApplyResult) applyGridFlatField(patternArray); // {alpha, red,green,blue, number of images used}[pixel_index]
		return true;
	}
Andrey Filippov's avatar
Andrey Filippov committed
978

Andrey Filippov's avatar
Andrey Filippov committed
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	public boolean modifyPixelCorrection(
			boolean   enableShow,
			int       threadsMax,
			boolean   updateStatus,
			int debugLevel
	){
		int filter=this.filterForSensor;
		if (this.askFilter) filter=selectFilter(filter);
    	initFittingSeries(true,filter,this.seriesNumber); // first step in series now uses pattern alpha
//    	initFittingSeries(true,this.filterForSensor,this.seriesNumber); // first step in series now uses pattern alpha
    	this.currentfX=calculateFxAndJacobian(this.currentVector, false);
    	//        	this.currentRMS= calcError(calcYminusFx(this.currentfX));
    	if (this.debugLevel>2) {
    		System.out.println("this.currentVector");
    		for (int i=0;i<this.currentVector.length;i++){
    			System.out.println(i+": "+ this.currentVector[i]);
    		}
    	}
		boolean [] selectedImages=fittingStrategy.selectedImages();
		double [][][] sensorXYRGBCorr=  allImagesCorrectionMapped(
				selectedImages,
				enableShow && this.refineParameters.showPerImage,
				this.refineParameters.showIndividualNumber,
				threadsMax,
				updateStatus,
				debugLevel);
    	String [] titles={"X-corr(pix)","Y-corr(pix)","weight","Red","Green","Blue"};
		if (enableShow && this.refineParameters.showUnfilteredCorrection) {
			for (int numChn=0;numChn<sensorXYRGBCorr.length;numChn++) if (sensorXYRGBCorr[numChn]!=null){
1008 1009 1010
				int decimate=getDecimateMasks(numChn);
				int sWidth= (getSensorWidth(numChn)-1)/decimate+1;

Andrey Filippov's avatar
Andrey Filippov committed
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
				//this.SDFA_INSTANCE.showArrays(sensorXYRGBCorr[numChn], sWidth, sHeight,  true, "chn_"+numChn+"_extra_correction", titles);
				showWithRadialTangential(
						titles,
						"chn_"+numChn+"_extra_correction",
						sensorXYRGBCorr[numChn], // [0] - dx, [1] - dy
						sWidth,
						decimate,
						fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numChn].px0, // using station 0
						fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numChn].py0);
			}
		}
    	//eyesisSubCameras
    	//extrapolate
    	// TODO: different extrapolation for FF - not circular where shades are in effect (top/bottom)
    	if (!this.refineParameters.sensorExtrapolateDiff) { // add current correction BEFORE extrapolating/blurring
    		addOldXYCorrectionToCurrent(
    				this.refineParameters.correctionScale,
Andrey Filippov's avatar
Andrey Filippov committed
1028
    				sensorXYRGBCorr
Andrey Filippov's avatar
Andrey Filippov committed
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    		);
    	}
    	if (this.refineParameters.extrapolate) {
    		allSensorsExtrapolationMapped(
    				0, //final int stationNumber, // has to be selected
    				sensorXYRGBCorr, //final double [][][] gridPCorr,
    				this.refineParameters.sensorShrinkBlurComboSigma,
    				this.refineParameters.sensorShrinkBlurComboLevel,
    				this.refineParameters.sensorAlphaThreshold,
    				this.refineParameters.sensorStep,
    				this.refineParameters.sensorInterpolationSigma,
Andrey Filippov's avatar
Andrey Filippov committed
1040
    				this.refineParameters.sensorTangentialRadius,
Andrey Filippov's avatar
Andrey Filippov committed
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    				this.refineParameters.sensorScanDistance,
    				this.refineParameters.sensorResultDistance,
    				this.refineParameters.sensorInterpolationDegree,
    				threadsMax,
    				updateStatus,
    				enableShow && this.refineParameters.showExtrapolationCorrection, //final boolean showDebugImages,
    				debugLevel
    		);
    	}
    	if (this.refineParameters.smoothCorrection) {
    		boolean [] whichBlur={true,true,false,true,true,true}; // all but weight
    		IJ.showStatus("Bluring sensor corrections...");
    		for (int numChn=0;numChn<sensorXYRGBCorr.length;numChn++) if (sensorXYRGBCorr[numChn]!=null){
1054 1055 1056
				int decimate=getDecimateMasks(numChn);
				int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
				int sHeight=(getSensorHeight(numChn)-1)/decimate+1;
Andrey Filippov's avatar
Andrey Filippov committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    			DoubleGaussianBlur gb=new DoubleGaussianBlur();
    			for (int m=0;m<whichBlur.length;m++) if (whichBlur[m]){
    				gb.blurDouble(
    						sensorXYRGBCorr[numChn][m],
    						sWidth,
    						sHeight,
    						this.refineParameters.smoothSigma/decimate,
    						this.refineParameters.smoothSigma/decimate,
    						0.01);
    			}
    			IJ.showProgress(numChn+1, sensorXYRGBCorr.length);
    		}
    		IJ.showProgress(1.0);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
1071

Andrey Filippov's avatar
Andrey Filippov committed
1072 1073
    	if (enableShow && this.refineParameters.showThisCorrection ) {
    		for (int numChn=0;numChn<sensorXYRGBCorr.length;numChn++) if (sensorXYRGBCorr[numChn]!=null){
1074 1075
				int decimate=getDecimateMasks(numChn);
				int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
Andrey Filippov's avatar
Andrey Filippov committed
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
//    		   this.SDFA_INSTANCE.showArrays(sensorXYRGBCorr[numChn], sWidth, sHeight,  true, "chn_"+numChn+"_filtered", titles);
				showWithRadialTangential(
						titles,
						"chn_"+numChn+"_filtered",
						sensorXYRGBCorr[numChn], // [0] - dx, [1] - dy
						sWidth,
						decimate,
						fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numChn].px0, // using station 0
						fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numChn].py0);
    		}
    	}
    	if (this.refineParameters.sensorExtrapolateDiff) { // add current correction AFTER extrapolationg/bluring
    		addOldXYCorrectionToCurrent(
    				this.refineParameters.correctionScale,
Andrey Filippov's avatar
Andrey Filippov committed
1090
    				sensorXYRGBCorr
Andrey Filippov's avatar
Andrey Filippov committed
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    		);
    	}

//   	if (!selectCorrectionScale()) return false;
		IJ.showStatus("Applying corrections:"+((!this.refineParameters.applyCorrection && !this.refineParameters.applyFlatField)?
				"none ":((this.refineParameters.applyCorrection?"geometry ":"")+(this.refineParameters.applyFlatField?"flat field":""))));
    	boolean result=applySensorCorrection(
    			this.refineParameters.applyCorrection,
    			this.refineParameters.applyFlatField,
    			this.refineParameters.correctionScale,
Andrey Filippov's avatar
Andrey Filippov committed
1101
    			sensorXYRGBCorr, //sensorXYCorr, // modified to accept both 7(old) and 6(new) entries
Andrey Filippov's avatar
Andrey Filippov committed
1102 1103 1104
    			fittingStrategy.distortionCalibrationData);
    	if (enableShow && this.refineParameters.showCumulativeCorrection) {
    		for (int numChn=0;numChn<sensorXYRGBCorr.length;numChn++) if (sensorXYRGBCorr[numChn]!=null){
1105 1106
				int decimate=getDecimateMasks(numChn);
				int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
Andrey Filippov's avatar
Andrey Filippov committed
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
//    		   this.SDFA_INSTANCE.showArrays(sensorXYRGBCorr[numChn], sWidth, sHeight,  true, "Cumulative_chn_"+numChn+"_corrections", titles);
				showWithRadialTangential(
						titles,
						"Cumulative_chn_"+numChn+"_corrections",
						sensorXYRGBCorr[numChn], // [0] - dx, [1] - dy
						sWidth,
						decimate,
						fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numChn].px0, // using station 0
						fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numChn].py0);
    		}
    	}
    	if (result) {
			updateCameraParametersFromCalculated(false); // update camera parameters from enabled only images (may overwrite some of the above)

    	}
		IJ.showStatus("");
    	return result;
    }
Andrey Filippov's avatar
Andrey Filippov committed
1125

Andrey Filippov's avatar
Andrey Filippov committed
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	public void showWithRadialTangential(
			String [] preTitles,
			String title,
			double [][] preData, // [0] - dx, [1] - dy
			int width,
			int deciamte,
			double x0,
			double y0){
		int indexDx=0;
		int indexDy=1;
		int indexDr=0;
		int indexDt=1;
		int indexDa=2;
		String [] extraTitles={"R-corr(pix)","T-corr{pix)","A-corr(pix)"};
		int newImages=extraTitles.length;
		int length=preData[0].length;
		int height=length/width;
		double [][] data= new double [preData.length+newImages] [length];
		String [] titles= new String [preTitles.length+newImages];
		for (int i=0;i<preData.length;i++){
			data[i+newImages]=preData[i];
			titles[i+newImages]=preTitles[i];
		}
		for (int i=0;i<newImages;i++){
			titles[i]=extraTitles[i];
			data[i]=new double[length];
		}
		Point2D Z=new Point2D.Double(0.0,0.0);
		for (int i=0;i<length;i++){
			Point2D R=new Point2D.Double((deciamte*(i%width))-x0,(deciamte*(i/width))-y0);
			double r=R.distance(Z);
			Point2D uR=new Point2D.Double(1.0,0.0);
			if (r>0) uR.setLocation(R.getX()/r,R.getY()/r);
			Point2D dXY=new Point2D.Double(preData[indexDx][i],preData[indexDy][i]);
			data[indexDr][i]= dXY.getX()*uR.getX()+dXY.getY()*uR.getY();
			data[indexDt][i]=-dXY.getX()*uR.getY()+dXY.getY()*uR.getX();
			data[indexDa][i]=dXY.distance(Z);
		}
	   this.SDFA_INSTANCE.showArrays(data, width, height,  true, title, titles);
	}
Andrey Filippov's avatar
Andrey Filippov committed
1166

Andrey Filippov's avatar
Andrey Filippov committed
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	public void addOldXYCorrectionToCurrent(
    		double scale,
    		double [][][] sensorXYCorr
			){
        if (this.pixelCorrection==null) return; // no modifications are needed
		for (int i=0;i<sensorXYCorr.length;i++) if ((sensorXYCorr[i]!=null) && (this.pixelCorrection[i]!=null)) {
			for (int j=0;j<sensorXYCorr[i][0].length;j++){
				sensorXYCorr[i][0][j]=this.pixelCorrection[i][0][j]+scale*sensorXYCorr[i][0][j];
				sensorXYCorr[i][1][j]=this.pixelCorrection[i][1][j]+scale*sensorXYCorr[i][1][j];
Andrey Filippov's avatar
Andrey Filippov committed
1177
			}
Andrey Filippov's avatar
Andrey Filippov committed
1178 1179
		}
	}
Andrey Filippov's avatar
Andrey Filippov committed
1180 1181 1182



Andrey Filippov's avatar
Andrey Filippov committed
1183 1184 1185 1186 1187 1188 1189 1190
	public void patternErrors(
			final int       threadsMax,
			final boolean   updateStatus,
			final int debugLevel
			){
		GenericDialog gd=new GenericDialog("Setup pattern errors map");
		gd.addNumericField("Series number", this.seriesNumber, 0,2,"");
		gd.addCheckbox    ("Show map", true);
Andrey Filippov's avatar
Andrey Filippov committed
1191

Andrey Filippov's avatar
Andrey Filippov committed
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		gd.addNumericField("Minimal RMS", .07, 3,6,"pix");
		gd.addNumericField("Maximal RMS", 0.12, 3,6,"pix");
		gd.addNumericField("Expand EMS mask", 1, 0,2,"nodes");
		gd.addCheckbox    ("Update pattern weights", false);
		gd.addCheckbox    ("Reset error-based target map", false);
		gd.showDialog();
		if (gd.wasCanceled()) return;
		this.seriesNumber =      (int) gd.getNextNumber();
		boolean showMap=               gd.getNextBoolean();
 		double minRMS =                gd.getNextNumber();
 		double maxRMS =                gd.getNextNumber();
		int expandMask =         (int) gd.getNextNumber();

		boolean updateMap=              gd.getNextBoolean();
		boolean resetMap=              gd.getNextBoolean();
Andrey Filippov's avatar
Andrey Filippov committed
1207

Andrey Filippov's avatar
Andrey Filippov committed
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		if (resetMap){
			this.patternParameters.resetPatternErrorMask();
			return;
		} else {
			double [] worstImageNumber=calculatePatterErrorRMS(
					this.seriesNumber,
					threadsMax,
					updateStatus,
					debugLevel);
			this.patternParameters.savePatternErrorMask();
			double [] savedMask=this.patternParameters.getSavedPatternErrorMask();
			this.patternParameters.calculatePatternErrorMask(maxRMS,minRMS);
			for (int i=0;i<expandMask;i++)this.patternParameters.expandPatternErrorMask();
			if (showMap){
				String [] titles={"mask","rms","worst image number","savedMask"};
				double [][] debugData={
						this.patternParameters.getPatternErrorMask(),
						this.patternParameters.getPatternErrors(),
						worstImageNumber,
						savedMask};
				 Rectangle gridDimensions=patternParameters.getUVDimensions();
1229
				(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
						debugData,
						gridDimensions.width,
						gridDimensions.height,
						true,
						"TM_"+maxRMS+":"+minRMS,
						titles);
			}
			if (!updateMap) {
				System.out.println("Restoring mask to the previous state");
				this.patternParameters.restorePatternErrorMask();
			}
		}
	}

Andrey Filippov's avatar
Andrey Filippov committed
1244 1245


Andrey Filippov's avatar
Andrey Filippov committed
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	public double []  calculatePatterErrorRMS( // returns worst image number array
			final int       series,
			final int       threadsMax,
			final boolean   updateStatus,
			final int debugLevel

	){
    	if (fittingStrategy==null) {
    		String msg="Fitting strategy does not exist, exiting";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if (fittingStrategy.distortionCalibrationData.eyesisCameraParameters==null){
    		String msg="Eyesis camera parameters (and sensor dimensions) are not defined";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
1263
    	//	fittingStrategy.distortionCalibrationData.readAllGrids();
Andrey Filippov's avatar
Andrey Filippov committed
1264 1265 1266
//    	if (! selectGridEnhanceParameters()) return false;
//    	if (series<0) return null; // false; // make "all " later?
    	this.seriesNumber=series;
Andrey Filippov's avatar
Andrey Filippov committed
1267

Andrey Filippov's avatar
Andrey Filippov committed
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    	initFittingSeries(true,this.filterForTargetGeometry,this.seriesNumber); // first step in series now uses pattern alpha
    	this.currentfX=calculateFxAndJacobian(this.currentVector, false);
    	//        	this.currentRMS= calcError(calcYminusFx(this.currentfX));
    	if (this.debugLevel>2) {
    		System.out.println("this.currentVector");
    		for (int i=0;i<this.currentVector.length;i++){
    			System.out.println(i+": "+ this.currentVector[i]);
    		}
    	}
		final boolean [] selectedImages=fittingStrategy.selectedImages();
		final Rectangle gridDimensions=patternParameters.getUVDimensions();
		final int width=  gridDimensions.width;
		final int height= gridDimensions.height;
//		final int U0=     gridDimensions.x;
//		final int V0=     gridDimensions.y;
		final double [][] gridErrors=new double [4][width*height]; // added debug features - worst image number
		for (int n=0;n<gridErrors.length;n++) for (int i=0;i<gridErrors[n].length;i++) gridErrors[n][i]=0.0;
		int numSelected=0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) numSelected++;
		final int finalSelected=numSelected;
		if (updateStatus) IJ.showStatus("Calculating pattern grid errors...");
   		final AtomicInteger imageNumberAtomic = new AtomicInteger(0);
   		final AtomicInteger imageFinishedAtomic = new AtomicInteger(0);
   		final Thread[] threads = newThreadArray(threadsMax);
   		for (int ithread = 0; ithread < threads.length; ithread++) {
   			threads[ithread] = new Thread() {
Andrey Filippov's avatar
Andrey Filippov committed
1294 1295
   				@Override
				public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
   					double [][] partialGridErrors=new double [4][width*height];
   					for (int n=0;n<partialGridErrors.length;n++) for (int i=0;i<partialGridErrors[n].length;i++) partialGridErrors[n][i]=0.0;
   					for (int imgNum=imageNumberAtomic.getAndIncrement(); imgNum<selectedImages.length;imgNum=imageNumberAtomic.getAndIncrement()){
   						if (selectedImages[imgNum]){
   							accumulatePatternErrors(
   									partialGridErrors,
   									imgNum,
   									gridDimensions);
   							final int numFinished=imageFinishedAtomic.getAndIncrement();
   							SwingUtilities.invokeLater(new Runnable() {
Andrey Filippov's avatar
Andrey Filippov committed
1306 1307
   								@Override
								public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
   									if (updateStatus) IJ.showProgress(numFinished,finalSelected);
   								}
   							});
   						} //if (selectedImages[numImage]){
   					} // for (int numImage=imageNumberAtomic.getAndIncrement(); ...
   					combinePatternErrors(partialGridErrors,gridErrors);
   				} // public void run() {
   			};
   		}
   		startAndJoin(threads);
   		for (int i=0;i<gridErrors[0].length;i++){
   			gridErrors[0][i]=(gridErrors[0][i]>0.0)?Math.sqrt(gridErrors[0][i]/gridErrors[1][i]):Double.NaN;
Andrey Filippov's avatar
Andrey Filippov committed
1320

Andrey Filippov's avatar
Andrey Filippov committed
1321 1322 1323 1324
   		}
   		patternParameters.setPatternErrors(gridErrors[0]);
   		return gridErrors[2]; // worst image number for target grid nodes
	}
Andrey Filippov's avatar
Andrey Filippov committed
1325

Andrey Filippov's avatar
Andrey Filippov committed
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	public void accumulatePatternErrors(
			double [][] errorMap,
			int imgNum,
			Rectangle gridDimensions){
		int width=  gridDimensions.width;
//		int height= gridDimensions.height;
		int U0=     gridDimensions.x; // location of the grid center (U==0,V==0)
		int V0=     gridDimensions.y;
		double [] diff=calcYminusFx(this.currentfX, 2*this.imageStartIndex[imgNum],2*this.imageStartIndex[imgNum+1]);
		int [][] imgUV=	  this.fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV;
		for (int i=0;i<imgUV.length;i++){
			int index=width*(imgUV[i][1]+V0) + (imgUV[i][0]+U0);
			double w=this.weightFunction[2*(this.imageStartIndex[imgNum]+i)];
			double dX=diff[2*i];
			double dY=diff[2*i+1];
			double e2w=w*(dX*dX+dY*dY);
			errorMap[0][index]+=e2w;
			errorMap[1][index]+=w;
			if (e2w>errorMap[3][index]){
				errorMap[3][index]=e2w;    // worst error for this node
				errorMap[2][index]=imgNum; // worst (for that particular grig node) image number
			}
		}
	}
Andrey Filippov's avatar
Andrey Filippov committed
1350

Andrey Filippov's avatar
Andrey Filippov committed
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	public synchronized void combinePatternErrors(
			double [][] partialErrorMap,
			double [][] fullErrorMap ){
//		for (int n=0;n<fullErrorMap.length;n++) for (int i=0;i<fullErrorMap[n].length;i++) fullErrorMap[n][i]+=partialErrorMap[n][i];
		for (int i=0;i<fullErrorMap[0].length;i++){
			fullErrorMap[0][i]+=partialErrorMap[0][i];
			fullErrorMap[1][i]+=partialErrorMap[1][i];
			if (fullErrorMap[3][i]<partialErrorMap[3][i]){
				fullErrorMap[2][i]=partialErrorMap[2][i];
				fullErrorMap[3][i]=partialErrorMap[3][i];
			}
Andrey Filippov's avatar
Andrey Filippov committed
1362

Andrey Filippov's avatar
Andrey Filippov committed
1363 1364 1365 1366
		}

	}

Andrey Filippov's avatar
Andrey Filippov committed
1367 1368 1369



Andrey Filippov's avatar
Andrey Filippov committed
1370 1371
	/**
	 * Calculate each sensor correction increment for geometry and photometry contributed by all images selected in a series
Andrey Filippov's avatar
Andrey Filippov committed
1372
	 * @param selectedImages process only selected images
Andrey Filippov's avatar
Andrey Filippov committed
1373 1374 1375 1376
	 * @param showIndividual show per-image intermediate results
	 * @param threadsMax maximal number of concurrent threads
	 * @param updateStatus update IJ status/progress
	 * @param debugLevel debug level
Andrey Filippov's avatar
Andrey Filippov committed
1377
	 * @return [sensor]{dpX,dpY,alpha,R,G,B}[pixelIndex] . dpX, dpY - correction to previous, RGB - total FF, not increment!
Andrey Filippov's avatar
Andrey Filippov committed
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	 */

	public double [][][]  allImagesCorrectionMapped(
			final boolean [] selectedImages,
			final boolean showIndividual,
			final int showIndividualNumber,
			final int       threadsMax,
			final boolean   updateStatus,
			final int debugLevel
			){
		int numChannels=  fittingStrategy.distortionCalibrationData.getNumChannels(); // number of used channels
		final double [][][] gridPCorr=new double [numChannels][][];
		for (int chnNum=0;chnNum<gridPCorr.length;chnNum++) gridPCorr[chnNum]=null;
		int numSelected=0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) numSelected++;
		final int finalSelected=numSelected;
		if (updateStatus) IJ.showStatus("Calculating sensor corrections...");
   		final AtomicInteger imageNumberAtomic = new AtomicInteger(0);
   		final AtomicInteger imageFinishedAtomic = new AtomicInteger(0);
   		final Thread[] threads = newThreadArray(threadsMax);
   		final AtomicInteger stopRequested=this.stopRequested;
		final AtomicBoolean interruptedAtomic=new AtomicBoolean();
		final int alphaIndex=2;

   		for (int ithread = 0; ithread < threads.length; ithread++) {
   			threads[ithread] = new Thread() {
Andrey Filippov's avatar
Andrey Filippov committed
1404 1405
   				@Override
				public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
   					for (int imgNum=imageNumberAtomic.getAndIncrement(); (imgNum<selectedImages.length) && !interruptedAtomic.get();imgNum=imageNumberAtomic.getAndIncrement()){
   						if (selectedImages[imgNum]){
   							int chnNum=fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
   							double [][] singleCorr=
   								singleImageCorrectionMapped(
   									imgNum, // image number
   									showIndividual && ((showIndividualNumber<0) || (showIndividualNumber==chnNum)),
   									debugLevel);
   							combineImageCorrection(
   									chnNum,
   									gridPCorr,
   									singleCorr
   							);
   							final int numFinished=imageFinishedAtomic.getAndIncrement();
   							SwingUtilities.invokeLater(new Runnable() {
Andrey Filippov's avatar
Andrey Filippov committed
1421 1422
   								@Override
								public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
   									if (updateStatus) IJ.showProgress(numFinished,finalSelected);
   								}
   							});
   	   						if (stopRequested.get()==1){ // ASAP
   	   							interruptedAtomic.set(true);
   	   						}
   						} //if (selectedImages[numImage]){
   					} // for (int numImage=imageNumberAtomic.getAndIncrement(); ...
   				} // public void run() {
   			};
   		}
   		startAndJoin(threads);
   		// divide by weight;
   		for (int nChn=0;nChn<gridPCorr.length;nChn++) if (gridPCorr[nChn]!=null){
   			for (int i=0;i<gridPCorr[nChn].length;i++) {
   				if (i!=alphaIndex){
   					for (int j=0; j<gridPCorr[nChn][i].length;j++){
   						if (gridPCorr[nChn][alphaIndex][j]>0) gridPCorr[nChn][i][j]/=gridPCorr[nChn][alphaIndex][j];
   					}
   				}
Andrey Filippov's avatar
Andrey Filippov committed
1443
   			}
Andrey Filippov's avatar
Andrey Filippov committed
1444
   		}
Andrey Filippov's avatar
Andrey Filippov committed
1445

Andrey Filippov's avatar
Andrey Filippov committed
1446
		if (updateStatus) IJ.showProgress(0);
Andrey Filippov's avatar
Andrey Filippov committed
1447

Andrey Filippov's avatar
Andrey Filippov committed
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
   		if (interruptedAtomic.get()) {
   			System.out.println("allImagesCorrection() aborted by user request");
   			return null;
   		}
   		return gridPCorr;
	}

	public void allSensorsExtrapolationMapped(
			final int stationNumber, // has to be selected
			final double [][][] gridPCorr,
			final double shrinkBlurComboSigma,
			final double shrinkBlurComboLevel,
			final double alphaThreshold,
			final double step,
			final double interpolationSigma,
Andrey Filippov's avatar
Andrey Filippov committed
1463
			final double tangentialRadius,
Andrey Filippov's avatar
Andrey Filippov committed
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
			final int    scanDistance,
			final int resultDistance,
			final int interpolationDegree,
			final int       threadsMax,
			final boolean   updateStatus,
			final boolean showDebugImages,
			final int debugLevel
			){
		if (updateStatus) IJ.showStatus("Extrapolating sensor corrections...");
   		final AtomicInteger sensorNumberAtomic = new AtomicInteger(0);
   		final AtomicInteger sensorFinishedAtomic = new AtomicInteger(0);
   		final Thread[] threads = newThreadArray(threadsMax);
   		final AtomicInteger stopRequested=this.stopRequested;
		final AtomicBoolean interruptedAtomic=new AtomicBoolean();
		final EyesisSubCameraParameters [] eyesisSubCameras = this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[stationNumber];
		final double [][] sensorMasks=this.fittingStrategy.distortionCalibrationData.sensorMasks;

		final int alphaIndex=2;

1483 1484 1485 1486 1487
//		final int sensorWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorWidth;
//		final int sensorHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorHeight;
//		final int decimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.decimateMasks;
//		final int width= (sensorWidth-1)/decimation+1; // decimated width (648)
//		final int height= (sensorHeight-1)/decimation+1; // decimated width (648)
Andrey Filippov's avatar
Andrey Filippov committed
1488 1489 1490 1491
		final boolean extraShowDebug=showDebugImages&& (debugLevel>2);

   		for (int ithread = 0; ithread < threads.length; ithread++) {
   			threads[ithread] = new Thread() {
Andrey Filippov's avatar
Andrey Filippov committed
1492 1493
   				@Override
				public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
   					DoubleGaussianBlur gb=null;
   					double [][] debugMasks1=null;
   					double [][] debugMasks2=null;
   					String [] debugMaskTitles={"original","blured"};
   					if (extraShowDebug){
   						debugMasks1=new double[2][];
   						debugMasks2=new double[2][];
   					}
   					if (shrinkBlurComboSigma>0.0) gb=new DoubleGaussianBlur();
   					for (int sensorNum=sensorNumberAtomic.getAndIncrement(); (sensorNum<gridPCorr.length) && !interruptedAtomic.get();sensorNum=sensorNumberAtomic.getAndIncrement()){
1504 1505 1506 1507 1508 1509
   						int sensorWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorWidth(sensorNum);
   						int sensorHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorHeight(sensorNum);
   						int decimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getDecimateMasks(sensorNum);
   						int width= (sensorWidth-1)/decimation+1; // decimated width (648)
   						int height= (sensorHeight-1)/decimation+1; // decimated width (648)

Andrey Filippov's avatar
Andrey Filippov committed
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
   						if (gridPCorr[sensorNum]!=null){
   							final double [] centerPXY={
   									eyesisSubCameras[sensorNum].px0,
   									eyesisSubCameras[sensorNum].py0
   							};
   							if (shrinkBlurComboSigma>0.0){
   								double sigma=shrinkBlurComboSigma/decimation;
   								int margin=(int) (2*sigma);
   								int width1=width+2*margin;
   								int height1=height+2*margin;
   			   					if (extraShowDebug) debugMasks2[0]=gridPCorr[sensorNum][alphaIndex].clone();
   								double [] mask= addMarginsThreshold(
   										gridPCorr[sensorNum][alphaIndex], // double [] data,
   										0.0, // double threshold,
   										width,
   										height,
   										margin);
   			   					if (extraShowDebug) debugMasks1[0]=mask.clone();
   								gb.blurDouble(
   										mask,
   										width1,
   										height1,
   										sigma,
   										sigma,
   										0.01);

   								double k=1.0/(1.0-shrinkBlurComboLevel);
   								for (int i=0;i<mask.length;i++) {
   									mask[i]=k*(mask[i]-shrinkBlurComboLevel);
   									mask[i]=(mask[i]>0.0)?(mask[i]*mask[i]):0.0;
   								}
   								if (extraShowDebug) debugMasks1[1]=mask.clone();
   								gridPCorr[sensorNum][alphaIndex]=removeMargins(
   										mask, //double [] data,
   										width, // w/o margins
   										height,
   										margin); //mask; // replace with 0.0 .. 1.0 mask
   								if (extraShowDebug) debugMasks2[1]=gridPCorr[sensorNum][alphaIndex].clone();
   								if (extraShowDebug) {
1549
   									(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
1550 1551 1552 1553 1554 1555
   											debugMasks1,
   											width1,
   											height1,
   											true,
   											"M1-"+sensorNum,
   											debugMaskTitles);
1556
   									(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
   											debugMasks2,
   											width,
   											height,
   											true,
   											"M2-"+sensorNum,
   											debugMaskTitles);
   								}

   							}
   							singleSensorExtrapolationMapped(
   									sensorNum,
   									gridPCorr[sensorNum],
   									sensorMasks[sensorNum],
   									width,
   									decimation,
   									alphaThreshold,
 									step,
 									centerPXY,
   									interpolationSigma,
Andrey Filippov's avatar
Andrey Filippov committed
1576
   									tangentialRadius,
Andrey Filippov's avatar
Andrey Filippov committed
1577 1578 1579 1580 1581 1582 1583 1584
   									scanDistance,
   									resultDistance,
   									interpolationDegree,
   									(shrinkBlurComboSigma>0.0),
   									showDebugImages,
   									debugLevel);
   							final int numFinished=sensorFinishedAtomic.getAndIncrement();
   							SwingUtilities.invokeLater(new Runnable() {
Andrey Filippov's avatar
Andrey Filippov committed
1585 1586
   								@Override
								public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
   									if (updateStatus) IJ.showProgress(numFinished,gridPCorr.length);
   								}
   							});
   	   						if (stopRequested.get()==1){ // ASAP
   	   							interruptedAtomic.set(true);
   	   						}
   						} //if (selectedImages[numImage]){
   					} // for (int numImage=imageNumberAtomic.getAndIncrement(); ...
   				} // public void run() {
   			};
   		}
   		startAndJoin(threads);
		if (updateStatus) IJ.showProgress(0);
   		return;
	}
	public double [] addMargins(
			double [] data,
			double marginData,
			int width,
			int height,
			int margin){
		int width1= width+ 2*margin;
		int height1=height+2*margin;
		int length1=width1*height1;
		double [] result = new double [length1];
		for (int i=0;i<length1;i++) result[i] = marginData;
		int indexDest=margin*(width1+1);
		int indexSrc=0;
		for (int y=0;y<height;y++){
			for (int x=0;x<width;x++){
				result[indexDest++]=data[indexSrc++];
			}
			indexDest+=2*margin;
		}
		return result;
	}

	public double [] addMarginsThreshold(
			double [] data,
			double threshold,
			int width,
			int height,
			int margin){
		int width1= width+ 2*margin;
		int height1=height+2*margin;
		int length1=width1*height1;
		double [] result = new double [length1];
		for (int i=0;i<length1;i++) result[i] = -1.0;
		int indexDest=margin*(width1+1);
		int indexSrc=0;
		for (int y=0;y<height;y++){
			for (int x=0;x<width;x++){
				result[indexDest++]=(data[indexSrc++]>threshold)?1.0:-1.0;
			}
			indexDest+=2*margin;
		}
		return result;
	}

	public double [] removeMargins(
			double [] data,
			int width, // w/o margins
			int height,
			int margin){
		int width1= width+ 2*margin;
//		int height1=height+2*margin;
		int length=width*height;
		double [] result = new double [length];
		int indexSrc=margin*(width1+1);
		int indexDest=0;
		for (int y=0;y<height;y++){
			for (int x=0;x<width;x++){
				result[indexDest++]=data[indexSrc++];
			}
			indexSrc+=2*margin;
		}
		return result;
	}
Andrey Filippov's avatar
Andrey Filippov committed
1665

Andrey Filippov's avatar
Andrey Filippov committed
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	public void singleSensorExtrapolationMapped(
			int sensoNum,
			double [][] gridPCorr,
			double [] sensorMask,
			int width,
			int decimation,
			double alphaThreshold,
			double step,
			double [] centerPXY,
			double interpolationSigma, // sensor pixels
Andrey Filippov's avatar
Andrey Filippov committed
1676
			double tangentialRadius,
Andrey Filippov's avatar
Andrey Filippov committed
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
			int    scanDistance,       // sensor pixels
			int resultDistance,
			int interpolationDegree,
			boolean useAlpha, // false - sensor mask
			boolean showDebugImages,
			int debugLevel
			){
		int dxIndex=0;
		int alphaIndex=2;
		int rIndex=3;
		int height=gridPCorr[0].length/width;
		double gaussianK=-0.5/(interpolationSigma*interpolationSigma);
		double tangR0=tangentialRadius*Math.sqrt(width*height)*decimation/2; // sigma in tangential direction is interpolationSigma*(1+r/tangR0), in radial - interpolationSigma
		PolynomialApproximation polynomialApproximation =new PolynomialApproximation(0);// no debug
		int length=gridPCorr[0].length;
		DirInc dirInc= new DirInc(width,height);
		int [] iMap = new int[length];
		for (int i=0;i<length;i++) iMap[i]= (gridPCorr[alphaIndex][i]>=alphaThreshold)?1:0;
		List <Integer>waveList=new ArrayList<Integer>(1000);
		for (int index0=0;index0<length;index0++) if (iMap[index0]==0){
			for (int iDir=0;iDir<8;iDir+=2){
				int index=dirInc.newIndex(index0,iDir);
				if ((index>=0) && (iMap[index]==1)){
					iMap[index0]=2;
					waveList.add(new Integer(index0));
					break;
				}
			}
		}
// decimate the wave list
		List <Integer> seedList=new ArrayList<Integer>(1000);
		int oldIndex=0; // find better start?
		int s2= (int) Math.floor(step*step);
		while (waveList.size()>0){
			int oldX=oldIndex%width;
			int oldY=oldIndex/width;
			int bestD2=height*height+width*width;
			int nBest=-1;
			for (int n=0;n<waveList.size();n++){
				int index=waveList.get(n);
				int dx=index%width-oldX;
				int dy=index/width-oldY;
				int d2=dx*dx+dy*dy;
				if (d2<bestD2){
					bestD2=d2;
					nBest=n;
				}
			}
			oldIndex=waveList.remove(nBest);
			seedList.add(new Integer(oldIndex));
			oldX=oldIndex%width;
			oldY=oldIndex/width;
			// remove all closer than step
			for (int n=0;n<waveList.size();n++){ // size will change
				int index=waveList.get(n);
				int dx=index%width-oldX;
				int dy=index/width-oldY;
				int d2=dx*dx+dy*dy;
				if (d2<s2){
					waveList.remove(n);
				}
			}
Andrey Filippov's avatar
Andrey Filippov committed
1739

Andrey Filippov's avatar
Andrey Filippov committed
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
		} //while (waveList.size()>0)
		// debug show waves?
		Rectangle full=new Rectangle (0,0,width,height);
		double [][] extrapolated=new double [gridPCorr.length][length];
		for (int n=0;n<extrapolated.length;n++) for (int i=0;i<extrapolated[n].length;i++) extrapolated[n][i]=0.0;
		int halfScanSize=scanDistance/decimation+1;
		int halfInterpolteSize=resultDistance/decimation+1;
		for (int n=0; n<seedList.size();n++) {
			int index0=seedList.get(n);
			int x0=index0%width;
			int y0=index0/width;
			double [] dCxy0={
					x0*decimation-centerPXY[0],
					y0*decimation-centerPXY[1]
			};
			double r0=Math.sqrt(dCxy0[0]*dCxy0[0]+dCxy0[1]*dCxy0[1]);
			final Rectangle scan =full.intersection(new Rectangle (x0-halfScanSize,y0-halfScanSize,2*halfScanSize+1,2*halfScanSize+1));
			waveList.clear();
			for (int y=scan.y;y<(scan.y+scan.height);y++) for (int x=scan.x;x<(scan.x+scan.width);x++) {
				int index=y*width+x;
				if (iMap[index]==1)	waveList.add(new Integer(index));
			}
			double [][][] data = new double [5][waveList.size()][3]; // x,y,w
			double sumWeights=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
1764
			double rScaleTangSigma=1.0/(1.0+r0/tangR0); //
Andrey Filippov's avatar
Andrey Filippov committed
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
			for (int i=0;i<data[0].length;i++){
				int index=waveList.get(i);
				int x=index%width;
				int y=index/width;
				double [] dCxy={
						x*decimation-centerPXY[0],
						y*decimation-centerPXY[1]
				};
				double [] ddCxy={
						dCxy[0]-dCxy0[0],
						dCxy[1]-dCxy0[1]
				};
				double rc=Math.sqrt(dCxy[0]*dCxy[0]+dCxy[1]*dCxy[1]); // distance from lens center (in sensor pixels)
				double rDiff=rc-r0;
				double [] uRadVect={(rc>0.0)?(dCxy[0]/rc):0.0, (rc>0.0)?(dCxy[1]/rc):0.0};

				double distRad= ddCxy[0]*uRadVect[0]+ddCxy[1]*uRadVect[1]; // radial distance form the center (seed point)
				double distTan=-ddCxy[0]*uRadVect[1]+ddCxy[1]*uRadVect[0]; // tangential distance form the center (seed point)
Andrey Filippov's avatar
Andrey Filippov committed
1783 1784
				distTan*=rScaleTangSigma; // // for the center (seed point). was  distTan/=(1.0+rc/tangR0);
				double w=Math.exp(gaussianK*(distRad*distRad+distTan*distTan))*gridPCorr[alphaIndex][index];
Andrey Filippov's avatar
Andrey Filippov committed
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
				sumWeights+=w;

				double dRad= gridPCorr[dxIndex+0][index]*uRadVect[0]+gridPCorr[dxIndex+1][index]*uRadVect[1]; // radial component
				double dTan=-gridPCorr[dxIndex+0][index]*uRadVect[1]+gridPCorr[dxIndex+1][index]*uRadVect[0]; // tangential component
				data[0][i][1]=dRad;
				data[1][i][1]=dTan;

				data[2][i][1]=gridPCorr[rIndex+0][index]; // R
				data[3][i][1]=gridPCorr[rIndex+1][index]; // G
				data[4][i][1]=gridPCorr[rIndex+2][index]; // B
				for (int j=0;j<data.length;j++){
					data[j][i][0]=rDiff;
					data[j][i][2]=w;
				}
			}
			sumWeights*=rScaleTangSigma; // normalize for expanded in one dimension gaussian
			double [][] poly=new double [data.length][];
			for (int j=0;j<poly.length;j++) {
				poly[j]=polynomialApproximation.polynomialApproximation1d(data[j],interpolationDegree);
			}
			if (poly[0]==null) { // all will be either null, or not - [0] testing is enough
				System.out.println("singleSensorExtrapolationMapped() BUG - poly[0]==null");
//				stageReprojPXY[index0]=null;
				continue;
			}
			final Rectangle rInterpolate =full.intersection(new Rectangle (x0-halfInterpolteSize,y0-halfInterpolteSize,2*halfInterpolteSize+1,2*halfInterpolteSize+1));
			for (int y=rInterpolate.y;y<(rInterpolate.y+rInterpolate.height);y++) for (int x=rInterpolate.x;x<(rInterpolate.x+rInterpolate.width);x++) {
				int index=y*width+x;
				double [] dCxy={
						x*decimation-centerPXY[0],
						y*decimation-centerPXY[1]
				};
				double [] ddCxy={
						dCxy[0]-dCxy0[0],
						dCxy[1]-dCxy0[1]
				};
				double rc=Math.sqrt(dCxy[0]*dCxy[0]+dCxy[1]*dCxy[1]); // distance from lens center (in sensor pixels)
				double rDiff=rc-r0;
				double [] uRadVect={(rc>0.0)?(dCxy[0]/rc):0.0, (rc>0.0)?(dCxy[1]/rc):0.0};

				double distRad= ddCxy[0]*uRadVect[0]+ddCxy[1]*uRadVect[1]; // radial distance form the center (seed point)
				double distTan=-ddCxy[0]*uRadVect[1]+ddCxy[1]*uRadVect[0]; // tangential distance form the center (seed point)
Andrey Filippov's avatar
Andrey Filippov committed
1827
				distTan*=rScaleTangSigma;
Andrey Filippov's avatar
Andrey Filippov committed
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
				double w=Math.exp(gaussianK*(distRad*distRad+distTan*distTan)); //*gridPCorr[alphaIndex][index];
				w*=sumWeights; // more points were used in coefficients calculation, more trust to that extrapolation
				// extrapolate each value using polynomial coefficients
				double [] results= new double [poly.length];
				for (int nPar=0;nPar<results.length;nPar++){
					double rN=1.0;
					results[nPar]=0.0;
					for (int dgr=0;dgr<poly[nPar].length;dgr++){
						results[nPar]+=poly[nPar][dgr]*rN;
						rN*=rDiff;
					}
				}
				// restore dX, dY from radial/tangential
				double [] diffPXY={
						results[0]*uRadVect[0]-results[1]*uRadVect[1],
						results[0]*uRadVect[1]+results[1]*uRadVect[0]};
                //accumulate
				extrapolated[dxIndex+0][index]+=diffPXY[0]*w;
				extrapolated[dxIndex+1][index]+=diffPXY[1]*w;
				extrapolated[rIndex+0][index]+=results[2]*w;
				extrapolated[rIndex+1][index]+=results[3]*w;
				extrapolated[rIndex+2][index]+=results[4]*w;
				extrapolated[alphaIndex][index]+=w;
			}
		} // for (int n=0; n<seedList.size();n++) {
		// divide by weight
		for (int index=0;index<length;index++) if (extrapolated[alphaIndex][index]>0.0){
			for (int i=0;i<extrapolated.length;i++) if (i!=alphaIndex){
				extrapolated[i][index]/=extrapolated[alphaIndex][index];
			}
		}
		// debug show here extrapolated
		if (showDebugImages){
			String [] debugTiles={"dX","dY","alpha","R","G","B","mask"};
			double [] debugMask=new double[length];
			for (int i=0;i<length;i++) debugMask[i]=iMap[i];
			for (int n=0; n<seedList.size();n++) {
				int index=seedList.get(n);
				debugMask[index]+=3.0;
			}
			//iMap[index0]
			double [][] debugData={
					extrapolated[0],
					extrapolated[1],
					extrapolated[2],
					extrapolated[3],
					extrapolated[4],
					extrapolated[5],
					debugMask};
1877
			(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
					debugData,
					width,
					height,
					true,
					"EX-"+sensoNum,
					debugTiles);

		}
		// mix interpolated with original data
// double [] sensorMask,
Andrey Filippov's avatar
Andrey Filippov committed
1888
//gridPCorr
Andrey Filippov's avatar
Andrey Filippov committed
1889 1890 1891 1892 1893 1894 1895
		for (int index=0;index<length;index++) if (extrapolated[alphaIndex][index]>0.0){
			for (int i=0;i<extrapolated.length;i++) if (i!=alphaIndex){
				double w=useAlpha?(gridPCorr[alphaIndex][index]):((gridPCorr[alphaIndex][index]>0.0)?sensorMask[index]:0.0);
				gridPCorr[i][index]=gridPCorr[i][index]*w+extrapolated[i][index]*(1.0-w);
			}
		}
	}
Andrey Filippov's avatar
Andrey Filippov committed
1896 1897 1898 1899 1900 1901






Andrey Filippov's avatar
Andrey Filippov committed
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	public synchronized void combineImageCorrection(
			int chnNum,
			double [][][] gridPCorr,
			double [][] singleCorr
	){
		int alphaIndex=2;

		if (gridPCorr[chnNum]==null){
			gridPCorr[chnNum]=new double [singleCorr.length][singleCorr[0].length];
			for (int i=0;i<singleCorr.length;i++) for (int j=0; j<singleCorr[i].length;j++){
Andrey Filippov's avatar
Andrey Filippov committed
1912
				gridPCorr[chnNum][i][j]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
1913 1914 1915 1916 1917 1918 1919 1920
			}
		}
		for (int i=0;i<singleCorr.length;i++) {
			if (i==alphaIndex){
				for (int j=0; j<singleCorr[i].length;j++) gridPCorr[chnNum][i][j]+=singleCorr[i][j];
			} else {
				for (int j=0; j<singleCorr[i].length;j++) gridPCorr[chnNum][i][j]+=singleCorr[i][j]*singleCorr[alphaIndex][j];
			}
Andrey Filippov's avatar
Andrey Filippov committed
1921
		}
Andrey Filippov's avatar
Andrey Filippov committed
1922 1923 1924
	}

	/**
Andrey Filippov's avatar
Andrey Filippov committed
1925
	 * Calculate sensor correction increment for geometry and photometry contributed by a single image
Andrey Filippov's avatar
Andrey Filippov committed
1926
	 * @param imgNum  number of image
Andrey Filippov's avatar
Andrey Filippov committed
1927
	 * @param maxSensorMask maximal value of the sensor mask for this sensor to start extrapolating
Andrey Filippov's avatar
Andrey Filippov committed
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	 * @param minContrast minimal measured grid contrast to seed extrapolating  - to prevent expansion in the areas where this particular sensor has bad data
	 * @param minTargetAlpha - minimal alpha of the target node
	 * @param useTargetAlpha   false - only use contrast of the detected grid, true - multiply contrast by grid alpha
	 * @param showIntermediate - show intermediate data as images
	 * @param debugLevel debug level
	 * @return scan-line pixels additional correction arrays {dpX,dpY,alpha,R,G,B}[pixelIndex]
	 */
	public double [][]  singleImageCorrectionMapped(
			int imgNum, // image number
			boolean showIntermediate,
			int debugLevel
			){
		CorrectionInNodes correctionInNodes=extractNodeCorrections(
				imgNum, // image number
				showIntermediate,
				debugLevel);
		if (showIntermediate) correctionInNodes.show("finNode-"+imgNum);
1945 1946 1947 1948
		int chnNum=fittingStrategy.distortionCalibrationData.gIP[imgNum].channel;
		int sensorWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorWidth(chnNum);
		int sensorHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorHeight(chnNum);
		int decimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getDecimateMasks(chnNum);
Andrey Filippov's avatar
Andrey Filippov committed
1949 1950 1951 1952 1953 1954 1955
		double [][] additionalCorrection=correctionInNodes.mapToPixels(
				decimation,
				sensorWidth,
				sensorHeight,
				debugLevel);
		if (showIntermediate){
			String [] dbgTitles={"dPX","dPY","alpha","R","G","B"};
1956
			(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
1957 1958 1959 1960 1961 1962 1963
					additionalCorrection,
					sensorWidth/decimation,
					sensorHeight/decimation,
					true,
					"AC-"+imgNum,
					dbgTitles);
		}
Andrey Filippov's avatar
Andrey Filippov committed
1964

Andrey Filippov's avatar
Andrey Filippov committed
1965 1966 1967
		return additionalCorrection;
	}

Andrey Filippov's avatar
Andrey Filippov committed
1968

Andrey Filippov's avatar
Andrey Filippov committed
1969 1970 1971 1972 1973 1974
	/**
	 * @param imgNum  number of image
	 * @param showIntermediate - show intermediate images
	 * @param debugLevel debug level
	 * @return CorrectionInNodes data correction, image and grid data for some target grid nodes
	 */
Andrey Filippov's avatar
Andrey Filippov committed
1975

Andrey Filippov's avatar
Andrey Filippov committed
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	public CorrectionInNodes extractNodeCorrections(
			int imgNum, // image number
			boolean showIntermediate,
			int debugLevel
			){
//		int debugThreshold=2;
    	int imgRGBIndex=   3;
		int chnNum=fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
		int station=fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
		LensDistortionParameters lensDistortionParameters= setupLensDistortionParameters(
				imgNum,
				debugLevel);     // Axial - may be Double.NaN
Andrey Filippov's avatar
Andrey Filippov committed
1988

Andrey Filippov's avatar
Andrey Filippov committed
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		int [][] imgUV=	  fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV;
		double [][] imgXY=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY; // for each image, each grid node - a set of of {px,py,contrast,vignR,vignG,vignB} vign* is in the 0..1.0 range
		if ((imgUV==null) || (imgUV.length==0)) {
			System.out.println("expandMeasuredGrid("+imgNum+",..) empty image");
			return null;
		}
		int minU=imgUV[0][0];
		int minV=imgUV[0][1];
		int maxU=minU;
		int maxV=minV;
		for (int i=1;i<imgUV.length;i++){
			if (minU>imgUV[i][0]) minU=imgUV[i][0];
			if (minV>imgUV[i][1]) minV=imgUV[i][1];
			if (maxU<imgUV[i][0]) maxU=imgUV[i][0];
			if (maxV<imgUV[i][1]) maxV=imgUV[i][1];
		}
		int extraMargins=1;
		int [] uv0= {minU-extraMargins,minV-extraMargins}; // target U,V at the stageXYA[0]
		int width= maxU-minU+1+2*extraMargins;
		int height=maxV-minV+1+2*extraMargins;
		double [][] stagePXY= new double [width*height][]; //reprojected {px,py}
		double [][] stageDiffPXY=   new double [width*height][]; // difference between corrected measured and reprojected (to add to correction)
		double [][] stageDiffRGB=   new double [width*height][]; // difference (measured RGB)/(grid RGB) and current correction RGB (pixel sensitivity RGB)
Andrey Filippov's avatar
Andrey Filippov committed
2012
		double [] stageMask=        new double [width*height];   // weight
Andrey Filippov's avatar
Andrey Filippov committed
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		for (int i=0;i<stagePXY.length;i++) {
			stagePXY[i]=null;
			stageDiffPXY[i]  =null;
			stageDiffRGB[i] = null;
		}
//		int vignRIndex=3; //  in measured data
		int corrRIndex=3; // in correction vector
//		int gridRIndex=3; // in reprojected vector
		double [] diff=calcYminusFx(this.currentfX, 2*this.imageStartIndex[imgNum],2*this.imageStartIndex[imgNum+1]);
		double [][] photometrics=patternParameters.getPhotometricBySensor(station,chnNum); // head/bottom grid intensity/alpha
		int targetGridWidth=getGridWidth();
		double [][] debugRGB=null;
		if (showIntermediate){
			debugRGB = new double [12][width*height];
			for (int n=0;n<debugRGB.length;n++) for (int i=0;i<debugRGB[n].length;i++) debugRGB[n][i]=0.0;
		}
		for (int i=0;i<imgUV.length;i++){
			int index=width*(imgUV[i][1]-uv0[1]) + (imgUV[i][0]-uv0[0]);
			int targetGridIndex=targetGridWidth*(imgUV[i][1]+patternParameters.V0) +(imgUV[i][0]+patternParameters.U0); // index in photometrics[][]
			int doublePairIndex=2*(this.imageStartIndex[imgNum]+i); // number of a pair in a full vector
			stageMask[index]=this.weightFunction[doublePairIndex];
			stagePXY[index]=null;
			double [] debugCorrVector=null;
			if (showIntermediate) {
				debugCorrVector=interpolateCorrectionVector ( //  vector of {corrX, corrY, alpha, flatfield_red, flatfield_green, flatfield_blue}
						chnNum,
						imgXY[i][0], //double px, measured
						imgXY[i][1]); //double py, measured);
			}
			double [] reprojectedNode= reprojectGridNode( //{pX,pY,grid mask (binary), grid R, grid G, grid B, alpha}
					lensDistortionParameters,
					imgNum,
					imgUV[i][0], //int u, // grid signed u,v
					imgUV[i][1]); //int v
			if (reprojectedNode==null) {
				continue; // out of grid - should not happen here (now - also: target point behind the camera sensor)?
			}
//			double [] reprojPXY={reprojectedNode[0],reprojectedNode[1]};
Andrey Filippov's avatar
Andrey Filippov committed
2051
			double [] nodePXY={this.Y[doublePairIndex],this.Y[doublePairIndex+1]};
Andrey Filippov's avatar
Andrey Filippov committed
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
			stagePXY[index]=nodePXY;// measured pixels Px,Py with correction applied  // reprojPXY;
//			double [] diffPXY= {imgXY[i][0]-corrVector[0]-reprojectedNode[0],imgXY[i][1]-debugCorrVector[1]-reprojectedNode[1]};
			double [] diffPXY= {diff[2*i],diff[2*i+1]};
			stageDiffPXY[index]=diffPXY;
			//{px,py,contrast,vignR,vignG,vignB}
			double [] diffRGB={0.0,0.0,0.0};
			for (int c=0;c<diffRGB.length;c++){
				double gridPhotometrics=photometrics[c][targetGridIndex];
//				if (gridPhotometrics>0.0) diffRGB[c]=imgXY[i][imgRGBIndex+c]/gridPhotometrics-debugCorrVector[corrRIndex+c];
				if (gridPhotometrics>0.0) diffRGB[c]=imgXY[i][imgRGBIndex+c]/gridPhotometrics; // don't use old correction at all!
			}
			stageDiffRGB[index]=diffRGB;
			stageMask[index]=this.weightFunction[2*(this.imageStartIndex[imgNum]+i)];
Andrey Filippov's avatar
Andrey Filippov committed
2065

Andrey Filippov's avatar
Andrey Filippov committed
2066 2067 2068 2069 2070 2071
			if (showIntermediate) for (int c=0;c<3;c++){
				debugRGB[4*c+0][index]=photometrics[c][targetGridIndex];
				debugRGB[4*c+1][index]=imgXY[i][imgRGBIndex+c];
				debugRGB[4*c+2][index]=debugCorrVector[corrRIndex+c];
				debugRGB[4*c+3][index]=imgXY[i][imgRGBIndex+c]/photometrics[c][targetGridIndex];
			}
Andrey Filippov's avatar
Andrey Filippov committed
2072

Andrey Filippov's avatar
Andrey Filippov committed
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		}
		if (showIntermediate){
			double [][] debugData = new double [8][width*height];
			String [] dbgTitles={"rep-X","rep-Y","dX","dY","R","G","B","Weight"};//
			for (int i=0;i<debugData[0].length;i++){
				if (stagePXY[i]==null){
					for (int j=0;j<debugData.length;j++) {
						debugData[j][i]=Double.NaN; // 0.0?
					}
				} else {
					debugData[0][i]=stagePXY[i][0];
					debugData[1][i]=stagePXY[i][1];
					debugData[2][i]=  stageDiffPXY[i][0];
					debugData[3][i]=  stageDiffPXY[i][1];
					debugData[4][i]=  stageDiffRGB[i][0];
					debugData[5][i]=  stageDiffRGB[i][1];
					debugData[6][i]=  stageDiffRGB[i][2];
					debugData[7][i]=     stageMask[i];
				}

			}
2094
			(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
2095 2096 2097 2098 2099 2100 2101
					debugData,
					width,
					height,
					true,
					"PRE_EXP-"+imgNum+"-"+chnNum,
					dbgTitles);
			String [] dbgTitles1={"R-tar","R-grid","R-corr","R-FF","G-tar","G-grid","G-corr","G-FF","B-tar","B-grid","B-corr","B-FF",};//
2102
			(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
					debugRGB,
					width,
					height,
					true,
					"CORR-RGB-"+imgNum+"-"+chnNum,
					dbgTitles1);

		}
		CorrectionInNodes correctionInNodes=new CorrectionInNodes(
				imgNum,
				uv0[0],
				uv0[1],
				width,
				height,
				stagePXY,
				stageDiffPXY,
				stageDiffRGB,
				stageMask
				);
		return correctionInNodes;
	}
Andrey Filippov's avatar
Andrey Filippov committed
2124

Andrey Filippov's avatar
Andrey Filippov committed
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	class CorrectionInNodes{
		public int numImg;
		public Rectangle uv0;
		public double [][] reprojPXY; //= new double [width*height][]; //reprojected {px,py}
		public double [][] diffPXY; //=   new double [width*height][]; // difference between corrected measured and reprojected (to add to correction)
		public double [][] diffRGB; //=   new double [width*height][]; // difference (measured RGB)/(grid RGB) and current correction RGB (pixel sensitivity RGB)
		public double []   mask;
//		public int stageMasksSensor=0, stageMasksTarget=1, stageMasksContrast=2;
		public CorrectionInNodes (
				int numImg,
				int u0,
				int v0,
				int width,
				int height,
				double [][] reprojPXY, //= new double [width*height][]; //reprojected {px,py}
				double [][] diffPXY, //=   new double [width*height][]; // difference between corrected measured and reprojected (to add to correction)
				double [][] diffRGB, //=   new double [width*height][]; // difference (measured RGB)/(grid RGB) and current correction RGB (pixel sensitivity RGB)
				double [] mask //=     new double [width*height][]; // {sensor mask, target mask, measured contrast}
		){
			this.numImg=numImg;
			this.uv0=new Rectangle(u0,v0,width,height);
			this.reprojPXY=reprojPXY; //= new double [width*height][]; //reprojected {px,py}
			this.diffPXY=diffPXY; //=   new double [width*height][]; // difference between corrected measured and reprojected (to add to correction)
			this.diffRGB=diffRGB; //=   new double [width*height][]; // difference (measured RGB)/(grid RGB) and current correction RGB (pixel sensitivity RGB)
			this.mask=mask; //=     new double [width*height][]; // {sensor mask, target mask, measured contrast}
		}

Andrey Filippov's avatar
Andrey Filippov committed
2152

Andrey Filippov's avatar
Andrey Filippov committed
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		public void show(
				String title
				){
				double [][] debugData = new double [8][this.uv0.width*this.uv0.height];
				String [] dbgTitles={"rep-X","rep-Y","dX","dY","R","G","B","Weight"};
				for (int i=0;i<debugData[0].length;i++){
					if (this.reprojPXY[i]==null){
						for (int j=0;j<debugData.length;j++) {
							debugData[j][i]=Double.NaN; // 0.0?
						}
					} else {
						debugData[0][i]=this.reprojPXY[i][0];
						debugData[1][i]=this.reprojPXY[i][1];
						debugData[2][i]=  this.diffPXY[i][0];
						debugData[3][i]=  this.diffPXY[i][1];
						debugData[4][i]=  this.diffRGB[i][0];
						debugData[5][i]=  this.diffRGB[i][1];
						debugData[6][i]=  this.diffRGB[i][2];
						debugData[7][i]=     this.mask[i];
					}
				}
2174
				(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
						debugData,
						this.uv0.width,
						this.uv0.height,
						true,
						title,
						dbgTitles);
		}
		/**
		 * Convert correction for grid nodes (detected and extrapolated) into decimated pixel array
		 * result should be added to the current (prior) correction. Use alpha as weight when accumulating for multiple images
Andrey Filippov's avatar
Andrey Filippov committed
2185
		 * @param decimation decimate correction pixels from sensor pixels
Andrey Filippov's avatar
Andrey Filippov committed
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		 * @param sensorWidth sensor width in pixels (2592)
		 * @param sensorHeight sensor height in pixels (1936)
		 * @param debugLevel debug level (verbose if >3)
		 * @return scan-line pixels correction arrays {dpX,dpY,alpha,R,G,B}[pixelIndex]
		 */
		public double [][] mapToPixels(
				int decimation,
				int sensorWidth,
				int sensorHeight,
				int debugLevel){
			int debugThreshold=2;
			int sWidth= (sensorWidth-1)/decimation+1; // decimated width (648)
			int sHeight=(sensorHeight-1)/decimation+1; // decimated height (484)

			int [] uvInc={0,1,this.uv0.width,this.uv0.width+1}; // four corners as vu index
			int [][] cycles={ // counter-clockwise corners bounding the area  (only orthogonal sides?)
					{1,0,2},
					{2,3,1},
					{0,2,3},
					{3,1,0}};

			double [][] thisPCorr=  new double [6][sWidth*sHeight]; // calculate for a single (this) image, accumulate in the end
			int    []   thisCounted=new    int    [sWidth*sHeight]; // some pixels accumulated twice - divide in the end
			for (int n=0;n<thisPCorr.length;n++) for (int i=0;i<thisPCorr[0].length;i++) thisPCorr[n][i]=0.0;
			for (int i=0;i<thisCounted.length;i++) thisCounted[i]=0;

			// now use imgData array to fill thisPCorr by linear interpolation
			for (int v=0;v<(this.uv0.height-1); v++) for (int u=0; u<(this.uv0.width-1);u++){
				int vu=u+this.uv0.width*v;
                double [][] cornerXY =new double[4][];
                for (int i=0;i<uvInc.length;i++){
                	int vu1=vu+uvInc[i];
                	cornerXY[i]=null;
                	if (this.reprojPXY[vu1]!=null){
                		double w=this.mask[vu1];
                		if (w>0.0) {
                			cornerXY[i]=new double[2];
                			cornerXY[i][0]=this.reprojPXY[vu1][0];
                			cornerXY[i][1]=this.reprojPXY[vu1][1];
                		}
                	}
                }
Andrey Filippov's avatar
Andrey Filippov committed
2228
                boolean [] cycleFits=new boolean[cycles.length];
Andrey Filippov's avatar
Andrey Filippov committed
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
                boolean anyFits=false;
                for (int i=0;i<cycles.length;i++){
                	cycleFits[i]=true;
                	for (int j=0;j<cycles[i].length;j++) if (cornerXY[cycles[i][j]]==null) {
                		cycleFits[i]=false;
                		break;
                	}
                	anyFits |=cycleFits[i];
                }
                if (!anyFits) continue; // not a single cycle
				if (debugLevel>debugThreshold) {
					String debugString="cycleFits ";
					for (int i =0;i<cycleFits.length; i++) debugString+=" "+cycleFits[i];
					System.out.println(debugString);
				}
                if (cycleFits[0]&&cycleFits[1]){ // remove overlaps
                	cycleFits[2]=false;
                	cycleFits[3]=false;
                }
                boolean minMaxUndefined=true;
				double minX=0,maxX=0,minY=0,maxY=0;
				// find bounding rectangle;
				for (int nCycle=0;nCycle<cycles.length;nCycle++) if (cycleFits[nCycle]){
					int [] cycle=cycles[nCycle];
					for (int corner=0; corner<cycle.length;corner++){
						if (minMaxUndefined || (minX>cornerXY[cycle[corner]][0])) minX=cornerXY[cycle[corner]][0];
						if (minMaxUndefined || (maxX<cornerXY[cycle[corner]][0])) maxX=cornerXY[cycle[corner]][0];
						if (minMaxUndefined || (minY>cornerXY[cycle[corner]][1])) minY=cornerXY[cycle[corner]][1];
						if (minMaxUndefined || (maxY<cornerXY[cycle[corner]][1])) maxY=cornerXY[cycle[corner]][1];
						minMaxUndefined=false;
					}
				}
				int iMinX=(int) Math.floor(minX/decimation);
				int iMinY=(int) Math.floor(minY/decimation);
				int iMaxX=(int) Math.ceil(maxX/decimation);
				int iMaxY=(int) Math.ceil(maxY/decimation);
				// not sure if these checks are needed, got out of bounds wheriDy was =484=sHeight
				if (iMinX<0) iMinX=0;
				if (iMaxX>=sWidth) iMaxX=sWidth-1;
				if (iMinY<0) iMinY=0;
				if (iMaxY>=sHeight) iMaxY=sHeight-1;
				double [] originXY=new double [2];
				double [] endXY=new double [2];
				boolean debugHadPixels=false;
//TODO: scan X,Y in this rectangle, for points in defined squares/triangles find if the point is inside (accurate not to loose any).
				for (int idY=iMinY; idY<=iMaxY;idY++){
Andrey Filippov's avatar
Andrey Filippov committed
2275

Andrey Filippov's avatar
Andrey Filippov committed
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
					double pY=idY*decimation; // in sensor pixels
					for (int idX=iMinX; idX<=iMaxX;idX++){
						double pX=idX*decimation; // in sensor pixels
						// scan allowed triangles, usually 2
						for (int nCycle=0;nCycle<cycles.length;nCycle++) if (cycleFits[nCycle]){
							int [] cycle=cycles[nCycle];
							// is this point inside?
							boolean inside=true;
							for (int nEdge=0;nEdge<cycle.length;nEdge++){
								int nextNEdge=(nEdge==(cycle.length-1))?0:(nEdge+1);

								originXY[0]=this.reprojPXY[vu+uvInc[cycle[nEdge]]][0];     // imgData[2][vu+uvInc[cycle[nEdge]]];
								originXY[1]=this.reprojPXY[vu+uvInc[cycle[nEdge]]][1];     // imgData[3][vu+uvInc[cycle[nEdge]]];
								endXY[0]=   this.reprojPXY[vu+uvInc[cycle[nextNEdge]]][0]; // imgData[2][vu+uvInc[cycle[nextNEdge]]];
								endXY[1]=   this.reprojPXY[vu+uvInc[cycle[nextNEdge]]][1]; // imgData[3][vu+uvInc[cycle[nextNEdge]]];
								if (((pX-originXY[0])*(endXY[1]-originXY[1]) - (pY-originXY[1])*(endXY[0]-originXY[0]))<0.0){
									inside=false;
									break;
								}
							}
							if (!inside) continue; // point is outside of the interpolation area, try next triangle (if any)
							if (debugLevel>debugThreshold) {
								System.out.println("idX="+idX+" idY="+idY+" nCycle="+nCycle);
								String debugString1="cycle:";
								for (int i =0;i<cycle.length; i++) debugString1+=" "+cycle[i];
								System.out.println(debugString1);
							}

Andrey Filippov's avatar
Andrey Filippov committed
2304
							/* interpolate:
Andrey Filippov's avatar
Andrey Filippov committed
2305 2306 2307
							1. taking cycles[0] as origin and two (non co-linear) edge vectors - V1:from 0 to 1 and V2 from 1 to 2
							    find a1 and a2  so that vector V  (from 0  to pXY) = a1*V1+ a2*V2
							2. if F0 is the value of the interpolated function at cycles[0], F1 and F2 - at cycles[1] and cycles2
Andrey Filippov's avatar
Andrey Filippov committed
2308
							   then F=F0+(F1-F0)*a1 +(F2-F1)*a2
Andrey Filippov's avatar
Andrey Filippov committed
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
							 */
							double [] XY0={this.reprojPXY[vu+uvInc[cycle[0]]][0],this.reprojPXY[vu+uvInc[cycle[0]]][1]};
							double [] XY1={this.reprojPXY[vu+uvInc[cycle[1]]][0],this.reprojPXY[vu+uvInc[cycle[1]]][1]};
							double [] XY2={this.reprojPXY[vu+uvInc[cycle[2]]][0],this.reprojPXY[vu+uvInc[cycle[2]]][1]};
							double [] V= {pX-XY0[0],pY-XY0[1]};
							double [][] M={
									{XY1[0]-XY0[0],XY2[0]-XY1[0]},
									{XY1[1]-XY0[1],XY2[1]-XY1[1]}};
							double det=M[0][0]*M[1][1]-M[1][0]*M[0][1];
							double [][] MInverse={
									{ M[1][1]/det,-M[0][1]/det},
									{-M[1][0]/det, M[0][0]/det}};
							double [] a12={
									MInverse[0][0]*V[0]+MInverse[0][1]*V[1],
									MInverse[1][0]*V[0]+MInverse[1][1]*V[1]};
							int pCorrIndex=idY*sWidth+idX;
// some points may be accumulated multiple times - thisPCorr[3] will take care of this
							if (debugLevel>debugThreshold) {
								System.out.println("XY0="+IJ.d2s(XY0[0],3)+":"+IJ.d2s(XY0[1],3));
								System.out.println("XY1="+IJ.d2s(XY1[0],3)+":"+IJ.d2s(XY1[1],3));
								System.out.println("XY2="+IJ.d2s(XY2[0],3)+":"+IJ.d2s(XY2[1],3));
								System.out.println("M00="+IJ.d2s(M[0][0],3)+" M01="+IJ.d2s(M[0][1],3));
								System.out.println("M10="+IJ.d2s(M[1][0],3)+" M11="+IJ.d2s(M[1][1],3));
								System.out.println("MInverse00="+IJ.d2s(MInverse[0][0],5)+" MInverse01="+IJ.d2s(MInverse[0][1],5));
								System.out.println("MInverse10="+IJ.d2s(MInverse[1][0],5)+" MInverse11="+IJ.d2s(MInverse[1][1],5));
								System.out.println("a12="+IJ.d2s(a12[0],3)+":"+IJ.d2s(a12[1],3));
								System.out.println("this.diffPXY[vu+uvInc[cycle[0]]][0]="+IJ.d2s(this.diffPXY[vu+uvInc[cycle[0]]][0],3)+
										"this.diffPXY[vu+uvInc[cycle[0]]][1]="+IJ.d2s(this.diffPXY[vu+uvInc[cycle[0]]][1],3));
								System.out.println("this.diffPXY[vu+uvInc[cycle[1]]][0]="+IJ.d2s(this.diffPXY[vu+uvInc[cycle[1]]][0],3)+
										"this.diffPXY[vu+uvInc[cycle[1]]][1]="+IJ.d2s(this.diffPXY[vu+uvInc[cycle[1]]][1],3));
								System.out.println("this.diffPXY[vu+uvInc[cycle[2]]][0]="+IJ.d2s(this.diffPXY[vu+uvInc[cycle[2]]][0],3)+
										"this.diffPXY[vu+uvInc[cycle[2]]][1]="+IJ.d2s(this.diffPXY[vu+uvInc[cycle[2]]][1],3));
							}

							double [] corr={
									 this.diffPXY[vu+uvInc[cycle[0]]][0]+ // dPx
									(this.diffPXY[vu+uvInc[cycle[1]]][0]-this.diffPXY[vu+uvInc[cycle[0]]][0])*a12[0]+
									(this.diffPXY[vu+uvInc[cycle[2]]][0]-this.diffPXY[vu+uvInc[cycle[1]]][0])*a12[1],

									 this.diffPXY[vu+uvInc[cycle[0]]][1]+ // dPy
									(this.diffPXY[vu+uvInc[cycle[1]]][1]-this.diffPXY[vu+uvInc[cycle[0]]][1])*a12[0]+
									(this.diffPXY[vu+uvInc[cycle[2]]][1]-this.diffPXY[vu+uvInc[cycle[1]]][1])*a12[1],

									 this.mask[vu+uvInc[cycle[0]]]+ // alpha
									(this.mask[vu+uvInc[cycle[1]]]-this.mask[vu+uvInc[cycle[0]]])*a12[0]+
									(this.mask[vu+uvInc[cycle[2]]]-this.mask[vu+uvInc[cycle[1]]])*a12[1],

									 this.diffRGB[vu+uvInc[cycle[0]]][0]+ // Red measured/pattern
									(this.diffRGB[vu+uvInc[cycle[1]]][0]-this.diffRGB[vu+uvInc[cycle[0]]][0])*a12[0]+
									(this.diffRGB[vu+uvInc[cycle[2]]][0]-this.diffRGB[vu+uvInc[cycle[1]]][0])*a12[1],

									 this.diffRGB[vu+uvInc[cycle[0]]][1]+ // Red measured/pattern
									(this.diffRGB[vu+uvInc[cycle[1]]][1]-this.diffRGB[vu+uvInc[cycle[0]]][1])*a12[0]+
									(this.diffRGB[vu+uvInc[cycle[2]]][1]-this.diffRGB[vu+uvInc[cycle[1]]][1])*a12[1],

									 this.diffRGB[vu+uvInc[cycle[0]]][2]+ // Red measured/pattern
									(this.diffRGB[vu+uvInc[cycle[1]]][2]-this.diffRGB[vu+uvInc[cycle[0]]][2])*a12[0]+
									(this.diffRGB[vu+uvInc[cycle[2]]][2]-this.diffRGB[vu+uvInc[cycle[1]]][2])*a12[1]};
							if (debugLevel>debugThreshold) {
								System.out.println("corr="+IJ.d2s(corr[0],3)+" "+IJ.d2s(corr[1],3)+" "+IJ.d2s(corr[2],3));
							}
 if (pCorrIndex>thisPCorr[0].length) {
//	 System.out.println("imgNum=" + imgNum+": "+	fittingStrategy.distortionCalibrationData.gIP[imgNum].path);
	 System.out.println("thisPCorr[0].length="+thisPCorr[0].length+" pCorrIndex="+pCorrIndex+" sWidth="+sWidth+" idY="+idY+" idX="+idX);
 }
                            for (int i=0;i<corr.length;i++) {
                            	thisPCorr[i][pCorrIndex]+= corr[i]; // OOB: -8, -1433
                            }
							thisCounted[pCorrIndex]++;

							if (debugLevel>debugThreshold) {
								debugHadPixels=true;
							}
						}
					} // idX
					// use same order in calculations, make sure no gaps
				} // idY
				if ((debugLevel>debugThreshold) && (debugHadPixels)){
//					if (!debugExit) {
						System.out.println(
								" minX="+IJ.d2s(minX,1)+
								" maxX="+IJ.d2s(maxX,1));
						System.out.println(
								" minY="+IJ.d2s(minY,1)+
								" maxY="+IJ.d2s(maxY,1));
						System.out.println(
								" iMinX="+iMinX+
								" iMaxX="+iMaxX);
						System.out.println(
								" iMinY="+iMinY+
								" iMaxY="+iMaxY);
//					}
//					if (!debugExit) debugCntr--;
//					if (debugCntr==0) debugExit=true; // exit after first non-empty tile
Andrey Filippov's avatar
Andrey Filippov committed
2403

Andrey Filippov's avatar
Andrey Filippov committed
2404 2405 2406 2407 2408 2409 2410 2411
				}
			} //for (int v=0;v<(this.uv0.height-1); v++) for (int u=0; u<(this.uv0.width-1);u++){
            for (int i=0;i<thisCounted.length;i++) if (thisCounted[i]>1) {
            	for (int j=0;j<thisPCorr[i].length;j++)	thisPCorr[j][i]/= thisCounted[i];
            }
            return thisPCorr;
		}
	}
Andrey Filippov's avatar
Andrey Filippov committed
2412

Andrey Filippov's avatar
Andrey Filippov committed
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	class DirInc{
		private int top=   1 | 2 | 4 | 8 | 16;
		private int bottom=1 |             16 | 32 | 64 | 128;
		private int left=  1 | 2 |                   64 | 128;
		private int right=         4 | 8 | 16 | 32 | 64;
		private int [] inc=null;
		private int [] validDirs=null;
		private double [][] unityVector=null;
		public int dirs=8;
		public DirInc(int width, int height){
//			int [] dirs8={1,1+width,width,-1+width,-1,-1-width,-width,1-width};
			int [][] incXY8={{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}};
			this.inc=new int [incXY8.length];
			this.unityVector=new double [incXY8.length][2];
			for (int i=0;i<incXY8.length;i++){
				this.inc[i]=incXY8[i][0]+width*incXY8[i][1];
				double len=Math.sqrt(incXY8[i][0]*incXY8[i][0]+incXY8[i][1]*incXY8[i][1]);
				this.unityVector[i][0]=incXY8[i][0]/len;
				this.unityVector[i][1]=incXY8[i][1]/len;
			}
//			this.inc=dirs8;
			this.validDirs=new int [width*height];
			for (int i=0;i<this.validDirs.length;i++) this.validDirs[i]=0xff;
			for (int i=0;i<width;i++){
				this.validDirs[                 i]&=top;
				this.validDirs[(height-1)*width+i]&=bottom;
			}
			for (int i=0;i<height;i++){
				this.validDirs[i*width]&=left;
				this.validDirs[i*width + width-1]&=right;
			}
Andrey Filippov's avatar
Andrey Filippov committed
2444

Andrey Filippov's avatar
Andrey Filippov committed
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		}
		public int newIndex(int oldIndex, int dir){
			if ((validDirs[oldIndex] & (1<<dir))==0) return -1; // invalid dir for this location (border)
			return oldIndex+this.inc[dir];
		}
		public double [] unity(int dir) {
			return this.unityVector[(dir+this.unityVector.length)%this.unityVector.length];
		}
	}

	public class PixXYUV{
		double [][]xy=null;
		int [][]uv=null;
		double [] alpha=null;
		double [][]dxy=null;
		public PixXYUV(){}
		public PixXYUV(int len){
Andrey Filippov's avatar
Andrey Filippov committed
2462 2463 2464 2465
			this.uv=new int [len][2];
			this.xy=new double [len][2];
			this.alpha=new double [len];
			this.dxy=new double [len][2];
Andrey Filippov's avatar
Andrey Filippov committed
2466 2467
		}
	}
Andrey Filippov's avatar
Andrey Filippov committed
2468 2469 2470 2471




Andrey Filippov's avatar
Andrey Filippov committed
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/**
	 * Interpolate (bi-linear) X/Y corrections and flat-field data for the sensor
	 * @param chnNum - sensor (channel) number
	 * @param px     - pixel X coordinate (non-decimated)
	 * @param py     - pixel Y coordinate (non-decimated)
	 * @return       - vector of {corrX, corrY, alpha, flatfield_red, flatfield_green, flatfield_blue}
	 */
	public double [] interpolateCorrectionVector (
			int chnNum,
			double px,
			double py){
		if (this.pixelCorrection==null){
			double [] vector={0.0,0.0,1.0,1.0,1.0,1.0};
			return vector;
		}
2487 2488 2489
//		this.pixelCorrectionDecimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.decimateMasks;
//		this.pixelCorrectionWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorWidth;
//		this.pixelCorrectionHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorHeight;
Andrey Filippov's avatar
Andrey Filippov committed
2490

2491
		int sensorCorrWidth= getSensorCorrWidth(chnNum);
Andrey Filippov's avatar
Andrey Filippov committed
2492
		int sensorCorrHeight=this.pixelCorrection[chnNum][0].length/sensorCorrWidth;
2493 2494 2495

		int [] ix={(int) Math.floor(px/getDecimateMasks(chnNum)), (int) Math.floor(px/getDecimateMasks(chnNum))+1};
		int [] iy={(int) Math.floor(py/getDecimateMasks(chnNum)),(int) Math.floor(py/getDecimateMasks(chnNum))+1};
Andrey Filippov's avatar
Andrey Filippov committed
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
		for (int i=0;i<2;i++){
			if (ix[i]<0) ix[i]=0;
			else if (ix[i]>=sensorCorrWidth) ix[i]=sensorCorrWidth-1;
			if (iy[i]<0) iy[i]=0;
			else if (iy[i]>=sensorCorrHeight) iy[i]=sensorCorrHeight-1;
		}
		int index00=ix[0] + iy[0]*sensorCorrWidth;
		int indexX0=ix[1] + iy[0]*sensorCorrWidth;
		int index0Y=ix[0] + iy[1]*sensorCorrWidth;
		int indexXY=ix[1] + iy[1]*sensorCorrWidth;

		double corrDX=0,corrDY=0;
		if ((px>ix[0])&& (px<ix[1])) corrDX=px-ix[0];
		if ((py>iy[0])&& (py<iy[1])) corrDY=py-iy[0];
		double [] vector=new double [this.pixelCorrection[chnNum].length];
		for (int n=0;n<vector.length;n++){
Andrey Filippov's avatar
Andrey Filippov committed
2512
			// bilinear interpolation
Andrey Filippov's avatar
Andrey Filippov committed
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
			vector[n]=
				(1-corrDX)* (1-corrDY)* this.pixelCorrection[chnNum][n][index00]+
				corrDX * (1-corrDY)* this.pixelCorrection[chnNum][n][indexX0]+
				(1-corrDX)*    corrDY * this.pixelCorrection[chnNum][n][index0Y]+
				corrDX *    corrDY * this.pixelCorrection[chnNum][n][indexXY];
		}
		return vector;
	}
	/**
	 * Bilinear interpolate sensor mask array
	 * @param mask decimated mask data
	 * @param px     - pixel X coordinate (non-decimated)
	 * @param py     - pixel Y coordinate (non-decimated)
	 * @return interpolated mask data at specified fractional pixel
	 */
	public double interpolateMask (
2529
			int       chnNum,
Andrey Filippov's avatar
Andrey Filippov committed
2530 2531 2532
			double [] mask,
			double px,
			double py){
2533 2534 2535
///		this.pixelCorrectionDecimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.decimateMasks;
///		this.pixelCorrectionWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorWidth;
///		this.pixelCorrectionHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorHeight;
Andrey Filippov's avatar
Andrey Filippov committed
2536

2537
		int sensorCorrWidth= getSensorCorrWidth(chnNum); // (this.pixelCorrectionWidth-1)/this.pixelCorrectionDecimation+1;
Andrey Filippov's avatar
Andrey Filippov committed
2538
		int sensorCorrHeight=mask.length/sensorCorrWidth;
2539 2540
		int [] ix={(int) Math.floor(px/getDecimateMasks(chnNum)), (int) Math.floor(px/getDecimateMasks(chnNum))+1};
		int [] iy={(int) Math.floor(py/getDecimateMasks(chnNum)), (int) Math.floor(py/getDecimateMasks(chnNum))+1};
Andrey Filippov's avatar
Andrey Filippov committed
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
		for (int i=0;i<2;i++){
			if (ix[i]<0) ix[i]=0;
			else if (ix[i]>=sensorCorrWidth) ix[i]=sensorCorrWidth-1;
			if (iy[i]<0) iy[i]=0;
			else if (iy[i]>=sensorCorrHeight) iy[i]=sensorCorrHeight-1;
		}
		int index00=ix[0] + iy[0]*sensorCorrWidth;
		int indexX0=ix[1] + iy[0]*sensorCorrWidth;
		int index0Y=ix[0] + iy[1]*sensorCorrWidth;
		int indexXY=ix[1] + iy[1]*sensorCorrWidth;

		double corrDX=0,corrDY=0;
		if ((px>ix[0])&& (px<ix[1])) corrDX=px-ix[0];
		if ((py>iy[0])&& (py<iy[1])) corrDY=py-iy[0];
		double result=
				(1-corrDX)* (1-corrDY)* mask[index00]+
				corrDX * (1-corrDY)* mask[indexX0]+
				(1-corrDX)*    corrDY * mask[index0Y]+
				corrDX *    corrDY * mask[indexXY];
		return result;
	}
Andrey Filippov's avatar
Andrey Filippov committed
2562 2563


Andrey Filippov's avatar
Andrey Filippov committed
2564
/**
Andrey Filippov's avatar
Andrey Filippov committed
2565
 *   after fitting finished and accepted - 	fittingStrategy.saveSeriesVector(double [] vector)
Andrey Filippov's avatar
Andrey Filippov committed
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
 */
	public void saveFittingSeries() {
		fittingStrategy.saveSeriesVector(this.currentVector);
	}
	/*
	 * For each image in the series:

    	public double [] fittingStrategy.getImageParametersVector(int numImg, double [] parameterVector);
    	 * Calculates current values of all parameters for the particular sensor - some ("fixed")
    	 * are taken from the data stored for this individual image, others - from the parameter
    	 * vector (used in fitting)
    	 * @param numImg number of image
    	 * @param vector parameters vector
    	 * @return vector used for the current image (parameters influencing the acquired grid
    	 * on the sensor (common parameters and those of the sensor's subchannel)

   public void calcInterParamers(
    		double [] parVect,
    		boolean [] mask, // calculate only selected derivatives (all parVect values are still
    		boolean calculateDerivatives // calculate this.interParameterDerivatives -derivatives array (false - just this.values)
    		){
     * Calculate/set  this.lensDistortionParameters and this.interParameterDerivatives
     * @param parVect 21-element vector for eyesis sub-camera, including common and individual parameters
     * @param mask -mask - which partial derivatives are needed to be calculated (others will be null)
     * @param calculateDerivatives calculate array of partial derivatives, if false - just the values


For each point in the image
      public double [][] lensDistortionParameters.reorderPartialDerivatives (double [][] srcDerivatives){
      double [][] lensDistortionParameters.calcPartialDerivatives(
        		double xp, // target point horizontal, positive - right,  mm
        		double yp, // target point vertical,   positive - down,  mm
        		double zp, // target point horizontal, positive - away from camera,  mm
        		boolean calculateAll){ // calculate derivatives, false - values only

    public double [][] interParameterDerivatives=null; //partial derivative matrix from subcamera-camera-goniometer to single camera (12x21)
    public double []   currentVector; // current variable parameter vector
    public double []   Y=null; // array of "y" - for each grid image, each defined grid node - 2 elements
Andrey Filippov's avatar
Andrey Filippov committed
2604
    public double [][] targetXYZ=null; // array of target {x,y,z} matching each image each grid point
Andrey Filippov's avatar
Andrey Filippov committed
2605 2606 2607
    public double []   fX=null; // array of "f(x)" - simulated data for all images, combining pixel-X and pixel-Y (odd/even)
    public double [][] jacobian=null; // partial derivatives of fX (above) by parameters to be adjusted (rows)
	 */
Andrey Filippov's avatar
Andrey Filippov committed
2608

Andrey Filippov's avatar
Andrey Filippov committed
2609 2610 2611 2612 2613
	public ImagePlus simulatePatternOnSensor(
			int stationNumber,
			int subCam,
			double goniometerTilt,
			double goniometerAxial,
2614
			double goniometerInterAxis,
Andrey Filippov's avatar
Andrey Filippov committed
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
			SimulationPattern.SimulParameters simulParametersDefault,
			int threadsMax,
			boolean updateStatus,
			int mspDebugLevel,
			int global_debug_level, // DEBUG_LEVEL
			int debug_level // debug level used inside loops
	){
		MatchSimulatedPattern matchSimulatedPattern = new MatchSimulatedPattern(64); // new instance, all reset, FFTSize=64 will not be used
		matchSimulatedPattern.debugLevel = mspDebugLevel;
		//		MatchSimulatedPattern.DistortionParameters distortionParameters = modifyDistortionParameters();
		//		SimulationPattern.SimulParameters simulParameters = modifySimulParameters();
2626 2627
		int sensorWidth=  getSensorWidth(subCam);
		int sensorHeight= getSensorHeight(subCam);
Andrey Filippov's avatar
Andrey Filippov committed
2628 2629 2630 2631 2632 2633

		double [][][] hintGrid=estimateGridOnSensor(
				stationNumber,
				subCam,
				goniometerTilt, // Tilt, goniometerHorizontal
				goniometerAxial,  // Axial,goniometerAxial
2634
				goniometerInterAxis, // inter-axis angle
2635 2636
				-1, // use camera parameters, not imageSet
				true // filter border
Andrey Filippov's avatar
Andrey Filippov committed
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		);
		if (hintGrid==null){
			String msg="Grid is not visible for subcamera="+subCam+",  tilt="+goniometerTilt+", axial="+goniometerAxial;
			IJ.showMessage("Error",msg);
			System.out.println("Error: "+msg);
			return null;
		}
		if (global_debug_level>1){
			double [][] pixels=new double[4][hintGrid.length*hintGrid[0].length];
			int index=0;
			String [] titles={"pixel-X","pixel-Y","grid-U","grid-V"};
			for (int v=0; v<hintGrid.length;v++) for (int u=0;u<hintGrid[v].length;u++){
				if (hintGrid[v][u]!=null){
					for (int i=0; i<4;i++)	pixels[i][index]=hintGrid[v][u][i];
				} else {
					for (int i=0; i<4;i++)	pixels[i][index]=-1;
				}
				index++;
			}
2656
			(new ShowDoubleFloatArrays()).showArrays(pixels, hintGrid[0].length, hintGrid.length,  true, "hintGrid", titles);
Andrey Filippov's avatar
Andrey Filippov committed
2657

Andrey Filippov's avatar
Andrey Filippov committed
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		}

		if (global_debug_level>0){
			System.out.println("simulatePatternOnSensor(): subcamera="+subCam+",  tilt="+goniometerTilt+", axial="+goniometerAxial);
		}
		int numCells=matchSimulatedPattern.restoreSimulatedPatternGridFromHint(hintGrid, sensorWidth, sensorHeight);
		matchSimulatedPattern.recalculateWaveVectors (
				   updateStatus,
				   debug_level);// debug level used inside loops

		if (global_debug_level>0){
			System.out.println("simulatePatternOnSensor(): "+numCells+" grid cells");
		}
		SimulationPattern.SimulParameters simulParameters = simulParametersDefault.clone();
		SimulationPattern simulationPattern=new SimulationPattern(simulParameters);
		double [][] xy0={{simulParameters.offsetX,simulParameters.offsetY},{simulParameters.offsetX-0.5,simulParameters.offsetY-0.5}} ;
// TODO: add marks for the laser pointers when visible?
		float[] simPixels=simulationPattern.simulateGrid (
				matchSimulatedPattern.getDArray(),
				2, // gridFrac, // number of grid steps per pattern full period
				simulParameters,
				matchSimulatedPattern.getWOI(),
				1, // simulParameters.subdiv/2,
				xy0[0],    // add to patternGrid xy
				threadsMax,
				updateStatus,
				(debug_level>1)?1:0); //debug_level); // debug level
		if (global_debug_level>0){
			System.out.println("simulatePatternOnSensor(): simPixels.length="+simPixels.length+" sensorWidth="+sensorWidth+" sensorHeight="+sensorHeight);
		}
		for (int i=0;i<simPixels.length;i++) simPixels[i]*=255.0;
		ImageProcessor ip_simGrid = new FloatProcessor(sensorWidth, sensorHeight);
		ip_simGrid.setPixels(simPixels);
		ip_simGrid.resetMinAndMax();
		ImagePlus imp_simGrid= new ImagePlus("Simulated_Grid_CHN"+subCam+"_TILT"+goniometerTilt+"_AXIAL"+goniometerAxial, ip_simGrid);
		return imp_simGrid;
	}

Andrey Filippov's avatar
Andrey Filippov committed
2696
//TODO: add additional parameter - process all, but with matched pointers less than 2
Andrey Filippov's avatar
Andrey Filippov committed
2697
	public int applyHintedGrids(
2698
			LaserPointer laserPointer, // LaserPointer object that specifies actual laser pointers on the target
Andrey Filippov's avatar
Andrey Filippov committed
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			boolean removeOutOfGridPointers,
			double  hintGridTolerance, // allowed mismatch (fraction of period) or 0 - orientation only
			boolean processAll, // if true - process all images, false - only disabled
			boolean ignoreLaserPointers, // ignore laser pointers, rely on hints only
			boolean processBlind, // try to match without known orientation and no laser pointers
			int     imageNumber, // <0 - all, >=0 only this image
			boolean useSetData,
			int threadsMax,
			boolean updateStatus,
			int mspDebugLevel,
			int global_debug_level, // DEBUG_LEVEL
			int debug_level // debug level used inside loops
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	){
		return applyHintedGrids(
				laserPointer, // LaserPointer object that specifies actual laser pointers on the target
				removeOutOfGridPointers,
				hintGridTolerance, // allowed mismatch (fraction of period) or 0 - orientation only
				processAll, // if true - process all images, false - only disabled
				ignoreLaserPointers, // ignore laser pointers, rely on hints only
				processBlind, // try to match without known orientation and no laser pointers
				imageNumber, // <0 - all, >=0 only this image
				0, // int     start_set,
				this.fittingStrategy.distortionCalibrationData.getNumSets()-1, // int     end_set,
				useSetData,
				threadsMax,
				updateStatus,
				mspDebugLevel,
				global_debug_level, // DEBUG_LEVEL
				debug_level // debug level used inside loops
		);
	}


	public int applyHintedGrids(
			LaserPointer laserPointer, // LaserPointer object that specifies actual laser pointers on the target
			boolean removeOutOfGridPointers,
			double  hintGridTolerance, // allowed mismatch (fraction of period) or 0 - orientation only
			boolean processAll, // if true - process all images, false - only disabled
			boolean ignoreLaserPointers, // ignore laser pointers, rely on hints only
			boolean processBlind, // try to match without known orientation and no laser pointers
			int     imageNumber, // <0 - all, >=0 only this image
			int     start_set,
			int     end_set,
			boolean useSetData,
			int threadsMax,
			boolean updateStatus,
			int mspDebugLevel,
			int global_debug_level, // DEBUG_LEVEL
			int debug_level // debug level used inside loops
Andrey Filippov's avatar
Andrey Filippov committed
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	){
		int debugThreshold0=0;
		int debugThreshold=2;
		MatchSimulatedPattern matchSimulatedPattern = new MatchSimulatedPattern(64); // new instance, all reset, FFTSize=64 will not be used
		// next 2 lines are not needed for the new instance, but can be
		// used alternatively if keeping it
		//		matchSimulatedPattern.invalidateFlatFieldForGrid(); // Reset Flat Filed calibration - different image.
		//		matchSimulatedPattern.invalidateFocusMask();
		matchSimulatedPattern.debugLevel = mspDebugLevel;
		//		ImagePlus imp_eq = matchSimulatedPattern.applyFlatField(images[nImg]); // current image with grid flat-field  correction

		//		if (debug_level > 0){
		//			System.out.println("\n   ======= Looking for grid, matching pointers in image " +images[nImg].getTitle()+
		//					", initial number of pointers was "+numPointers);
		//		}
		//matchSimulatedPatterns[numSensor].getChannel(images[numSensor])+" ");
		//		MatchSimulatedPattern.DistortionParameters distortionParameters = modifyDistortionParameters();
		//		SimulationPattern.SimulParameters simulParameters = modifySimulParameters();

		boolean noMessageBoxes=true;
		double [] xy0={0.0,0.0} ; //(old) debug only
		int numSuccess=0;
		DistortionCalibrationData dcd=fittingStrategy.distortionCalibrationData;
2771 2772 2773 2774 2775 2776
		for (int numGridImage=0;numGridImage<dcd.gIP.length;numGridImage++) {
			int set_number = dcd.gIP[numGridImage].getSetNumber();
			if ((set_number >= start_set) &&
					(set_number <= end_set) &&
					(((imageNumber<0) ||
					((imageNumber==numGridImage)) &&(processAll) ||
Andrey Filippov's avatar
Andrey Filippov committed
2777
					(!dcd.gIP[numGridImage].enabled &&
2778
							((hintGridTolerance>0.0) || ((dcd.gIP[numGridImage].matchedPointers>0)) && !ignoreLaserPointers))))){ // skip no-pointers if only orientation is hinted
Andrey Filippov's avatar
Andrey Filippov committed
2779 2780 2781 2782 2783
				if (((dcd.gIP[numGridImage].matchedPointers==0) || ignoreLaserPointers)&&
						(dcd.gIS[dcd.get_gIS_index(numGridImage)].orientationEstimated)) {
					if ( !processBlind) {
						if (this.debugLevel>0) {
							System.out.println("\n**** Orientation is not known exactly for image # "+numGridImage+" - "+dcd.gIP[numGridImage].path+
2784
									", and there are no laser pointer references (processBlind==false) - skipping");
Andrey Filippov's avatar
Andrey Filippov committed
2785 2786 2787 2788 2789
						}
						continue;
					} else {
						if (this.debugLevel>0) {
							System.out.println("\n**** Orientation is not known exactly for image # "+numGridImage+" - "+dcd.gIP[numGridImage].path+
2790
									", and there are no laser pointer references, but processBlind is enabled, proceeding");
Andrey Filippov's avatar
Andrey Filippov committed
2791 2792 2793 2794 2795 2796 2797
						}
					}
				}
				if (this.debugLevel>debugThreshold0) {
					System.out.println("\n---- applyHintedGrids() image #"+numGridImage+" (imageNumber="+imageNumber+") "+
							" dcd.gIP["+numGridImage+"].pixelsXY.length="+dcd.gIP[numGridImage].pixelsXY.length+
							" dcd.gIP["+numGridImage+"].pixelsXY_extra.length="+dcd.gIP[numGridImage].pixelsXY_extra.length+
2798
							" grid period="+dcd.gIP[numGridImage].getGridPeriod()+
2799 2800
							" enabled="+dcd.gIP[numGridImage].enabled+
							" hintedMatch="+dcd.gIP[numGridImage].hintedMatch
Andrey Filippov's avatar
Andrey Filippov committed
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
							);
					if (this.debugLevel>(debugThreshold)){
						for (int i=0;i<dcd.gIP[numGridImage].pixelsXY.length;i++){
							System.out.println(i+": dcd.gIP["+numGridImage+"].pixelsXY={"+dcd.gIP[numGridImage].pixelsXY[i][0]+
									","+dcd.gIP[numGridImage].pixelsXY[i][1]+"}"+
									" uv={"+dcd.gIP[numGridImage].pixelsUV[i][0]+
									","+dcd.gIP[numGridImage].pixelsUV[i][1]+"}");
						}
						for (int i=0;i<dcd.gIP[numGridImage].pixelsXY_extra.length;i++){
							System.out.println(i+": dcd.gIP["+numGridImage+"].pixelsXY_extra={"+dcd.gIP[numGridImage].pixelsXY_extra[i][0]+
									","+dcd.gIP[numGridImage].pixelsXY_extra[i][1]+"}"+
									" uv={"+dcd.gIP[numGridImage].pixelsUV_extra[i][0]+
									","+dcd.gIP[numGridImage].pixelsUV_extra[i][1]+"}");
						}
					}
				}
Andrey Filippov's avatar
Andrey Filippov committed
2817

Andrey Filippov's avatar
Andrey Filippov committed
2818
				double [][][] pixelsXYSet={
2819 2820
						dcd.gIP[numGridImage].pixelsXY,
						dcd.gIP[numGridImage].pixelsXY_extra};
Andrey Filippov's avatar
Andrey Filippov committed
2821 2822 2823
				int   [][][] pixelsUVSet={
						dcd.gIP[numGridImage].pixelsUV,
						dcd.gIP[numGridImage].pixelsUV_extra};
2824
				// shifts pixelsUV to have minimal u,v of 0 (stores shift in this.minUV), sets PATTERN_GRID
Andrey Filippov's avatar
Andrey Filippov committed
2825
				matchSimulatedPattern.restorePatternGridFromGridList(
Andrey Filippov's avatar
Andrey Filippov committed
2826 2827 2828
						pixelsXYSet, //double [][] pixelsXY,
						pixelsUVSet, // int [][] pixelsUV,
						dcd.gIP[numGridImage].intensityRange
2829
						); // width and height will be calculated from maximal of pixelsXY
Andrey Filippov's avatar
Andrey Filippov committed
2830
				boolean OK=matchSimulatedPattern.createUV_INDEX( /// **** fails here
Andrey Filippov's avatar
Andrey Filippov committed
2831
						null, //imp, // or null - just to determine WOI (when getWOI matches image size)
Andrey Filippov's avatar
Andrey Filippov committed
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
						xy0, // add to patterGrid xy, null OK
						threadsMax,
						updateStatus,
						global_debug_level, // DEBUG_LEVEL
						debug_level); // debug level used inside loops
				if (!OK) {
					System.out.println("++++++ BUG: in applyHintedGrids() failed in createUV_INDEX()");
					continue;
				}

				double [] goniometerTiltAxial=dcd.getImagesetTiltAxial(numGridImage);
				if ((goniometerTiltAxial==null) || Double.isNaN(goniometerTiltAxial[0])  || Double.isNaN(goniometerTiltAxial[1])){
					if (this.debugLevel>0) {
						System.out.println("No goniometer orientation is available for image # "+numGridImage+" - "+dcd.gIP[numGridImage].path);
					}
				} else {
					int station=dcd.getImageStation(numGridImage);
2849
					int setNumber=dcd.gIP[numGridImage].getSetNumber();
Andrey Filippov's avatar
Andrey Filippov committed
2850 2851 2852 2853 2854
					double [][][] hintGrid=estimateGridOnSensor(
							station, // station number
							dcd.gIP[numGridImage].channel,
							goniometerTiltAxial[0], // Tilt, goniometerHorizontal
							goniometerTiltAxial[1],  // Axial,goniometerAxial
2855
							goniometerTiltAxial[2],  // inter-axis angle
2856 2857
							setNumber, // -1 or specific image set
							true // filter border
2858
							);
Andrey Filippov's avatar
Andrey Filippov committed
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
					if (global_debug_level>0){
						System.out.println("\n**** applyHintedGrids(): processing grid image # "+numGridImage+", path="+dcd.gIP[numGridImage].path);
					}
					if (hintGrid==null){
						if (global_debug_level>0){
							System.out.println("estimateGridOnSensor() failed - skipping");
						}
						dcd.gIP[numGridImage].hintedMatch =0;
						continue;
					}
					int rslt= matchSimulatedPattern.combineGridCalibration(
							laserPointer, // LaserPointer object or null
							ignoreLaserPointers?null:dcd.gIP[numGridImage].laserPixelCoordinates, //pointersXY,
2872 2873 2874 2875 2876
									removeOutOfGridPointers, //
									hintGrid, // predicted grid array (or null)
									hintGridTolerance, // allowed mismatch (fraction of period) or 0 - orientation only
									global_debug_level, // DEBUG_LEVEL
									noMessageBoxes );
Andrey Filippov's avatar
Andrey Filippov committed
2877 2878 2879 2880 2881 2882
					if (global_debug_level>0){
						System.out.println("applyHintedGrids(): rslt="+rslt);
					}
					if (rslt<0) { // failed hinting
						dcd.gIP[numGridImage].hintedMatch =0;
					} else {
2883 2884 2885 2886
						// re-create pixelsXY, pixelsXY_extra, pixelsUV, pixelsUV_extra
						int size=0;
						int size_extra=0;
						/*	            		System.out.println("numGridImage="+numGridImage+" matchSimulatedPattern.getHeight()="+matchSimulatedPattern.getHeight()+
Andrey Filippov's avatar
Andrey Filippov committed
2887 2888 2889 2890 2891 2892 2893 2894
	            				" matchSimulatedPattern.getWidth()="+matchSimulatedPattern.getWidth()+
	            				" matchSimulatedPattern.targetUV is "+((matchSimulatedPattern.targetUV==null)?"null":"not null")+
	            				" matchSimulatedPattern.pixelsUV is "+((matchSimulatedPattern.pixelsUV==null)?"null":"not null")
	            				);
	            		System.out.println(
	            				" matchSimulatedPattern.targetUV[0] is "+((matchSimulatedPattern.targetUV[0]==null)?"null":"not null")+
	            				" matchSimulatedPattern.pixelsUV[0] is "+((matchSimulatedPattern.pixelsUV[0]==null)?"null":"not null")
	            				);*/
2895 2896
						for (int v=0;v<matchSimulatedPattern.getHeight();v++) for (int u=0;u<matchSimulatedPattern.getWidth();u++) {
							/*		            		System.out.println("v="+v+", u="+u);
Andrey Filippov's avatar
Andrey Filippov committed
2897 2898
		            		System.out.println(" matchSimulatedPattern.targetUV[v][u] is "+((matchSimulatedPattern.targetUV[v][u]==null)?"null":"not null"));
		            		System.out.println(" matchSimulatedPattern.pixelsUV[v][u] is "+((matchSimulatedPattern.pixelsUV[v][u]==null)?"null":"not null"));*/
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
							if ((matchSimulatedPattern.targetUV[v][u]!=null) && (matchSimulatedPattern.pXYUV [v][u]!=null)){

								if ((matchSimulatedPattern.targetUV[v][u]!=null) && (matchSimulatedPattern.pXYUV [v][u]!=null) &&
										(matchSimulatedPattern.pXYUV[v][u][0]>=0.0) || (matchSimulatedPattern.pXYUV[v][u][1]>=0.0)) { // disregard negative sensor pixels
									//				            		System.out.println(" matchSimulatedPattern.targetUV[v][u] is "+((matchSimulatedPattern.targetUV[v][u]==null)?"null":"not null"));
									//				            		System.out.println(" matchSimulatedPattern.targetUV[v][u][0]= "+matchSimulatedPattern.targetUV[v][u][0]);
									//				            		System.out.println(" matchSimulatedPattern.targetUV[v][u][1]= "+matchSimulatedPattern.targetUV[v][u][1]); //********
									//				            		System.out.println(" patternParameters is "+((patternParameters==null)?"null":"not null"));
									//				            		int tu=matchSimulatedPattern.targetUV[v][u][0];
									//				            		int tv=matchSimulatedPattern.targetUV[v][u][1];
									//
									if (patternParameters.getXYZM(matchSimulatedPattern.targetUV[v][u][0],matchSimulatedPattern.targetUV[v][u][1],false,station)!=null) {
										size++;
									} else {
										size_extra++;
									}
								}
							}
						}
						// Move to DCD?
						dcd.gIP[numGridImage].resetMask();
						dcd.gIP[numGridImage].pixelsXY=new double [size][6];
						dcd.gIP[numGridImage].pixelsUV=new int    [size][2];
						dcd.gIP[numGridImage].pixelsXY_extra=new double [size_extra][6];
						dcd.gIP[numGridImage].pixelsUV_extra=new int    [size_extra][2];
						int index=0;
						int index_extra=0;
						for (int v=0;v<matchSimulatedPattern.getHeight();v++) for (int u=0;u<matchSimulatedPattern.getWidth();u++) {
							/*		            		System.out.println("+ v="+v+", u="+u);
Andrey Filippov's avatar
Andrey Filippov committed
2928 2929
		            		System.out.println(" + matchSimulatedPattern.targetUV[v][u] is "+((matchSimulatedPattern.targetUV[v][u]==null)?"null":"not null"));
		            		System.out.println(" + matchSimulatedPattern.pixelsUV[v][u] is "+((matchSimulatedPattern.pixelsUV[v][u]==null)?"null":"not null"));*/
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
							if ((matchSimulatedPattern.targetUV[v][u]!=null) &&(matchSimulatedPattern.pXYUV[v][u]!=null) ) {
								//			            		System.out.println("++ v="+v+", u="+u+" index="+index+" ("+size+"), index_extra="+index_extra+" ("+size_extra+")");

								if ((matchSimulatedPattern.targetUV[v][u]!=null) &&(matchSimulatedPattern.pXYUV[v][u]!=null) &&
										(matchSimulatedPattern.pXYUV[v][u][0]>=0.0) || (matchSimulatedPattern.pXYUV[v][u][1]>=0.0)) { // disregard negative sensor pixels
									if (
											(v>=matchSimulatedPattern.gridContrastBrightness[0].length) ||
											(u>=matchSimulatedPattern.gridContrastBrightness[0][0].length)){
										System.out.println(
												" matchSimulatedPattern.gridContrastBrightness[0].length="+matchSimulatedPattern.gridContrastBrightness[0].length+
												" matchSimulatedPattern.gridContrastBrightness[0][0].length="+matchSimulatedPattern.gridContrastBrightness[0][0].length+
												" v="+v+" u="+u);
									}
								}
								// setting dcd.gIP[numGridImage].pixelsUV[index] with rotated/shifted
								if (patternParameters.getXYZM(matchSimulatedPattern.targetUV[v][u][0],matchSimulatedPattern.targetUV[v][u][1],false,station)!=null) {
									dcd.gIP[numGridImage].pixelsXY[index][0]=matchSimulatedPattern.pXYUV[v][u][0];
									dcd.gIP[numGridImage].pixelsXY[index][1]=matchSimulatedPattern.pXYUV[v][u][1];
									dcd.gIP[numGridImage].pixelsUV[index][0]=matchSimulatedPattern.targetUV[v][u][0];
									dcd.gIP[numGridImage].pixelsUV[index][1]=matchSimulatedPattern.targetUV[v][u][1];
									dcd.gIP[numGridImage].pixelsXY[index][2]=matchSimulatedPattern.gridContrastBrightness[0][v][u]; // grid contrast
									dcd.gIP[numGridImage].pixelsXY[index][3]=matchSimulatedPattern.gridContrastBrightness[1][v][u]/dcd.gIP[numGridImage].intensityRange[0]; // red
									dcd.gIP[numGridImage].pixelsXY[index][4]=matchSimulatedPattern.gridContrastBrightness[2][v][u]/dcd.gIP[numGridImage].intensityRange[1]; // green
									dcd.gIP[numGridImage].pixelsXY[index][5]=matchSimulatedPattern.gridContrastBrightness[3][v][u]/dcd.gIP[numGridImage].intensityRange[2]; // blue
									index++;
								} else {
									dcd.gIP[numGridImage].pixelsXY_extra[index_extra][0]=matchSimulatedPattern.pXYUV[v][u][0];
									dcd.gIP[numGridImage].pixelsXY_extra[index_extra][1]=matchSimulatedPattern.pXYUV[v][u][1];
									dcd.gIP[numGridImage].pixelsUV_extra[index_extra][0]=matchSimulatedPattern.targetUV[v][u][0];
									dcd.gIP[numGridImage].pixelsUV_extra[index_extra][1]=matchSimulatedPattern.targetUV[v][u][1];
									dcd.gIP[numGridImage].pixelsXY_extra[index_extra][2]=matchSimulatedPattern.gridContrastBrightness[0][v][u]; // grid contrast
									dcd.gIP[numGridImage].pixelsXY_extra[index_extra][3]=matchSimulatedPattern.gridContrastBrightness[1][v][u]/dcd.gIP[numGridImage].intensityRange[0]; // red
									dcd.gIP[numGridImage].pixelsXY_extra[index_extra][4]=matchSimulatedPattern.gridContrastBrightness[2][v][u]/dcd.gIP[numGridImage].intensityRange[1]; // green
									dcd.gIP[numGridImage].pixelsXY_extra[index_extra][5]=matchSimulatedPattern.gridContrastBrightness[3][v][u]/dcd.gIP[numGridImage].intensityRange[2]; // blue
									index_extra++;
								}
							}
						}
						dcd.gIP[numGridImage].hintedMatch =(hintGridTolerance>0.0)?2:1; // orientation or both orientation and translation
Andrey Filippov's avatar
Andrey Filippov committed
2969 2970
						dcd.gIP[numGridImage].matchedPointers=rslt; // update number of matched pointers
						if ((dcd.gIP[numGridImage].hintedMatch>1) || (dcd.gIP[numGridImage].matchedPointers>0)) numSuccess++;
2971 2972 2973 2974
						// Update rotation/shift
						//matchSimulatedPattern
						int [] fileUVShiftRot=dcd.gIP[numGridImage].getUVShiftRot();
						int [] extraUVShiftRot=matchSimulatedPattern.getUVShiftRot(true); // last shift/rotation during matching pattern, correct for zero shift
2975
						//						int [] extraDbg=matchSimulatedPattern.getUVShiftRot(false);
2976
						int [] combinedUVShiftRot=MatchSimulatedPattern.combineUVShiftRot(fileUVShiftRot,extraUVShiftRot);
2977
						dcd.gIP[numGridImage].setUVShiftRot(combinedUVShiftRot);
Andrey Filippov's avatar
Andrey Filippov committed
2978 2979
						System.out.println("applyHintedGrids(): dcd.gIP["+numGridImage+"].hintedMatch="+dcd.gIP[numGridImage].hintedMatch+
								" dcd.gIP["+numGridImage+"].matchedPointers="+dcd.gIP[numGridImage].matchedPointers+ " points:"+index+" extra points:"+index_extra);
2980 2981 2982 2983 2984
						// testing rot/shift:
						String nonzero=((extraUVShiftRot[0]==0)&&(extraUVShiftRot[1]==0)&&(extraUVShiftRot[2]==0))?" ":"*";
						System.out.println("applyHintedGrids(): fileUVShiftRot=    "+fileUVShiftRot[0]+"/"+fileUVShiftRot[1]+":"+fileUVShiftRot[2]);
						System.out.println("                   "+nonzero+"extraUVShiftRot=   "+extraUVShiftRot[0]+"/"+extraUVShiftRot[1]+":"+extraUVShiftRot[2]);
						System.out.println("                    combinedUVShiftRot="+combinedUVShiftRot[0]+"/"+combinedUVShiftRot[1]+":"+combinedUVShiftRot[2]);
2985
						//						System.out.println("                    extraDbg="+extraDbg[0]+"/"+extraDbg[1]+":"+extraDbg[2]);
Andrey Filippov's avatar
Andrey Filippov committed
2986 2987 2988
					}
				}
			}
2989
		}
Andrey Filippov's avatar
Andrey Filippov committed
2990 2991
		return numSuccess;
	}
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	public void showSourceImage(int numGridImage){
		String source_path=fittingStrategy.distortionCalibrationData.gIP[numGridImage].source_path;
		if (source_path != null) {
			ImagePlus imp = new ImagePlus(source_path);
			imp.show();
		}
	}

	public int [][] getImageMarkers(int numGridImage){
		String source_path=fittingStrategy.distortionCalibrationData.gIP[numGridImage].source_path;
		if (source_path != null) {
			final ImagePlus imp = new ImagePlus(source_path);
			imp.show();
			/*
			Thread msg_box_thread  = new Thread() {
   				@Override
				public void run() {
   					IJ.showMessage("Please place point markers on the "+imp.getTitle());
   				}
   			};
   			msg_box_thread.setPriority(Thread.MIN_PRIORITY);
   			msg_box_thread.start();
   			try {
   				msg_box_thread.join();
   			} catch (InterruptedException ie) {
   				throw new RuntimeException(ie);
   			}
	*/


//			IJ.showMessage("Please place point markers on the "+imp.getTitle());
			System.out.println("got it");
			PointRoi pointRoi = null;

			if (imp.getRoi() instanceof PointRoi) {
				pointRoi =  (PointRoi) imp.getRoi();
			} else {
				IJ.showMessage("This image does not have point marks - please mark it in "+source_path);
				return null;
			}
			Point [] points = pointRoi.getContainedPoints();
			int [][] ipoints = new int [points.length][2];
			for (int n = 0; n < ipoints.length; n++) {
				ipoints[n][0] = points[n].x;
				ipoints[n][1] = points[n].y;
			}
			return ipoints;
		}
		return null;
	}

Andrey Filippov's avatar
Andrey Filippov committed
3043

Andrey Filippov's avatar
Andrey Filippov committed
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	public void showGridImage(int numGridImage){
		DistortionCalibrationData.GridImageParameters grid=fittingStrategy.distortionCalibrationData.gIP[numGridImage];
		boolean valid=false;
		int minU=0,maxU=0,minV=0,maxV=0;
		for (int i=0;i<grid.pixelsUV.length;i++){
			if (!valid){
				minU=grid.pixelsUV[i][0];
				minV=grid.pixelsUV[i][1];
				maxU=minU;
				maxV=minV;
				valid=true;
			} else {
				if (minU>grid.pixelsUV[i][0]) minU=grid.pixelsUV[i][0];
				if (minV>grid.pixelsUV[i][1]) minV=grid.pixelsUV[i][1];
				if (maxU<grid.pixelsUV[i][0]) maxU=grid.pixelsUV[i][0];
				if (maxV<grid.pixelsUV[i][1]) maxV=grid.pixelsUV[i][1];
			}
		}
		for (int i=0;i<grid.pixelsUV_extra.length;i++){
			if (!valid){
				minU=grid.pixelsUV_extra[i][0];
				minV=grid.pixelsUV_extra[i][1];
				maxU=minU;
				maxV=minV;
				valid=true;
			} else {
				if (minU>grid.pixelsUV_extra[i][0]) minU=grid.pixelsUV_extra[i][0];
				if (minV>grid.pixelsUV_extra[i][1]) minV=grid.pixelsUV_extra[i][1];
				if (maxU<grid.pixelsUV_extra[i][0]) maxU=grid.pixelsUV_extra[i][0];
				if (maxV<grid.pixelsUV_extra[i][1]) maxV=grid.pixelsUV_extra[i][1];
			}
		}
		String [] titles={"X","Y","U","V","valid","extra"};
		int height=maxV-minV+1;
		int width= maxU-minU+1;
//		System.out.println("showGridImage(): minU="+minU+" maxU="+maxU+" minV="+minV+" maxV="+maxV+" width="+width+" height="+height);
//		System.out.println("showGridImage(): grid.pixelsXY.length="+grid.pixelsXY.length+" grid.pixelsXY.length="+grid.pixelsXY.length);
		double [][] pixels=new double [titles.length][width*height];
		for (int i=0;i<pixels[0].length;i++) {
			pixels[0][i]=-1.0; // x
			pixels[1][i]=-1.0; // y
			pixels[2][i]= 0.0; // u
			pixels[3][i]= 0.0; // v
			pixels[4][i]=-1000.0; // valid
			pixels[5][i]=-1000.0; // extra
		}
		for (int i=0;i<grid.pixelsUV.length;i++){
			int u=grid.pixelsUV[i][0]-minU;
			int v=grid.pixelsUV[i][1]-minV;
			int index=u+width*v;
			pixels[0][index]=grid.pixelsXY[i][0];
			pixels[1][index]=grid.pixelsXY[i][1];
			pixels[2][index]=grid.pixelsUV[i][0];
			pixels[3][index]=grid.pixelsUV[i][1];
			pixels[4][index]=1000.0;
		}
		for (int i=0;i<grid.pixelsUV_extra.length;i++){
			int u=grid.pixelsUV_extra[i][0]-minU;
			int v=grid.pixelsUV_extra[i][1]-minV;
			int index=u+width*v;
			pixels[0][index]=grid.pixelsXY_extra[i][0];
			pixels[1][index]=grid.pixelsXY_extra[i][1];
			pixels[2][index]=grid.pixelsUV_extra[i][0];
			pixels[3][index]=grid.pixelsUV_extra[i][1];
			pixels[4][index]=1000.0;
		}
3110
		(new ShowDoubleFloatArrays()).showArrays(pixels, width, height,  true, "grid-"+numGridImage, titles);
Andrey Filippov's avatar
Andrey Filippov committed
3111
	}
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246



	public void manualGridHint(int imgNumber) {
		int [][] markers = getImageMarkers(imgNumber);
		if ((markers != null) && (markers.length > 0)) {
			double [][] xyuv = new double [markers.length][4];
			for (int i =0; i < markers.length; i++) {
				xyuv[i][0]=markers[i][0];
				xyuv[i][1]=markers[i][1];
				xyuv[i][2]=0.5;
				xyuv[i][3]=0.5;
			}
			GenericDialog gd=new GenericDialog("Specify U,V coordinates of the marker(s)");
			gd.addMessage("Center white cell U=0.5, V=0.5");
			for (int n = 0; n < markers.length; n++) {
				String label = "Marker "+(n+1)+" (x="+markers[n][0]+", y="+markers[n][1];
				gd.addNumericField(label+" U", xyuv[n][2], 1, 5, "");
				gd.addNumericField(label+" V", xyuv[n][3], 1, 5, "");
			}
			gd.showDialog();
			if (gd.wasCanceled()) return;
			for (int i =0; i < markers.length; i++) {
				xyuv[i][2] = gd.getNextNumber();
				xyuv[i][3] = gd.getNextNumber();
			}

			// read grid image

			String grid_path=fittingStrategy.distortionCalibrationData.gIP[imgNumber].path;
			if (grid_path != null) {
				ImagePlus imp = new ImagePlus(grid_path);
				JP46_Reader_camera jp4_instance= new JP46_Reader_camera(false);
				jp4_instance.decodeProperiesFromInfo(imp);
				MatchSimulatedPattern.setPointersXYUV(imp, xyuv);
				updateGridToPointer(imp, xyuv);
				jp4_instance.encodeProperiesToInfo(imp);
				System.out.println("Updated "+grid_path);
				(new FileSaver(imp)).saveAsTiff(grid_path);
//				imp.show();
			}
			return;
		}
	}
	public void updateGridToPointer(ImagePlus imp_grid, double[][] xyuv) {
		ImageStack stack=imp_grid.getStack();
		if ((stack==null) || (stack.getSize()<4)) {
			String msg="Expected a 8-slice stack in "+imp_grid.getTitle();
			IJ.showMessage("Error",msg);
			throw new IllegalArgumentException (msg);
		}
		float [][] pixels=new float[stack.getSize()][]; // now - 8 (x,y,u,v,contrast, vignR,vignG,vignB
		for (int i=0;i<pixels.length;i++) pixels[i]= (float[]) stack.getPixels(i+1); // pixel X : negative - no grid here
		int width = imp_grid.getWidth();
		int height = imp_grid.getHeight();
		// start with translation only using xyuv[0][], may use full matching - same as laser pointers later
		int    indx_best = -1;
		double d2_best = Double.NaN;
		for (int indx = 0; indx < pixels[0].length; indx++) {
			double dx = pixels[0][indx] - xyuv[0][0];
			double dy = pixels[1][indx] - xyuv[0][1] ;
			double d2 = dx*dx + dy*dy;
			if (Double.isNaN(d2_best) || (d2 < d2_best)) {
				indx_best = indx;
				d2_best = d2;
			}
		}
		int ix0 = indx_best % width;
		int iy0 = indx_best / width;
		PolynomialApproximation polynomialApproximation =new PolynomialApproximation(0);// no debug
		double [][][] data = new double[9][3][];
		int indx = 0;
		for (int idy = -1; idy <=1; idy++) {
			int iy = iy0+idy;
			for (int idx = -1; idx <=1; idx++) {
				int ix = ix0 + idx;
				data[indx][0] = new double[2];
				data[indx][1] = new double[2];
				data[indx][2] = new double[1];
				data[indx][0][0] = idx;
				data[indx][0][1] = idy;
				if ((ix >= 0) && (ix < width) && (iy >= 0) && (iy < height)) {
					int offs = iy * width + ix;
					data[indx][1][0] = pixels[0][offs] - xyuv[0][0];
					data[indx][1][1] = pixels[1][offs] - xyuv[0][1];
					data[indx][2][0] = 1.0;
				} else {
					data[indx][2][0] = 0.0;
				}
				indx++;
			}
		}
		double [][] coeff = polynomialApproximation.quadraticApproximation(
				data,
				true); // force linear
		double [][] aA = {{coeff[0][0],coeff[0][1]},{coeff[1][0],coeff[1][1]}};
		double [][] aB = {{-coeff[0][2]},{-coeff[1][2]}};
		Matrix A = new Matrix(aA);
		Matrix B = new Matrix(aB);
		Matrix V = A.solve(B);
		double [] av = V.getColumnPackedCopy();
		double u, v; //  = xyuv[0][2]-()
		if (av[0] < 0) {
			av[0] += 1.0;
			ix0 -= 1;
		}
		if (av[1] < 0) {
			av[1] += 1.0;
			iy0 -= 1;
		}
		u = xyuv[0][2] - (
				(1-av[0])*(1-av[1]) * pixels[2][(iy0 + 0) * width + ix0 + 0]+
				(  av[0])*(1-av[1]) * pixels[2][(iy0 + 0) * width + ix0 + 1]+
				(1-av[0])*(  av[1]) * pixels[2][(iy0 + 1) * width + ix0 + 0]+
				(  av[0])*(  av[1]) * pixels[2][(iy0 + 1) * width + ix0 + 1]);
		v = xyuv[0][3] - (
				(1-av[0])*(1-av[1]) * pixels[3][(iy0 + 0) * width + ix0 + 0]+
				(  av[0])*(1-av[1]) * pixels[3][(iy0 + 0) * width + ix0 + 1]+
				(1-av[0])*(  av[1]) * pixels[3][(iy0 + 1) * width + ix0 + 0]+
				(  av[0])*(  av[1]) * pixels[3][(iy0 + 1) * width + ix0 + 1]);
		int idu = (int)Math.round(u);
		int idv = (int)Math.round(v);
		// Verify that idy+idv - even number
		if (((idu + idv) & 1) != 0) {
			String msg = "Incorrect shift - u="+u+", v="+v+", idu="+idu+", idv="+idv+", idu+idv="+(idu+idv)+" SHOULD BE EVEN!";
			System.out.println(msg);
			IJ.showMessage(msg);
		}

		for (int i = 0; i < pixels[2].length; i++) {
			pixels[2][i] += idu;
			pixels[3][i] += idv;
		}
	}

Andrey Filippov's avatar
Andrey Filippov committed
3247 3248 3249
	public void showGridAndHint(){
		GenericDialog gd=new GenericDialog("Show selected grid and/or hint grid");
		gd.addNumericField("Grid Image index", 0,0);
3250
		gd.addCheckbox("Show source image (if available)", true);
Andrey Filippov's avatar
Andrey Filippov committed
3251 3252 3253 3254 3255 3256 3257 3258
		gd.addCheckbox("Show grid image", true);
		gd.addCheckbox("Show hint grid", true);
		gd.addCheckbox("Use imageSet data if available (unchecked - camera data)", true);

		gd.showDialog();
		if (gd.wasCanceled()) return;
		int numGridImage= (int) gd.getNextNumber();
		boolean showGrid=gd.getNextBoolean();
3259
		boolean showSource=gd.getNextBoolean();
Andrey Filippov's avatar
Andrey Filippov committed
3260 3261 3262 3263
		boolean showHint=gd.getNextBoolean();
		boolean useSetData=gd.getNextBoolean();
		IJ.showStatus("grid: "+((fittingStrategy.distortionCalibrationData.gIP[numGridImage].path==null)?"":fittingStrategy.distortionCalibrationData.gIP[numGridImage].path));
//		showStatus("grid: "+((fittingStrategy.distortionCalibrationData.gIP[numGridImage].path==null)?"":fittingStrategy.distortionCalibrationData.gIP[numGridImage].path),0);
Andrey Filippov's avatar
Andrey Filippov committed
3264 3265

        if (showGrid)	showGridImage(numGridImage);
3266 3267
        if (showSource)	showSourceImage(numGridImage);
//        if (showSource)	getImageMarkers(numGridImage);
Andrey Filippov's avatar
Andrey Filippov committed
3268
        if (showHint)	calcAndShowHintGrid(numGridImage,useSetData);
Andrey Filippov's avatar
Andrey Filippov committed
3269 3270
	}

Andrey Filippov's avatar
Andrey Filippov committed
3271 3272


Andrey Filippov's avatar
Andrey Filippov committed
3273 3274 3275 3276 3277 3278 3279
	public void calcAndShowHintGrid(int numGridImage, boolean useSetData){
		double [] goniometerTiltAxial=fittingStrategy.distortionCalibrationData.getImagesetTiltAxial(numGridImage);
		if ((goniometerTiltAxial==null) || Double.isNaN(goniometerTiltAxial[0])  || Double.isNaN(goniometerTiltAxial[1])){
			if (this.debugLevel>0)System.out.println("No goniometer orientation is available for image # "+numGridImage+" - "+fittingStrategy.distortionCalibrationData.gIP[numGridImage].path);
			GenericDialog gd=new GenericDialog("Specify camera orientation (channel"+fittingStrategy.distortionCalibrationData.gIP[numGridImage].channel+")");
			gd.addMessage("No goniometer orientation is available for image # "+numGridImage+" - "+fittingStrategy.distortionCalibrationData.gIP[numGridImage].path+
			", please specify orientation manually");
3280 3281 3282
			gd.addNumericField("Camera tilt (0 - vertical, >0 looking above horizon on the target)", 0.0, 1,6,"degrees");
			gd.addNumericField("Camera axial (0 - subcamera 0 looking to the target, >0 - rotated clockwise)", 0.0, 1,6,"degrees");
			gd.addNumericField("Camera inter-axis angle (from 90) ", 0.0, 1,6,"degrees");
Andrey Filippov's avatar
Andrey Filippov committed
3283 3284
			gd.showDialog();
			if (gd.wasCanceled()) return;
3285 3286
			goniometerTiltAxial=new double[3];
			goniometerTiltAxial[0]=      gd.getNextNumber();
Andrey Filippov's avatar
Andrey Filippov committed
3287
			goniometerTiltAxial[1]=      gd.getNextNumber();
3288
			goniometerTiltAxial[2]=      gd.getNextNumber();
Andrey Filippov's avatar
Andrey Filippov committed
3289 3290 3291 3292 3293 3294
		}
		double [][][] hintGrid=estimateGridOnSensor(
				fittingStrategy.distortionCalibrationData.getImageStation(numGridImage), // station number
				fittingStrategy.distortionCalibrationData.gIP[numGridImage].channel,
				goniometerTiltAxial[0], // Tilt, goniometerHorizontal
				goniometerTiltAxial[1],  // Axial,goniometerAxial
3295
				goniometerTiltAxial[2],  // inter-axis angle
3296
				(useSetData?fittingStrategy.distortionCalibrationData.gIP[numGridImage].getSetNumber():-1),
3297 3298
				true // filter border
				);
3299 3300 3301 3302 3303 3304
		if (hintGrid == null) {
			String msg = "hintGrid is null";
			IJ.showMessage("Error",msg);
			System.out.println(msg);
			return;
		}
Andrey Filippov's avatar
Andrey Filippov committed
3305 3306 3307 3308 3309 3310
		showHintGrid(hintGrid,"hint-"+numGridImage);

	}
	public void showHintGrid(double [][][] hintGrid){
		showHintGrid(hintGrid,"hintGrid");
	}
Andrey Filippov's avatar
Andrey Filippov committed
3311

Andrey Filippov's avatar
Andrey Filippov committed
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	public void showHintGrid(double [][][] hintGrid, String title){
		double [][] pixels=new double[4][hintGrid.length*hintGrid[0].length];
		int index=0;
		String [] titles={"pixel-X","pixel-Y","grid-U","grid-V"};
		for (int v=0; v<hintGrid.length;v++) for (int u=0;u<hintGrid[v].length;u++){
			if (hintGrid[v][u]!=null){
				for (int i=0; i<4;i++)	pixels[i][index]=hintGrid[v][u][i];
			} else {
				for (int i=0; i<4;i++)	pixels[i][index]=0;
			}
			index++;
		}
3324
		(new ShowDoubleFloatArrays()).showArrays(pixels, hintGrid[0].length, hintGrid.length,  true, title, titles);
Andrey Filippov's avatar
Andrey Filippov committed
3325
	}
Andrey Filippov's avatar
Andrey Filippov committed
3326

Andrey Filippov's avatar
Andrey Filippov committed
3327 3328 3329
	/**
	 * Calculate grid on sensor using current camera parameters (including goniometer angles), sub-camera number
	 * @param subCamera
Andrey Filippov's avatar
Andrey Filippov committed
3330
	 * @return grid array [v][u][0- x,  1 - y, 2 - u, 3 - v]
Andrey Filippov's avatar
Andrey Filippov committed
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	 */
	/*
	 // wrong, orientation depends on timestamp
	public double [][][] estimateGridOnSensor(
			int subCamera){
		double [] parVector=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getParametersVector(subCamera);
		return estimateGridOnSensor(
				subCamera,
				parVector[fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getGoniometerHorizontalIndex()],
				parVector[fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getGoniometerAxialIndex()]);
	}
	*/

Andrey Filippov's avatar
Andrey Filippov committed
3344

Andrey Filippov's avatar
Andrey Filippov committed
3345 3346 3347
	public LensDistortionParameters setupLensDistortionParameters(
			int numImg,
			int debugLevel){     // Axial - may be Double.NaN
Andrey Filippov's avatar
Andrey Filippov committed
3348

Andrey Filippov's avatar
Andrey Filippov committed
3349
		LensDistortionParameters lensDistortionParameters = new LensDistortionParameters (
3350 3351 3352 3353
				this.fittingStrategy.distortionCalibrationData.isTripod(),
				this.fittingStrategy.distortionCalibrationData.isCartesian(),
	    		this.fittingStrategy.distortionCalibrationData.getPixelSize(numImg),
	    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(numImg),
Andrey Filippov's avatar
Andrey Filippov committed
3354 3355 3356 3357 3358 3359 3360
	            null, //double [][] interParameterDerivatives, //partial derivative matrix from subcamera-camera-goniometer to single camera (12x21) if null - just values, no derivatives
	            this.fittingStrategy.distortionCalibrationData.getParameters(numImg), //parVector,
	    		null, //boolean [] mask, // calculate only selected derivatives (all parVect values are still
	    		debugLevel
				);
		return lensDistortionParameters;
	}
Andrey Filippov's avatar
Andrey Filippov committed
3361

Andrey Filippov's avatar
Andrey Filippov committed
3362 3363 3364
	public LensDistortionParameters setupLensDistortionParameters(
			int stationNumber,
			int subCamera,
Andrey Filippov's avatar
Andrey Filippov committed
3365
			double goniometerHorizontal, // Tilt - may be Double.NaN
Andrey Filippov's avatar
Andrey Filippov committed
3366 3367 3368 3369 3370 3371 3372 3373
			double goniometerAxial,
			int debugLevel){     // Axial - may be Double.NaN
		double [] parVector=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getParametersVector(stationNumber,subCamera);
		int goniometerHorizontalIndex=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getGoniometerHorizontalIndex();
		int goniometerAxialIndex=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getGoniometerAxialIndex();
		if (!Double.isNaN(goniometerHorizontal))parVector[goniometerHorizontalIndex]=goniometerHorizontal;
		if (!Double.isNaN(goniometerAxial))parVector[goniometerAxialIndex]=goniometerAxial;
		LensDistortionParameters lensDistortionParameters = new LensDistortionParameters (
3374 3375 3376 3377
				this.fittingStrategy.distortionCalibrationData.isTripod(),
				this.fittingStrategy.distortionCalibrationData.isCartesian(),
	    		this.fittingStrategy.distortionCalibrationData.getPixelSize(stationNumber, subCamera),
	    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(stationNumber, subCamera),
Andrey Filippov's avatar
Andrey Filippov committed
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	            null, //double [][] interParameterDerivatives, //partial derivative matrix from subcamera-camera-goniometer to single camera (12x21) if null - just values, no derivatives
	    		parVector,
	    		null, //boolean [] mask, // calculate only selected derivatives (all parVect values are still
	    		debugLevel
				);
		return lensDistortionParameters;
	}

	/**
	 * Calculate grid projection to pixel X, Y (not counting sensor correction (add?) and grid photometrics
	 * @param lensDistortionParameters LensDistortionParameters instance created for particular image with setupLensDistortionParameters()
	 * @param numImg image number
	 * @param u grid U (signed, 0 in the center)
	 * @param v grid V (signed, 0 in the center)
	 * @return [7] {pX,pY,grid mask (binary), grid R, grid G, grid B, alpha}
	 */
	public double [] reprojectGridNode(
			LensDistortionParameters lensDistortionParameters,
			int numImg,
			int u, // grid signed u,v
3398 3399 3400 3401 3402 3403 3404 3405
			int v){
		double maxRelativeRadius=this.hintedMaxRelativeRadius; // make adjustable
		return  reprojectGridNode(
				lensDistortionParameters,
				numImg,
				u, // grid signed u,v
				v,
		       	maxRelativeRadius);
Andrey Filippov's avatar
Andrey Filippov committed
3406
	}
3407 3408 3409 3410 3411 3412
	public double [] reprojectGridNode(
			LensDistortionParameters lensDistortionParameters,
			int numImg,
			int u, // grid signed u,v
			int v,
	       	double maxRelativeRadius //=2.0;
Andrey Filippov's avatar
Andrey Filippov committed
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	){
		int debugThreshold=1;
		int nChn=   this.fittingStrategy.distortionCalibrationData.gIP[numImg].channel;
		int station=this.fittingStrategy.distortionCalibrationData.gIP[numImg].getStationNumber();
//		if (!lensDistortionParameters.isTargetVisible(false)) return null; // camera is looking away from the target (does not mean target is in FOV)
//		double [][][] patternGeometry=this.patternParameters.getGeometry(); // [v][u]{x,y,z,alpha} - no photometric
		double [] result= new double[7];
			double [] XYZMP=this.patternParameters.getXYZMP( // null pointer
					u,
					v,
					station,
					nChn,
					false);
			if (XYZMP==null) return null;
Andrey Filippov's avatar
Andrey Filippov committed
3427
			// project the target point to this sensor
Andrey Filippov's avatar
Andrey Filippov committed
3428 3429 3430 3431
			double [][]pXY=  lensDistortionParameters.calcPartialDerivatives(
					XYZMP[0], // target point horizontal, positive - right,  mm
					XYZMP[1], // target point vertical,   positive - down,  mm
					XYZMP[2], // target point horizontal, positive - away from camera,  mm
3432
					maxRelativeRadius, //
Andrey Filippov's avatar
Andrey Filippov committed
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
					false); // calculate derivatives, false - values only (NaN for behind points - only when false here)
			if (Double.isNaN(pXY[0][0])) {
				if (this.debugLevel>debugThreshold){
					System.out.println("reprojectGridNode(...,"+numImg+","+u+","+"v"+") - point behind the sensor");
				}
				return null; // point behind camera
			}
			result[0]=pXY[0][0];
			result[1]=pXY[0][1];
			result[2]=XYZMP[3]; // binary mask
			result[3]=XYZMP[4]; // R
			result[4]=XYZMP[5]; // G
			result[5]=XYZMP[6]; // B
			result[6]=XYZMP[7]; // alpha
// get photometrics here
Andrey Filippov's avatar
Andrey Filippov committed
3448

Andrey Filippov's avatar
Andrey Filippov committed
3449
		return result;
3450
	}
Andrey Filippov's avatar
Andrey Filippov committed
3451

3452
	/**
Andrey Filippov's avatar
Andrey Filippov committed
3453 3454
	 * Apply sensor correction to the projected grid (generated by estimateGridOnSensor())
	 * @param gridOnSensor array [v][u][0- x,  1 - y, 2 - targetAbsolute-u, 3 - targetAbsolute-v]
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	 * @param subCamera channel number
	 * @return true if the correction was applied (in-place) false if no correction is available
	 */
	public boolean correctGridOnSensor(
			double [][][] gridOnSensor,
			int subCamera){
		if (this.pixelCorrection==null) return false;
		for (double [][] row:gridOnSensor) for (double [] cell:row) if ((cell!=null) && (cell.length>1)){
			double [] corrXYARGB=interpolateCorrectionVector ( // vector of {corrX, corrY, alpha, flatfield_red, flatfield_green, flatfield_blue}
					subCamera, //int chnNum,
					cell[0], //double px,
					cell[1]); //double py)
			cell[0]+=corrXYARGB[0]; // measured-> corrected : subtract, projected->simulated:add;
3468
			cell[1]+=corrXYARGB[1]+0.0; // Debugging by adding +1.0!!
3469
		}
3470
//		System.out.println("================== Added +0.0 to pixel y for debugging purposes! =====================");
3471
		return true;
Andrey Filippov's avatar
Andrey Filippov committed
3472
	}
Andrey Filippov's avatar
Andrey Filippov committed
3473

Andrey Filippov's avatar
Andrey Filippov committed
3474 3475 3476 3477 3478 3479 3480
	/**
	 * Calculate grid on sensor using current Camera parameters, sub-camera number and the two goniometer angles
	 * @param stationNumber
	 * @param subCamera
	 * @param goniometerHorizontal
	 * @param goniometerAxial
	 * @param imageSet - if >=0 - use this set number data  instead of the camera data)
Andrey Filippov's avatar
Andrey Filippov committed
3481
	 * @return grid array [v][u][0- x,  1 - y, 2 - u, 3 - v]
Andrey Filippov's avatar
Andrey Filippov committed
3482
	 */
Andrey Filippov's avatar
Andrey Filippov committed
3483

Andrey Filippov's avatar
Andrey Filippov committed
3484 3485 3486 3487
	// TODO:calcInterParamers() -> lensDistortionParameters.lensCalcInterParamers
	public double [][][] estimateGridOnSensor( // not yet thread safe
			int stationNumber,
			int subCamera,
Andrey Filippov's avatar
Andrey Filippov committed
3488
			double goniometerHorizontal, // Tilt
Andrey Filippov's avatar
Andrey Filippov committed
3489
			double goniometerAxial,     // Axial
3490
			double goniometerInterAxis,     // interAxisAngle
3491 3492
			int  imageSet,
			boolean filterBorder){
3493
		double maxRelativeRadius=this.hintedMaxRelativeRadius; // make adjustable
Andrey Filippov's avatar
Andrey Filippov committed
3494
		int debugThreshold=2;
Andrey Filippov's avatar
Andrey Filippov committed
3495
		// Get parameter vector (22) for the selected sensor, current Eyesisparameters and specified orientation angles
Andrey Filippov's avatar
Andrey Filippov committed
3496 3497 3498 3499 3500 3501
		double [] parVector=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getParametersVector(stationNumber,subCamera);
		if ((imageSet>=0) &&
				(this.fittingStrategy.distortionCalibrationData.gIS!=null) &&
				(this.fittingStrategy.distortionCalibrationData.gIS[imageSet]!=null)){
			this.fittingStrategy.distortionCalibrationData.gIS[imageSet].updateParameterVectorFromSet(parVector);
		}
3502 3503 3504 3505 3506 3507 3508 3509
		if (!Double.isNaN(goniometerHorizontal)) {
			int goniometerHorizontalIndex=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getGoniometerHorizontalIndex();
			parVector[goniometerHorizontalIndex]=goniometerHorizontal;
		}
		if (!Double.isNaN(goniometerAxial)) {
			int goniometerAxialIndex=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getGoniometerAxialIndex();
			parVector[goniometerAxialIndex]=     goniometerAxial;
		}
3510 3511 3512 3513 3514
		if (!Double.isNaN(goniometerInterAxis)) {
			int goniometerInterAxisAngleIndex=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getInterAxisAngleIndex();
			parVector[goniometerInterAxisAngleIndex]=  goniometerInterAxis;
		}
//		/interAxis
Andrey Filippov's avatar
Andrey Filippov committed
3515 3516 3517
		int sensorWidth=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorWidth(subCamera);
		int sensorHeight=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.getSensorHeight(subCamera);
		System.out.println("estimateGridOnSensor(): subCamera="+subCamera+", goniometerHorizontal="+goniometerHorizontal+", goniometerAxial="+goniometerAxial);
Andrey Filippov's avatar
Andrey Filippov committed
3518 3519
		this.lensDistortionParameters.lensCalcInterParamers(
				this.lensDistortionParameters, // 22-long parameter vector for the image
3520 3521 3522 3523
				this.fittingStrategy.distortionCalibrationData.isTripod(),
				this.fittingStrategy.distortionCalibrationData.isCartesian(),
	    		this.fittingStrategy.distortionCalibrationData.getPixelSize(stationNumber, subCamera),
	    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(stationNumber, subCamera),
Andrey Filippov's avatar
Andrey Filippov committed
3524 3525 3526
				null, // this.interParameterDerivatives, // [22][]
				parVector,
				null); // if no derivatives, null is OK
Andrey Filippov's avatar
Andrey Filippov committed
3527 3528


Andrey Filippov's avatar
Andrey Filippov committed
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
		if (!lensDistortionParameters.isTargetVisible(this.debugLevel>0)) {
			if (this.debugLevel>debugThreshold) System.out.println("Camera is looking away from the target");
//			return null; // camera is looking away from the target (does not mean target is in FOV)
		}
		double [][][] patternGeometry=this.patternParameters.getGeometry(); // [v][u]{x,y,z,alpha} - no photometric
		double [][][] result= new double[patternGeometry.length][patternGeometry[0].length][4];
		int visibleCells=0;
		double [][] debugPixels=null;
		String [] debugTitles={"pX","pY","X","Y","Z","mask"};
		if (this.debugLevel>debugThreshold){
			debugPixels=new double [6][patternGeometry.length*patternGeometry[0].length];
			for (int c=0;c<debugPixels.length;c++) for (int i=0;i<debugPixels[c].length;i++) debugPixels[c][i]=Double.NaN;
		}
		// was bug cased by +/- infinity (and sometimes numbers falling into the sensor range) when the image plane intersected target
		// simple fix - remove pixels with too few neighbors (maybe just all border pixels?
Andrey Filippov's avatar
Andrey Filippov committed
3544 3545


Andrey Filippov's avatar
Andrey Filippov committed
3546 3547 3548 3549 3550 3551
		for (int v=0;v<result.length;v++) for (int u=0;u<result[v].length;u++){
			int [] iUV=this.patternParameters.uvIndicesToUV (u, v);
			if (iUV==null) {
				result[v][u]=null;
			} else {
				double [] XYZM=this.patternParameters.getXYZM(iUV[0],iUV[1],stationNumber);
Andrey Filippov's avatar
Andrey Filippov committed
3552
// project the target point to this sensor
Andrey Filippov's avatar
Andrey Filippov committed
3553 3554 3555 3556
				double [][]pXY=  this.lensDistortionParameters.calcPartialDerivatives(
						XYZM[0], // target point horizontal, positive - right,  mm
						XYZM[1], // target point vertical,   positive - down,  mm
						XYZM[2], // target point horizontal, positive - away from camera,  mm
3557
						maxRelativeRadius,
Andrey Filippov's avatar
Andrey Filippov committed
3558 3559 3560 3561 3562 3563
						false); // calculate derivatives, false - values only (NaN for behind points - only when false here)
// verify the grid is inside the sensor area (may use sensor mask later too? probably not needed)
				// Now NaN if point is behind the sensor
				if (Double.isNaN(pXY[0][0]) || (pXY[0][0]<0) || (pXY[0][0]>=sensorWidth) || (pXY[0][1]<0) || (pXY[0][1]>=sensorHeight)){
					if (this.debugLevel>debugThreshold){
						System.out.println("--- estimateGridOnSensor():v="+v+" u="+u+" X="+XYZM[0]+" Y="+XYZM[1]+" Z="+XYZM[2]+" M="+XYZM[3]+
Andrey Filippov's avatar
Andrey Filippov committed
3564
								" pXY[0][0]="+pXY[0][0]+", pXY[0][1]="+pXY[0][1]+", iUV[0]="+iUV[0]+", iUV[1]="+iUV[1]);
Andrey Filippov's avatar
Andrey Filippov committed
3565 3566 3567 3568 3569 3570 3571
					}
					result[v][u]=null;
				} else {
					double [] resultCell={pXY[0][0],pXY[0][1],iUV[0],iUV[1]};
					result[v][u]=resultCell;
					if (this.debugLevel>debugThreshold){
						System.out.println("+++ estimateGridOnSensor():v="+v+" u="+u+" X="+XYZM[0]+" Y="+XYZM[1]+" Z="+XYZM[2]+" M="+XYZM[3]+
Andrey Filippov's avatar
Andrey Filippov committed
3572
								" pXY[0][0]="+pXY[0][0]+", pXY[0][1]="+pXY[0][1]+", iUV[0]="+iUV[0]+", iUV[1]="+iUV[1]);
Andrey Filippov's avatar
Andrey Filippov committed
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
					}
					visibleCells++;
				}
				if (this.debugLevel>debugThreshold){
					int uv=u+v*result[v].length;
					debugPixels[0][uv]=pXY[0][0];
					debugPixels[1][uv]=pXY[0][1];
					debugPixels[2][uv]=XYZM[0];
					debugPixels[3][uv]=XYZM[1];
					debugPixels[4][uv]=XYZM[2];
				}
			}
		}
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		if (filterBorder){
			// now filter border nodes
			boolean [] mask= new boolean [patternGeometry.length*patternGeometry[0].length];
			int index=0;
			for (int v=0;v<result.length;v++) for (int u=0;u<result[v].length;u++){
				mask [index++]=(result[v][u]!=null) &&
						((v==0) || (result[v-1][u]!=null)) &&
						((v==(result.length-1)) || (result[v+1][u]!=null)) &&
						((u==0) || (result[v][u-1]!=null))&&
						((u==(result[v].length-1)) || (result[v][u+1]!=null));
			}
			index=0;
			for (int v=0;v<result.length;v++) for (int u=0;u<result[v].length;u++){
				if (!mask[index++]) result[v][u]=null;
			}
Andrey Filippov's avatar
Andrey Filippov committed
3601 3602 3603 3604 3605 3606
		}
		if (this.debugLevel>debugThreshold){
			for (int v=0;v<result.length;v++) for (int u=0;u<result[v].length;u++){
				int uv=u+v*result[v].length;
				debugPixels[5][uv]=(result[v][u]!=null)?3000:-3000; // masked
			}
3607
			(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
3608 3609 3610 3611 3612 3613
					debugPixels,
					result[0].length,
					result.length,
					true,
					"Hinted-All",
					debugTitles);
Andrey Filippov's avatar
Andrey Filippov committed
3614
		}
Andrey Filippov's avatar
Andrey Filippov committed
3615 3616 3617 3618 3619 3620 3621
		if (this.debugLevel>1) {
			System.out.println("Grid in the FOV of the subcamera "+subCamera+
					" tilt="+goniometerHorizontal+" axial="+goniometerAxial+" has "+visibleCells+" cells");
		}
		if (visibleCells==0) return null; // no grid cells in FOV
		return result;
	}
Andrey Filippov's avatar
Andrey Filippov committed
3622

Andrey Filippov's avatar
Andrey Filippov committed
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
    public void debugCompareInterparameterDerivatives(
    		double [] vector,
    		int imgNum,
    		double delta){
		if (this.debugLevel>1) {
			System.out.println("debugCompareInterparameterDerivatives(vector, imgNum="+imgNum+", delta="+delta+")");
			for (int ii=0;ii<vector.length;ii++) System.out.println(ii+": "+vector[ii]);
		}
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		if (imgNum<0){ // find first selected image
			boolean [] selectedImages=fittingStrategy.selectedImages();
			imgNum=0;
			while ((imgNum<numImg) && (!selectedImages[imgNum])) imgNum++;
		}
		if (imgNum>=numImg){
			IJ.showMessage("No images found for this fitting strategy");
Andrey Filippov's avatar
Andrey Filippov committed
3639
			return; // no images found
Andrey Filippov's avatar
Andrey Filippov committed
3640 3641 3642 3643
		}
		double [] imgVector=fittingStrategy.getImageParametersVector(imgNum, vector); //this.currentVector);
		boolean [] imgMask= new boolean[imgVector.length];
		for (int i=0;i<imgMask.length;i++) imgMask[i]=true;
Andrey Filippov's avatar
Andrey Filippov committed
3644
		this.lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
3645
				this.lensDistortionParameters,
3646 3647 3648 3649
				this.fittingStrategy.distortionCalibrationData.isTripod(),
				this.fittingStrategy.distortionCalibrationData.isCartesian(),
	    		this.fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
	    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
3650 3651 3652 3653 3654 3655 3656
				this.interParameterDerivatives, // [22][]
				imgVector,
				imgMask); // calculate only selected derivatives (all parVect values are still
//				true); // calculate this.interParameterDerivatives -derivatives array (false - just this.values)
// reorder derivatives to match lensDistortionParameters.getExtrinsicVector(); (dist,x0,y0,yaw,pitch,roll)
//					double [] parameterVector0=lensDistortionParameters.getAllVector();
		double [] values=lensDistortionParameters.getExtrinsicVector();
3657 3658
		double [][] derivatives_true = new double [this.lensDistortionParameters.getNumInputs()][6];
		for (int i=0;i<this.lensDistortionParameters.getNumInputs();i++){
Andrey Filippov's avatar
Andrey Filippov committed
3659 3660 3661 3662 3663 3664 3665
			derivatives_true[i][0]=this.interParameterDerivatives[i][2]; // d distance /d vector[i]
			derivatives_true[i][1]=this.interParameterDerivatives[i][0]; // d x0 /d vector[i]
			derivatives_true[i][2]=this.interParameterDerivatives[i][1]; // d y0 /d vector[i]
			derivatives_true[i][3]=this.interParameterDerivatives[i][3]; // d jaw /d vector[i]
			derivatives_true[i][4]=this.interParameterDerivatives[i][4]; // d pitch /d vector[i]
			derivatives_true[i][5]=this.interParameterDerivatives[i][5]; // d roll /d vector[i]
		}
3666 3667
		double [][] derivatives_delta = new double [this.lensDistortionParameters.getNumInputs()][values.length];
		for (int i=0;i<this.lensDistortionParameters.getNumInputs();i++){
Andrey Filippov's avatar
Andrey Filippov committed
3668 3669
			double [] vector_delta=imgVector.clone();
			vector_delta[i]+=delta;
Andrey Filippov's avatar
Andrey Filippov committed
3670
			this.lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
3671
					this.lensDistortionParameters,
3672 3673 3674 3675
					this.fittingStrategy.distortionCalibrationData.isTripod(),
					this.fittingStrategy.distortionCalibrationData.isCartesian(),
		    		this.fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
		    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
3676
					null, // this.interParameterDerivatives, // just values, no derivatives
Andrey Filippov's avatar
Andrey Filippov committed
3677
					vector_delta,
Andrey Filippov's avatar
Andrey Filippov committed
3678 3679 3680
					imgMask);
//					false); // just values, no derivatives
			double [] values_delta=lensDistortionParameters.getExtrinsicVector();
Andrey Filippov's avatar
Andrey Filippov committed
3681 3682
			for (int j=0;j<derivatives_delta[i].length;j++) derivatives_delta[i][j]=(values_delta[j]-values[j])/delta;
		}
Andrey Filippov's avatar
Andrey Filippov committed
3683 3684 3685 3686
		String [] lensParNames = lensDistortionParameters.getExtrinsicNames();
	    String header="#\tphysical/lens\t ";
	    for (int i=0;i<lensParNames.length;i++)header+="\t"+lensParNames[i];
	    StringBuffer sb = new StringBuffer();
3687
	    for (int parNum=0;parNum<this.lensDistortionParameters.getNumInputs();parNum++){
3688
	    	sb.append(parNum+"\t"+fittingStrategy.distortionCalibrationData.descrField(parNum,0)+"\tderivative");
Andrey Filippov's avatar
Andrey Filippov committed
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	    	for (int i=0;i<lensParNames.length;i++) sb.append("\t"+derivatives_true[parNum][i]);
	    	sb.append("\n");
	    	sb.append("\t \tdelta");
	    	for (int i=0;i<lensParNames.length;i++) sb.append("\t"+derivatives_delta[parNum][i]);
	    	sb.append("\n");
	    	sb.append("\t \tdifference");
	    	for (int i=0;i<lensParNames.length;i++) sb.append("\t"+(derivatives_true[parNum][i]-derivatives_delta[parNum][i]));
	    	sb.append("\n");
	    	sb.append("---\t---\t---");
	    	for (int i=0;i<lensParNames.length;i++) sb.append("\t---");
	    	sb.append("\n");
	    }
	    new TextWindow("Comparisison of the interparameter dcerivatives (true and compared as deltas)", header, sb.toString(), 500,900);
    }
// after stepping back - no need to rerun calculateFxAndJacobian(false), just keep
	/**
Andrey Filippov's avatar
Andrey Filippov committed
3705
	 *  Calculates f(X) and optionally Jacobian for the current parameters
Andrey Filippov's avatar
Andrey Filippov committed
3706 3707 3708 3709 3710 3711
	 *  @parameter vector - parameter vector to be used
	 *  @parameter calcJacobian  if true, calculates Jacobian as this.jacobian
	 *  @return  f(X) - pixel coordinates for each (visible) grid pattern node for current parameters this.currentVector
	 *   as a 1-d array that alternates pixel-X and pixel-Y for all images
	 *   NOTE: this one is not thread safe
	 */
Andrey Filippov's avatar
Andrey Filippov committed
3712 3713 3714
	public double [] calculateFxAndJacobian(
			double [] vector,
			boolean calcJacobian){ // when false, modifies only this.lensDistortionParameters.*
Andrey Filippov's avatar
Andrey Filippov committed
3715 3716 3717 3718 3719
		if (vector==null) {
			calcJacobian=false;
//			vector = new double[0];
		}
		// TODO: verify classes/arrays exist?
Andrey Filippov's avatar
Andrey Filippov committed
3720
        int doubleNumAllPoints=this.Y.length; // all points in all images multiplied by 2 (x and y error are separate)
Andrey Filippov's avatar
Andrey Filippov committed
3721 3722 3723 3724
		int fittedParNumber=(vector==null)?0:vector.length; //this.currentVector.length;
		double [] vectorFX=new double[doubleNumAllPoints];
//		this.fX=new double[doubleNumAllPoints];
		if (this.debugLevel>2) {
3725
			System.out.println("calculateFxAndJacobian(), calcJacobian="+calcJacobian+" D3304 + this.debugLevel="+this.debugLevel);
Andrey Filippov's avatar
Andrey Filippov committed
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
			if (vector!=null) {
			  for (int ii=0;ii<vector.length;ii++) System.out.println(ii+": "+vector[ii]);
			} else {
				System.out.println("calculateFxAndJacobian() : vector==null");
			}
		}
		if (calcJacobian) {
			this.jacobian=new double[fittedParNumber][doubleNumAllPoints];
			for (int i=0;i<fittedParNumber;i++) for (int j=0;j<doubleNumAllPoints;j++) this.jacobian[i][j]=0.0;
		}
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		boolean [] selectedImages=fittingStrategy.selectedImages();
		int index=0;
		IJ.showProgress(0);
		for (int imgNum=0;imgNum<numImg;imgNum++) if (selectedImages[imgNum]) {
//			initialize arrays for parameters and derivatives conversion
			double [] imgVector=fittingStrategy.getImageParametersVector(imgNum, vector); // null is OK now
			boolean [] imgMask=null;
			int []     imgMap= null;
			if (calcJacobian) {
				imgMask= fittingStrategy.getImageParametersVectorMask(imgNum);
				int []     imgRMap=  fittingStrategy.getImageParametersVectorReverseMap(imgNum);
				imgMap=new int[vector.length];
				for (int i=0;i<imgMap.length;i++) imgMap[i]=-1;
				for (int i=0;i<imgRMap.length;i++) if (imgRMap[i]>=0)imgMap[imgRMap[i]]=i;
			}

// Calculate/set  this.lensDistortionParameters class, so it will calculate values/derivatives correctly)
// and this.interParameterDerivatives
//			if (this.debugLevel>1) {
			if (this.debugLevel>2) {
3757
				System.out.println("calculateFxAndJacobian(), imgNum="+imgNum+" calcInterParamers(): (D3336)");
Andrey Filippov's avatar
Andrey Filippov committed
3758
			}
3759
			this.lensDistortionParameters.debugLevel=this.debugLevel;
Andrey Filippov's avatar
Andrey Filippov committed
3760
			this.lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
3761
					this.lensDistortionParameters,
3762 3763 3764 3765
					this.fittingStrategy.distortionCalibrationData.isTripod(),
					this.fittingStrategy.distortionCalibrationData.isCartesian(),
		    		this.fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
		    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
3766 3767 3768 3769 3770 3771 3772
					calcJacobian?this.interParameterDerivatives:null, // [22][]
					imgVector,
					imgMask); // imgMask may be null if no derivativescalculate only selected derivatives (all parVect values are still
			int numPoints=fittingStrategy.distortionCalibrationData.getImageNumPoints(imgNum);
			if (this.debugLevel>2) {
				System.out.println("calculateFxAndJacobian(), numPoints="+numPoints+" (imgNum="+imgNum+")");
			}
Andrey Filippov's avatar
Andrey Filippov committed
3773
// iterate through points, for each calculate pixelx, pixely and derivatives
Andrey Filippov's avatar
Andrey Filippov committed
3774 3775 3776 3777 3778
			for (int pointNum=0;pointNum<numPoints;pointNum++){
				int fullIndex=index+pointNum;
				if (fullIndex>=this.targetXYZ.length){
					System.out.println("BUG: calculateFxAndJacobian() imgNum="+imgNum+" pointNum="+pointNum+" fullIndex="+fullIndex+" this.targetXYZ.length="+this.targetXYZ.length);
				}
3779
				double [][]derivatives15=  lensDistortionParameters.calcPartialDerivatives( // [NaN, NaN]
Andrey Filippov's avatar
Andrey Filippov committed
3780 3781 3782 3783 3784 3785 3786 3787 3788
						this.targetXYZ[fullIndex][0], // target point horizontal, positive - right,  mm
						this.targetXYZ[fullIndex][1], // target point vertical,   positive - down,  mm
						this.targetXYZ[fullIndex][2], // target point horizontal, positive - away from camera,  mm
						calcJacobian); // calculate derivatives, false - values only
	       		if (this.debugLevel>3) {
	    			System.out.println(fullIndex+": calculateFxAndJacobian->calcPartialDerivatives("+IJ.d2s(targetXYZ[fullIndex][0],2)+","+
	    					IJ.d2s(targetXYZ[fullIndex][1],2)+","+
	    					IJ.d2s(targetXYZ[fullIndex][2],2)+" ("+calcJacobian+") -> "+
	    					IJ.d2s(derivatives15[0][0],2)+"/"+IJ.d2s(derivatives15[0][1],2));
3789
	    			String all="derivatives15: D3365";
Andrey Filippov's avatar
Andrey Filippov committed
3790 3791 3792
	    			for (int ii=0;ii<derivatives15.length;ii++) all+=" "+ii+":"+IJ.d2s(derivatives15[ii][0],3)+"/"+IJ.d2s(derivatives15[ii][1],3);
	    			System.out.println(all);
	    		}
Andrey Filippov's avatar
Andrey Filippov committed
3793
				vectorFX[2*fullIndex]=  derivatives15[0][0];
Andrey Filippov's avatar
Andrey Filippov committed
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
				vectorFX[2*fullIndex+1]=derivatives15[0][1];
				if (calcJacobian) {
					double [][]derivatives = lensDistortionParameters.reorderPartialDerivatives(derivatives15);
		       		if (this.debugLevel>3) {
		    			String all="derivatives:";
		    			for (int ii=0;ii<derivatives.length;ii++) all+=" "+ii+":"+IJ.d2s(derivatives[ii][0],3)+"/"+IJ.d2s(derivatives[ii][1],3);
		    			System.out.println(all);
		    		}
					for (int i=0;i<this.jacobian.length;i++) if (imgMap[i]>=0){
						double sX=0,sY=0;
						for (int k=0;k<derivatives.length;k++){
							sX+=this.interParameterDerivatives[imgMap[i]][k]*derivatives[k][0];
							sY+=this.interParameterDerivatives[imgMap[i]][k]*derivatives[k][1];
						}
						this.jacobian[i][2*fullIndex]=  sX;
						this.jacobian[i][2*fullIndex+1]=sY;
					}
				}
			}
			index+=numPoints;
			IJ.showProgress(imgNum, numImg-1);
		}
//		IJ.showProgress(0); not needed, will turn off automatically

		return vectorFX;
	}

	/**
	 * Calculate FX and (optionally) Jacobian for one image. FX is a single vector for all images, jacobian - only for one (to save on memory usage)
	 * @param numImage    number of image being processed
	 * @param vector      parameters vector
	 * @param patternXYZ  X,Y,Z of the physical target for each node of each image (TODO: memory may be reduced)
	 * @param vectorFX    Vector to be filled here , twice length as patternXYZ (x and y alternating)
	 * @param imageStartIndex  start index in patternXYZ array (length - difference to the next, includes extra last element)
Andrey Filippov's avatar
Andrey Filippov committed
3828
	 * @param lensDistortionParameters LensDistortionParameters class instance (may be reused between calls)
Andrey Filippov's avatar
Andrey Filippov committed
3829 3830 3831 3832
	 * @param calcJacobian calculate Jacobian matrix (if false - only FX)
	 * @return partial Jacobian matrix, number of rows= vector.length, number of columns - 2*indexCount
	 *   NOTE: this one is thread safe
	 */
Andrey Filippov's avatar
Andrey Filippov committed
3833

Andrey Filippov's avatar
Andrey Filippov committed
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	public double [][] calculatePartialFxAndJacobian(
			final int numImage,      // number of grid image
			final double [] vector,  // parameters vector
			final double [][] patternXYZ, // this.targetXYZ
			final double [] vectorFX,     // non-overlapping segments will be filled
			final int []  imageStartIndex, // start index in patternXYZ array (length - difference to the next, includes extra last element)
			final LensDistortionParameters lensDistortionParameters, // initialize one per each thread? Or for each call?
			boolean calcJacobian){ // when false, modifies only this.lensDistortionParameters.*
		final int    indexStart=imageStartIndex[numImage];      // start index in patternXYZ array
		final int    indexCount=imageStartIndex[numImage+1]-imageStartIndex[numImage]; // number of nodes in the current grid image
		int fittedParNumber=vector.length; //this.currentVector.length;
		if (this.debugLevel>3) {
			System.out.println("calculatePartialFxAndJacobian(), calcJacobian="+calcJacobian+" indexStart="+indexStart+" indexCount="+indexCount);
			for (int ii=0;ii<vector.length;ii++) System.out.println("vector["+ii+"]: "+vector[ii]);
		}
		boolean [] imgMask= fittingStrategy.getImageParametersVectorMask(numImage);        // thread safe
		int []     imgRMap=  fittingStrategy.getImageParametersVectorReverseMap(numImage); // thread safe
		int []     imgMap=new int[vector.length];
		for (int i=0;i<imgMap.length;i++) imgMap[i]=-1;
		for (int i=0;i<imgRMap.length;i++) if (imgRMap[i]>=0)imgMap[imgRMap[i]]=i;
		double [][] jacobian=null;
		if (calcJacobian) {
//			jacobian=new double[fittedParNumber][indexCount*2];
//			for (int i=0;i<fittedParNumber;i++) for (int j=0;j<jacobian[0].length;j++) jacobian[i][j]=0.0;
			jacobian=new double[fittedParNumber][];
			// TODO: verify that only small number of rows is calculated
			for (int i=0;i<fittedParNumber;i++) {
				if (imgMap[i]>=0) {
					jacobian[i]=new double [indexCount*2];
					for (int j=0;j<jacobian[i].length;j++) jacobian[i][j]=0.0;
				} else {
					jacobian[i]=null;
				}
			}
		}
3869
		double [][] interParameterDerivatives=new double [this.lensDistortionParameters.getNumInputs()][];
Andrey Filippov's avatar
Andrey Filippov committed
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
		//			initialize arrays for parameters and derivatives conversion
		double [] imgVector=fittingStrategy.getImageParametersVector(numImage, vector);     // thread safe
		if (this.debugLevel>3) {
			String all="imgVector: ";
			for (int jj=0;jj<imgVector.length;jj++) all+=" "+imgVector[jj];
			System.out.println(all);
		}
		// Calculate/set  this.lensDistortionParameters class, so it will calculate values/derivatives correctly)
		// and this.interParameterDerivatives
		if (this.debugLevel>3) System.out.println("calculatePartialFxAndJacobian(), numImage="+numImage+" calcInterParamers():");
Andrey Filippov's avatar
Andrey Filippov committed
3880
		lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
3881
				lensDistortionParameters,
3882 3883 3884 3885
				this.fittingStrategy.distortionCalibrationData.isTripod(),
				this.fittingStrategy.distortionCalibrationData.isCartesian(),
	    		this.fittingStrategy.distortionCalibrationData.getPixelSize(numImage),
	    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(numImage),
Andrey Filippov's avatar
Andrey Filippov committed
3886 3887 3888 3889
				calcJacobian?interParameterDerivatives:null, // [22][]
						imgVector,
						imgMask); // calculate only selected derivatives (all parVect values are still

Andrey Filippov's avatar
Andrey Filippov committed
3890
		// iterate through points, for each calculate pixelx, pixely and derivatives
Andrey Filippov's avatar
Andrey Filippov committed
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
		for (int pointNum=0;pointNum<indexCount;pointNum++){
			int fullIndex=indexStart+pointNum;
			double [][]derivatives15=  lensDistortionParameters.calcPartialDerivatives(
					patternXYZ[fullIndex][0], // target point horizontal, positive - right,  mm
					patternXYZ[fullIndex][1], // target point vertical,   positive - down,  mm
					patternXYZ[fullIndex][2], // target point horizontal, positive - away from camera,  mm
					calcJacobian); // calculate derivatives, false - values only
			if (this.debugLevel>3) {
				System.out.println(fullIndex+": calculateFxAndJacobian->calcPartialDerivatives("+IJ.d2s(patternXYZ[fullIndex][0],2)+","+
						IJ.d2s(patternXYZ[fullIndex][1],2)+","+
						IJ.d2s(patternXYZ[fullIndex][2],2)+" ("+calcJacobian+") -> "+
						IJ.d2s(derivatives15[0][0],2)+"/"+IJ.d2s(derivatives15[0][1],2));
3903
				String all="derivatives15: D3476";
Andrey Filippov's avatar
Andrey Filippov committed
3904 3905 3906
				for (int ii=0;ii<derivatives15.length;ii++) all+=" "+ii+":"+IJ.d2s(derivatives15[ii][0],3)+"/"+IJ.d2s(derivatives15[ii][1],3);
				System.out.println(all);
			}
Andrey Filippov's avatar
Andrey Filippov committed
3907
			vectorFX[2*fullIndex]=  derivatives15[0][0];
Andrey Filippov's avatar
Andrey Filippov committed
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
			vectorFX[2*fullIndex+1]=derivatives15[0][1];
			if (calcJacobian) {
				double [][]derivatives = lensDistortionParameters.reorderPartialDerivatives(derivatives15);
				if (this.debugLevel>3) {
					String all="derivatives:";
					for (int ii=0;ii<derivatives.length;ii++) all+=" "+ii+":"+IJ.d2s(derivatives[ii][0],3)+"/"+IJ.d2s(derivatives[ii][1],3);
					System.out.println(all);
				}
				for (int i=0;i<jacobian.length;i++) if (imgMap[i]>=0){
					double sX=0,sY=0;
					for (int k=0;k<derivatives.length;k++){
						sX+=interParameterDerivatives[imgMap[i]][k]*derivatives[k][0];
						sY+=interParameterDerivatives[imgMap[i]][k]*derivatives[k][1];
					}
					jacobian[i][2*pointNum]=  sX;
					jacobian[i][2*pointNum+1]=sY;
				}
			}
		}
		return jacobian;
	}
Andrey Filippov's avatar
Andrey Filippov committed
3929 3930


Andrey Filippov's avatar
Andrey Filippov committed
3931
	/**
Andrey Filippov's avatar
Andrey Filippov committed
3932
	 *
Andrey Filippov's avatar
Andrey Filippov committed
3933 3934 3935 3936 3937 3938
	 * @param vector - parameter vector to be used
	 * @param imgNumber - number of image to process or -1 - use the first of selected in this strategy
	 * @return return Jacobian matrix for the selected image and individual parameters
	 *   NOTE: this one is not thread safe (used this.lensDistortionParameters)
	 */
	// used only to debug derivatives (delta==0 - real derivatives, delta>0 - difference)
Andrey Filippov's avatar
Andrey Filippov committed
3939 3940 3941 3942
	public double [][] calculateJacobian16(
			double [] vector,
			int imgNumber,
			double delta){ // these parameters can work for one image only
Andrey Filippov's avatar
Andrey Filippov committed
3943
        int doubleNumAllPoints=this.Y.length; // all points in all images multiplied by 2 (x and y error are separate)
Andrey Filippov's avatar
Andrey Filippov committed
3944
		double [][] jacobian16=new double[lensDistortionParameters.getNumOutputs()][doubleNumAllPoints];
Andrey Filippov's avatar
Andrey Filippov committed
3945
		double []   values=    new double[doubleNumAllPoints];
Andrey Filippov's avatar
Andrey Filippov committed
3946

Andrey Filippov's avatar
Andrey Filippov committed
3947 3948 3949 3950 3951 3952
		for (int i=0;i<jacobian16.length;i++) for (int j=0;j<doubleNumAllPoints;j++) jacobian16[i][j]=0.0;
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		boolean [] selectedImages=fittingStrategy.selectedImages();
		int index=0;
		for (int imgNum=0;imgNum<numImg;imgNum++) if (selectedImages[imgNum]) {
			int numPoints=fittingStrategy.distortionCalibrationData.getImageNumPoints(imgNum);
Andrey Filippov's avatar
Andrey Filippov committed
3953
			if (imgNumber<0) imgNumber=imgNum; // -1 - use the first image in the list
Andrey Filippov's avatar
Andrey Filippov committed
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
			if (imgNum==imgNumber) {
				double [] imgVector=fittingStrategy.getImageParametersVector(imgNum, vector); //this.currentVector);
				boolean [] imgMask= fittingStrategy.getImageParametersVectorMask(imgNum);
				int []     imgRMap=  fittingStrategy.getImageParametersVectorReverseMap(imgNum);
				int []     imgMap=new int[vector.length];
				for (int i=0;i<imgMap.length;i++) imgMap[i]=-1;
				for (int i=0;i<imgRMap.length;i++) if (imgRMap[i]>=0)imgMap[imgRMap[i]]=i;
				// Calculate/set  this.lensDistortionParameters class, so it will calculate values/derivatives correctly)
				// and this.interParameterDerivatives
				if (this.debugLevel>2) {
					System.out.println("calculateJacobian15(), imgNum="+imgNum+" calcInterParamers():");
				}
Andrey Filippov's avatar
Andrey Filippov committed
3966
				this.lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
3967
						this.lensDistortionParameters,
3968 3969 3970 3971
						this.fittingStrategy.distortionCalibrationData.isTripod(),
						this.fittingStrategy.distortionCalibrationData.isCartesian(),
			    		this.fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
			    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
3972 3973 3974 3975 3976 3977 3978 3979
						null, //this.interParameterDerivatives, // [22][]
						imgVector,
						imgMask); // calculate only selected derivatives (all parVect values are still
//						false); // probably can use false
				if (this.debugLevel>2) {
					System.out.println("calculateJacobian16(), numPoints="+numPoints+" (imgNum="+imgNum+")");
				}
				if (delta<=0) {
Andrey Filippov's avatar
Andrey Filippov committed
3980
					// iterate through points, for each calculate pixelx, pixely and derivatives
Andrey Filippov's avatar
Andrey Filippov committed
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
					for (int pointNum=0;pointNum<numPoints;pointNum++){
						int fullIndex=index+pointNum;
						double [][]derivatives15=  lensDistortionParameters.calcPartialDerivatives(
								targetXYZ[fullIndex][0], // target point horizontal, positive - right,  mm
								targetXYZ[fullIndex][1], // target point vertical,   positive - down,  mm
								targetXYZ[fullIndex][2], // target point horizontal, positive - away from camera,  mm
								true); // calculate derivatives, false - values only
						if (this.debugLevel>3) {
							System.out.println(fullIndex+": calculateFxAndJacobian->calcPartialDerivatives("+IJ.d2s(targetXYZ[fullIndex][0],2)+","+
									IJ.d2s(targetXYZ[fullIndex][1],2)+","+
									IJ.d2s(targetXYZ[fullIndex][2],2)+" -> "+
									IJ.d2s(derivatives15[0][0],2)+"/"+IJ.d2s(derivatives15[0][1],2));
3993
							String all="derivatives15: D3563";
Andrey Filippov's avatar
Andrey Filippov committed
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
							for (int ii=0;ii<derivatives15.length;ii++) all+=" "+ii+":"+IJ.d2s(derivatives15[ii][0],3)+"/"+IJ.d2s(derivatives15[ii][1],3);
							System.out.println(all);
						}
						double [][]derivatives = lensDistortionParameters.reorderPartialDerivativesAsNames(derivatives15);
						if (this.debugLevel>3) {
							String all="derivatives:";
							for (int ii=0;ii<derivatives.length;ii++) all+=" "+ii+":"+IJ.d2s(derivatives[ii][0],3)+"/"+IJ.d2s(derivatives[ii][1],3);
							System.out.println(all);
						}
						for (int i=0;i<derivatives.length;i++){
Andrey Filippov's avatar
Andrey Filippov committed
4004
							jacobian16[i][2*fullIndex]= derivatives[i][0]; // oob 16
Andrey Filippov's avatar
Andrey Filippov committed
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
							jacobian16[i][2*fullIndex+1]=derivatives[i][1];
						}

					}
				} else {
					double [] parameterVector0=lensDistortionParameters.getAllVector();
					for (int pointNum=0;pointNum<numPoints;pointNum++){
						int fullIndex=index+pointNum;
						double [][]values2=  lensDistortionParameters.calcPartialDerivatives(
								targetXYZ[fullIndex][0], // target point horizontal, positive - right,  mm
								targetXYZ[fullIndex][1], // target point vertical,   positive - down,  mm
								targetXYZ[fullIndex][2], // target point horizontal, positive - away from camera,  mm
								false); // calculate derivatives, false - values only
						values[2*fullIndex]= values2[0][0];
						values[2*fullIndex+1]=values2[0][1];
					}
					for (int nPar=0;nPar<jacobian16.length;nPar++){
						double [] parameterVector=parameterVector0.clone();
						parameterVector[nPar]+=delta;
						lensDistortionParameters.setAllVector(parameterVector);
						for (int pointNum=0;pointNum<numPoints;pointNum++){
							int fullIndex=index+pointNum;
							double [][] values2=lensDistortionParameters.calcPartialDerivatives(
									targetXYZ[fullIndex][0], // target point horizontal, positive - right,  mm
									targetXYZ[fullIndex][1], // target point vertical,   positive - down,  mm
									targetXYZ[fullIndex][2], // target point horizontal, positive - away from camera,  mm
									false); // calculate derivatives, false - values only
							jacobian16[nPar][2*fullIndex]=  (values2[0][0]- values[2*fullIndex])/delta;
							jacobian16[nPar][2*fullIndex+1]=(values2[0][1]- values[2*fullIndex+1])/delta;
						}
					}
				}
				return jacobian16;
			}
			index+=numPoints;
		}
		return null; // should normally return from inside the for loop
	}
Andrey Filippov's avatar
Andrey Filippov committed
4043 4044


Andrey Filippov's avatar
Andrey Filippov committed
4045
/*
Andrey Filippov's avatar
Andrey Filippov committed
4046
List calibration
Andrey Filippov's avatar
Andrey Filippov committed
4047 4048 4049 4050 4051 4052 4053 4054 4055
 */
    public boolean listImageParameters(boolean silent){
    	if (this.fittingStrategy==null) {
        		String msg="Fitting strategy does not exist, exiting";
        		IJ.showMessage("Error",msg);
        		throw new IllegalArgumentException (msg);
    	}
    	int numSeries=fittingStrategy.getNumSeries();
    	if (silent) {
Andrey Filippov's avatar
Andrey Filippov committed
4056
    		this.seriesNumber=0;
Andrey Filippov's avatar
Andrey Filippov committed
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
    	} else {
    		GenericDialog gd = new GenericDialog("Settings for the parameter list");
    		gd.addNumericField("Iteration number to start (0.."+(numSeries-1)+")", this.seriesNumber, 0);
    		gd.addCheckbox("Show image number (from 0)",                           this.showIndex);
    		gd.addCheckbox("Show per-image RMS",                                   this.showRMS);
    		gd.addCheckbox("Show number of grid points",                           this.showPoints);
    		gd.addCheckbox("Show lens coordinates (relative to target)",           this.showLensLocation);

    		gd.addCheckbox("Show physical camera parameters",                      this.showEyesisParameters);
    		gd.addCheckbox("Show intrinsic lens/sensor parameters ",               this.showIntrinsicParameters);
4067
    		gd.addCheckbox("Show extrinsic lens/sensor parameters",                this.showExtrinsicParameters);
Andrey Filippov's avatar
Andrey Filippov committed
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
    		gd.addNumericField("Extra decimal places (precision) in the list",     this.extraDecimals, 0);
    		gd.showDialog();
    		if (gd.wasCanceled()) return false;
    		this.seriesNumber=          (int) gd.getNextNumber();
    		this.showIndex=                   gd.getNextBoolean();
    		this.showRMS=                     gd.getNextBoolean();
    		this.showPoints=                  gd.getNextBoolean();
    		this.showLensLocation=            gd.getNextBoolean();
    		this.showEyesisParameters=        gd.getNextBoolean();
    		this.showIntrinsicParameters=     gd.getNextBoolean();
    		this.showExtrinsicParameters=     gd.getNextBoolean();
    		this.extraDecimals=         (int) gd.getNextNumber();
    	}
// need to select strategy
	    initFittingSeries(true,this.filterForAll,this.seriesNumber); // will set this.currentVector
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
		double [] errors=calcErrors(calcYminusFx(this.currentfX));
		double    rms=   calcError (calcYminusFx(this.currentfX));
		int [] numPairs=calcNumPairs();


		boolean [] selectedImages=fittingStrategy.selectedImages();
Andrey Filippov's avatar
Andrey Filippov committed
4090
//TODO: add display of per-image RMS
Andrey Filippov's avatar
Andrey Filippov committed
4091 4092 4093 4094 4095 4096
	    listImageParameters (
	    		selectedImages,
	    		rms,
	    		errors,
	    		numPairs,
	    		this.showIndex,
4097
	    		true, // grid match
Andrey Filippov's avatar
Andrey Filippov committed
4098 4099 4100 4101 4102 4103 4104 4105 4106
	    		this.showRMS,
	    		this.showPoints,
	    		this.showLensLocation,
	    		this.showEyesisParameters,
	    		this.showIntrinsicParameters,
	    		this.showExtrinsicParameters,
	    		this.extraDecimals);
    	return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
4107

Andrey Filippov's avatar
Andrey Filippov committed
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
    public void markBadNodces(int seriesNumber,
    		int debugLevel){
    	int oldSeries=this.seriesNumber;
    	this.seriesNumber=seriesNumber;
    	int totalBadNodes=markBadNodes(
    			fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMS,
    			fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMSNonweighted,
    			false,
    			debugLevel
    	);
    	if (debugLevel>0) {
    		System.out.println("Marked "+totalBadNodes+" nodes as bad (excessive errors, used fitting series #"+this.seriesNumber+")");
    	}
    	this.seriesNumber=oldSeries;
    }

    public boolean dialogMarkBadNodes(int debugLevel){
    	int numSeries=fittingStrategy.getNumSeries();
    	boolean verbose=false;
    	GenericDialog gd = new GenericDialog("Select parameters for marking bad nodes");
    	gd.addNumericField("Series number to use for selection (0.."+(numSeries-1)+")", this.seriesNumber, 0);
    	gd.addNumericField("Remove nodes with error greater than scaled RMS in that image, weighted",  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMS, 2,6,"xRMS");
    	gd.addNumericField("Same, not weghted (not more permissive near the borders with low weight)", fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMSNonweighted, 2,6,"xRMS");
    	gd.addCheckbox    ("Verbose (report number of bad nodes per image)",verbose);
    	gd.showDialog();
    	if (gd.wasCanceled()) return false;
    	this.seriesNumber=          (int) gd.getNextNumber();
    	fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMS=            gd.getNextNumber();
    	fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMSNonweighted= gd.getNextNumber();
    	verbose=                                                                                   gd.getNextBoolean();
    	int totalBadNodes=markBadNodes(
    			fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMS,
    			fittingStrategy.distortionCalibrationData.eyesisCameraParameters.removeOverRMSNonweighted,
    			verbose,
    			debugLevel
    	);
    	if (debugLevel>0) {
    		System.out.println("Marked "+totalBadNodes+" nodes as bad (excessive errors");
    	}
    	return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
4149

4150
    public boolean removeOutLiers(
4151
    		int series,
4152
    		int numOutLiers,
4153
    		boolean [] selectedChannels){
Andrey Filippov's avatar
Andrey Filippov committed
4154 4155 4156
    	int numSeries=fittingStrategy.getNumSeries();
    	boolean removeEmpty=false;
    	boolean recalculate=false;
4157
    	boolean applyChannelFilter=false;
Andrey Filippov's avatar
Andrey Filippov committed
4158
		int filter=filterForAll;
4159
    	if ((series<0) || (numOutLiers<0)) {
Andrey Filippov's avatar
Andrey Filippov committed
4160 4161
    		GenericDialog gd = new GenericDialog("Select series to process");
    		gd.addNumericField("Iteration number to start (0.."+(numSeries-1)+")", this.seriesNumber, 0);
4162 4163 4164 4165 4166
    		if (selectedChannels != null) {
    			String s="";
    			for (boolean b:selectedChannels)s+=b?"+":"-";
    			gd.addCheckbox("Filter by channel selection ("+s+")", applyChannelFilter);
    		}
Andrey Filippov's avatar
Andrey Filippov committed
4167
    		gd.addCheckbox("Recalculate parameters vector from selected strategy",recalculate);
4168
    		gd.addNumericField("Number of outliers to show", 10, 0);
Andrey Filippov's avatar
Andrey Filippov committed
4169 4170 4171 4172
    		gd.addCheckbox("Remove empty (rms==NaN) images", removeEmpty);
    		gd.addCheckbox("Ask filter (current filter="+filter+")",    this.askFilter);
    		gd.showDialog();
    		if (gd.wasCanceled()) return false;
4173 4174 4175
    		this.seriesNumber=                           (int) gd.getNextNumber();
    		if (selectedChannels != null) applyChannelFilter=  gd.getNextBoolean();
    		recalculate=                                       gd.getNextBoolean();
4176
    		numOutLiers=                                (int) gd.getNextNumber();
4177 4178
    		removeEmpty=                                       gd.getNextBoolean();
    		this.askFilter=                                    gd.getNextBoolean();
Andrey Filippov's avatar
Andrey Filippov committed
4179 4180 4181 4182 4183
    		if (this.askFilter) filter=  selectFilter(filter);
    		filter=0;
    	} else {
    		this.seriesNumber=series;
    	}
4184
    	if (!applyChannelFilter) selectedChannels=null;
Andrey Filippov's avatar
Andrey Filippov committed
4185 4186 4187 4188 4189 4190
//	    initFittingSeries(!recalculate,this.filterForAll,this.seriesNumber); // will set this.currentVector
	    initFittingSeries(!recalculate,this.filterForAll,this.seriesNumber); // will set this.currentVector
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
		double [] errors=calcErrors(calcYminusFx(this.currentfX)); // seem to have errors? - now may return NaN!
		double    rms=   calcError (calcYminusFx(this.currentfX));
		boolean [] selectedImages=fittingStrategy.selectedImages();
4191 4192 4193 4194 4195 4196 4197
		if (selectedChannels!=null){
			selectedImages=selectedImages.clone(); // disconnect from original for modification
			for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]){
				int chn=this.fittingStrategy.distortionCalibrationData.gIP[i].channel;
				if ((chn<0) || (chn>=selectedChannels.length) || !selectedChannels[chn]){
					selectedImages[i]=false;
				}
Andrey Filippov's avatar
Andrey Filippov committed
4198
			}
4199
		}
Andrey Filippov's avatar
Andrey Filippov committed
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
		int numSelectedNotNaNImages=0;
		int numNaN=0;
		for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]) {
			if (!Double.isNaN(errors[i])) numSelectedNotNaNImages++;
			else numNaN++;
		}
		int [] imgIndices=new int[numSelectedNotNaNImages];
		int index=0;
		for (int i=0;i<selectedImages.length;i++) if ( selectedImages[i] && !Double.isNaN(errors[i])) imgIndices[index++]=i; // OOB 2389

4210 4211
		if (numOutLiers>numSelectedNotNaNImages) numOutLiers=numSelectedNotNaNImages;
		int [] indices=new int [numOutLiers];
Andrey Filippov's avatar
Andrey Filippov committed
4212 4213
		boolean [] availableImages=selectedImages.clone();
		for (int i=0;i<selectedImages.length;i++) if (selectedImages[i] && Double.isNaN(errors[i])) availableImages[i]=false;
Andrey Filippov's avatar
Andrey Filippov committed
4214 4215


Andrey Filippov's avatar
Andrey Filippov committed
4216
		if ((this.debugLevel>0) && (numNaN>0)){
4217
			System.out.println("removeOutLiers(): Number of empty (rms=NaN) images="+numNaN+":");
Andrey Filippov's avatar
Andrey Filippov committed
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
			int n=0;
			for (int i=0;i<selectedImages.length;i++) if (selectedImages[i] && Double.isNaN(errors[i])){
				n++;
				System.out.println(n+": "+i+": "+this.fittingStrategy.distortionCalibrationData.gIP[i].path);
			}
		}
		if (removeEmpty){
			int n=0;
			for (int i=0;i<selectedImages.length;i++) if (selectedImages[i] && Double.isNaN(errors[i])){
				n++;
				if (this.debugLevel>0) System.out.println(n+"removing empty image #"+i+": "+this.fittingStrategy.distortionCalibrationData.gIP[i].path);
				this.fittingStrategy.distortionCalibrationData.gIP[i].enabled=false;
				this.fittingStrategy.distortionCalibrationData.gIP[i].hintedMatch=-1; // so can be re-calibrated again w/o others
			}

		}
Andrey Filippov's avatar
Andrey Filippov committed
4234

4235 4236
		System.out.println("removeOutLiers(): availableImages.length="+availableImages.length+" numSelectedNotNaNImages="+numSelectedNotNaNImages);
		for (int n=0;n<numOutLiers;n++){
Andrey Filippov's avatar
Andrey Filippov committed
4237 4238 4239 4240 4241 4242 4243
			double maxRMS=-1.0;
			indices[n]=-1;
			for (int i=0;i<availableImages.length;i++)if (availableImages[i] && (Double.isNaN(errors[i]) || (errors[i]>maxRMS))){ // Double.NaN will be greater
					maxRMS=errors[i];
					indices[n]=i;
			}
			if (indices[n]<0){
4244
				System.out.println("removeOutLiers(): indices["+n+"]="+indices[n]);
Andrey Filippov's avatar
Andrey Filippov committed
4245 4246 4247 4248
				continue;
			}
			availableImages[indices[n]]=false; // java.lang.ArrayIndexOutOfBoundsException: -1
		}
Andrey Filippov's avatar
Andrey Filippov committed
4249

Andrey Filippov's avatar
Andrey Filippov committed
4250
		GenericDialog gd = new GenericDialog("Select images to remove (RMS="+IJ.d2s(rms,3)+")");
4251
		if (this.debugLevel>0) System.out.println("Listing "+numOutLiers+" worst images:");
Andrey Filippov's avatar
Andrey Filippov committed
4252
		for (int n=0;n<indices.length;n++){
4253
			String msg=n+" ("+indices[n]+" / "+ this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].getSetNumber()+"): "+
Andrey Filippov's avatar
Andrey Filippov committed
4254 4255 4256 4257
			IJ.d2s(errors[indices[n]],3)+" "+
			this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].path+
			" ("+this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].pixelsXY.length+
			" points) "+selectedImages[indices[n]];
Andrey Filippov's avatar
Andrey Filippov committed
4258

Andrey Filippov's avatar
Andrey Filippov committed
4259 4260 4261 4262 4263 4264 4265
			if (this.debugLevel>0) System.out.println(
					msg);
			gd.addCheckbox(msg, true);
		}
		WindowTools.addScrollBars(gd);
		gd.showDialog();
		if (gd.wasCanceled()) return false;
4266
		if (this.debugLevel>0) System.out.println("Removing outliers:");
Andrey Filippov's avatar
Andrey Filippov committed
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
		for (int n=0;n<indices.length;n++){
			if (gd.getNextBoolean()) {
				if (this.debugLevel>0) System.out.println(n+" :"+IJ.d2s(errors[indices[n]],3)+" "+this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].path);
				this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].enabled=false;
				this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].hintedMatch=-1; // so can be re-calibrated again w/o others
			}
		}
		fittingStrategy.distortionCalibrationData.updateSetOrientation(null); // remove orientation information from the image set if none is enabled
		return true;
    }

4278
    public boolean removeOutLierSets(int numOutLiers){
4279
    	boolean removeEmptySets=true; // false;
4280
    	if (numOutLiers<0) {
Andrey Filippov's avatar
Andrey Filippov committed
4281 4282
    		GenericDialog gd = new GenericDialog("Select sets to process");
    		gd.addNumericField("Series number (<0 - all images)", -1, 0);
4283
    		gd.addNumericField("Number of outliers to show", 5, 0);
Andrey Filippov's avatar
Andrey Filippov committed
4284 4285 4286 4287 4288
    		gd.addCheckbox("Remove empty sets", removeEmptySets);
    		gd.addCheckbox("Ask for weight function filter",     this.askFilter);
    		gd.showDialog();
    		if (gd.wasCanceled()) return false;
    		this.seriesNumber= (int) gd.getNextNumber();
4289
    		numOutLiers=      (int) gd.getNextNumber();
Andrey Filippov's avatar
Andrey Filippov committed
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
    		removeEmptySets=         gd.getNextBoolean();
    		this.askFilter=         gd.getNextBoolean();
    	}
//		boolean [] oldSelection=this.fittingStrategy.selectAllImages(0); // enable all images in series 0
		int filter=this.filterForAll;
		if (this.askFilter) filter=selectFilter(filter);
    	initFittingSeries(true,filter,this.seriesNumber); // will set this.currentVector
//    	initFittingSeries(true,this.filterForAll,this.seriesNumber); // will set this.currentVector
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
		double [] errors=calcErrors(calcYminusFx(this.currentfX));
		double    rms=   calcError (calcYminusFx(this.currentfX));
//		boolean [] selectedImages=fittingStrategy.selectedImages();
		int [] numPairs=calcNumPairs();
	    int [][] imageSets=this.fittingStrategy.distortionCalibrationData.listImages(false); // true - only enabled images
	    int [] numSetPoints=new int [imageSets.length];
	    double [] rmsPerSet=new double[imageSets.length];
	    boolean [] hasNaNInSet=new boolean[imageSets.length];
	    boolean [] allNaNInSet=new boolean[imageSets.length];
	    for (int setNum=0;setNum<imageSets.length;setNum++){
	    	double error2=0.0;
	    	int numInSet=0;
    		hasNaNInSet[setNum]=false;
    		for (int imgInSet=0;imgInSet<imageSets[setNum].length;imgInSet++){
	    		int imgNum=imageSets[setNum][imgInSet];
	    		int num=numPairs[imgNum];
	    		if (Double.isNaN(errors[imgNum])){
	    			hasNaNInSet[setNum]=true;
	    		} else {
	    			error2+=errors[imgNum]*errors[imgNum]*num;
	    			numInSet+=num;
Andrey Filippov's avatar
Andrey Filippov committed
4320

Andrey Filippov's avatar
Andrey Filippov committed
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	    		}
	    	}
    		allNaNInSet[setNum]=(numInSet==0);
	    	numSetPoints[setNum]=numInSet;
	    	rmsPerSet[setNum]=(numInSet>0)?Math.sqrt(error2/numInSet):Double.NaN;
	    }
//		int numSelectedNotNaNSets=0;
		int numSelectedSets=0;
		int numNaN=0;
		for (int i=0;i<imageSets.length;i++)  {
//			if (!Double.isNaN(rmsPerSet[i])) numSelectedSets++;
			if (!allNaNInSet[i]) numSelectedSets++;
			else numNaN++;
		}
//		int [] imgIndices=new int[numSelectedNotNaNSets];
//		int index=0;
//		for (int i=0;i<imageSets.length;i++) if ( selectedImages[i]) imgIndices[index++]=i;

4339 4340
		if (numOutLiers>numSelectedSets) numOutLiers=numSelectedSets;
		int [] indices=new int [numOutLiers];
Andrey Filippov's avatar
Andrey Filippov committed
4341 4342 4343
		boolean [] availableSets= new boolean  [imageSets.length];
		for (int i=0;i<imageSets.length;i++) availableSets[i]= !allNaNInSet[i]; //!Double.isNaN(rmsPerSet[i]);
		if (removeEmptySets  && (numNaN>0)){ //(this.debugLevel>0)
4344
			if (this.debugLevel>0) System.out.println("removeOutLierSets(): Number of empty (rms=NaN) sets="+numNaN+":");
4345
//			int n=0;
Andrey Filippov's avatar
Andrey Filippov committed
4346
			for (int setNum=0;setNum<imageSets.length;setNum++) if (!availableSets[setNum]){
4347
//				n++;
Andrey Filippov's avatar
Andrey Filippov committed
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
				if (this.debugLevel>0) System.out.println("Set "+setNum);
	    		for (int imgInSet=0;imgInSet<imageSets[setNum].length;imgInSet++){
					int numImg=imageSets[setNum][imgInSet];
					if (this.debugLevel>0) System.out.println(setNum+":"+imgInSet+" #"+ numImg+" "+IJ.d2s(errors[numImg],3)+" "+
							this.fittingStrategy.distortionCalibrationData.gIP[numImg].path);
					this.fittingStrategy.distortionCalibrationData.gIP[numImg].enabled=false;
					this.fittingStrategy.distortionCalibrationData.gIP[numImg].hintedMatch=-1; // so can be re-calibrated again w/o others
	    		}
			}
		}
Andrey Filippov's avatar
Andrey Filippov committed
4358

4359 4360
		System.out.println("removeOutLierSets(): availableSets.length="+availableSets.length+" numSelectedSets="+numSelectedSets);
		for (int n=0;n<numOutLiers;n++){
Andrey Filippov's avatar
Andrey Filippov committed
4361 4362 4363 4364 4365 4366 4367
			double maxRMS=-1.0;
			indices[n]=-1;
			for (int i=0;i<availableSets.length;i++)if (availableSets[i] && (rmsPerSet[i]>maxRMS)){ // NaN are already skipped
					maxRMS=rmsPerSet[i];
					indices[n]=i;
			}
			if (indices[n]<0){
4368
				System.out.println("removeOutLierSets(): indices["+n+"]="+indices[n]);
Andrey Filippov's avatar
Andrey Filippov committed
4369 4370 4371 4372
				continue;
			}
			availableSets[indices[n]]=false; // java.lang.ArrayIndexOutOfBoundsException: -1
		}
Andrey Filippov's avatar
Andrey Filippov committed
4373

Andrey Filippov's avatar
Andrey Filippov committed
4374
		GenericDialog gd = new GenericDialog("Select image Sets to remove (RMS="+IJ.d2s(rms,3)+")");
4375
		if (this.debugLevel>0) System.out.println("Listing "+numOutLiers+" worst image sets");
Andrey Filippov's avatar
Andrey Filippov committed
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
		for (int n=0;n<indices.length;n++){
			int numSet=indices[n];
			double setWeight=this.fittingStrategy.distortionCalibrationData.gIS[numSet].setWeight;
			if (this.debugLevel>0) System.out.println(n+" ("+numSet+"): "+(hasNaNInSet[numSet]?"* ":"")+IJ.d2s(rmsPerSet[numSet],3)+
					" points: "+numSetPoints[numSet]+" weight:"+setWeight);
			gd.addCheckbox(n+": "+numSet+": "+(hasNaNInSet[numSet]?"* ":"")+IJ.d2s(rmsPerSet[numSet],3)+" weight:"+setWeight, true);
			for (int i=0;i<imageSets[numSet].length;i++){
				int numImg=imageSets[numSet][i];
				double diameter=this.fittingStrategy.distortionCalibrationData.gIP[numImg].getGridDiameter();
				gd.addMessage(i+":"+numImg+": "+IJ.d2s(errors[numImg],3)+" "+
Andrey Filippov's avatar
Andrey Filippov committed
4386
						" ("+this.fittingStrategy.distortionCalibrationData.gIP[numImg].pixelsXY.length+" points, diameter="+diameter+") "+
Andrey Filippov's avatar
Andrey Filippov committed
4387 4388
						this.fittingStrategy.distortionCalibrationData.gIP[numImg].path);
				if (this.debugLevel>0) System.out.println("  --- "+numImg+": "+IJ.d2s(errors[numImg],3)+" "+
Andrey Filippov's avatar
Andrey Filippov committed
4389
						" ("+this.fittingStrategy.distortionCalibrationData.gIP[numImg].pixelsXY.length+" points, diameter="+diameter+") "+
Andrey Filippov's avatar
Andrey Filippov committed
4390 4391 4392 4393 4394 4395 4396 4397 4398
						this.fittingStrategy.distortionCalibrationData.gIP[numImg].path);
			}
		}
		WindowTools.addScrollBars(gd);
		gd.showDialog();
		if (gd.wasCanceled()){
//			this.fittingStrategy.setImageSelection(0, oldSelection); // restore original selection in series 0
			return false;
		}
4399
		if (this.debugLevel>0) System.out.println("Removing outliers:");
Andrey Filippov's avatar
Andrey Filippov committed
4400 4401 4402 4403 4404 4405
		for (int n=0;n<indices.length;n++){
			if (gd.getNextBoolean()) {
				int numSet=indices[n];
				if (this.debugLevel>0) System.out.println(" Removing imgages in image set "+numSet);
				for (int i=0;i<imageSets[numSet].length;i++){
					int numImg=imageSets[numSet][i];
4406
					if (this.debugLevel>0) System.out.println(n+":"+i+"("+numImg+")"+IJ.d2s(errors[numImg],3)+" "+
Andrey Filippov's avatar
Andrey Filippov committed
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
							this.fittingStrategy.distortionCalibrationData.gIP[numImg].path);
					this.fittingStrategy.distortionCalibrationData.gIP[numImg].enabled=false;
					this.fittingStrategy.distortionCalibrationData.gIP[numImg].hintedMatch=-1; // so can be re-calibrated again w/o others
				}
			}
		}
		// next is not needed
		fittingStrategy.distortionCalibrationData.updateSetOrientation(null); // remove orientation information from the image set if none is enabled
//		this.fittingStrategy.setImageSelection(0, oldSelection); // restore original selection in series 0
		return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
4418

4419
    public boolean removeOutLiersJunk(int series, int numOutLiers){
Andrey Filippov's avatar
Andrey Filippov committed
4420
    	int numSeries=fittingStrategy.getNumSeries();
4421
    	if ((series<0) || (numOutLiers<0)) {
Andrey Filippov's avatar
Andrey Filippov committed
4422 4423
    		GenericDialog gd = new GenericDialog("Select series to process");
    		gd.addNumericField("Iteration number to start (0.."+(numSeries-1)+")", this.seriesNumber, 0);
4424
    		gd.addNumericField("Number of outliers to show", 10, 0);
Andrey Filippov's avatar
Andrey Filippov committed
4425 4426 4427
    		gd.showDialog();
    		if (gd.wasCanceled()) return false;
    		this.seriesNumber=          (int) gd.getNextNumber();
4428
    		numOutLiers=               (int) gd.getNextNumber();
Andrey Filippov's avatar
Andrey Filippov committed
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
    	} else {
    		this.seriesNumber=series;
    	}
	    initFittingSeries(true,this.filterForAll,this.seriesNumber); // will set this.currentVector
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
		double [] errors=calcErrors(calcYminusFx(this.currentfX));
		double    rms=   calcError (calcYminusFx(this.currentfX));
		boolean [] selectedImages=fittingStrategy.selectedImages();
		int numSelectedImages=0;
		for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]) numSelectedImages++;
		int [] imgIndices=new int[numSelectedImages];
		int index=0;
		for (int i=0;i<selectedImages.length;i++) if ( selectedImages[i]) imgIndices[index++]=i;

4443 4444 4445
		if (numOutLiers>numSelectedImages) numOutLiers=numSelectedImages;
		int [] indices=new int [numOutLiers];
		int [] indicesSelected=new int [numOutLiers];
Andrey Filippov's avatar
Andrey Filippov committed
4446 4447
		boolean [] availableImages=new boolean[numSelectedImages];
		for (int i=0;i<availableImages.length;i++)availableImages[i]=true;
4448
		for (int n=0;n<numOutLiers;n++){
Andrey Filippov's avatar
Andrey Filippov committed
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
			double maxRMS=0;
			indices[n]=-1;
			indicesSelected[n]=-1;
			int imgIndex=0;
			for (int i=0;i<selectedImages.length;i++)if (selectedImages[i]){
				if (availableImages[imgIndex] && (errors[imgIndex]>maxRMS)){
					maxRMS=errors[imgIndex];
					indicesSelected[n]=imgIndex;
					indices[n]=i;
				}
				imgIndex++;
			}
			availableImages[indicesSelected[n]]=false;
		}
		GenericDialog gd = new GenericDialog("Select images to remove (RMS="+IJ.d2s(rms,3)+")");
		for (int n=0;n<indices.length;n++){
			gd.addCheckbox(indices[n]+": "+IJ.d2s(errors[indicesSelected[n]],3)+" "+this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].path, true);
		}
		WindowTools.addScrollBars(gd);
		gd.showDialog();
		if (gd.wasCanceled()) return false;
		for (int n=0;n<indices.length;n++){
			if (gd.getNextBoolean()) this.fittingStrategy.distortionCalibrationData.gIP[indices[n]].enabled=false;
		}
		return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
4475

Andrey Filippov's avatar
Andrey Filippov committed
4476 4477 4478 4479 4480 4481
	/**
	 * Opens a text window with the parameter table
	 * @param imageSelection which images include in the output
	 * @param showEyesisParameters show physical location/attitude based on Eyesis
	 * @param showIntrinsicParameters show lens distortion/alignment parameters)
	 * @param showExtrinsicParameters show position/attitude of the individual cameras
Andrey Filippov's avatar
Andrey Filippov committed
4482
	 * @param extraDecimals add this many decimals to data
Andrey Filippov's avatar
Andrey Filippov committed
4483 4484 4485 4486 4487 4488
	 */
	public void listImageParameters (boolean [] imageSelection,
    		double rms,
    		double [] errors,
    		int    [] numPairs,
    		boolean showIndex,
4489
    		boolean showGridMatch,
Andrey Filippov's avatar
Andrey Filippov committed
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
    		boolean showErrors,
    	    boolean showPoints,
    		boolean showLensCoordinates,
			boolean showEyesisParameters,
			boolean showIntrinsicParameters,
			boolean showExtrinsicParameters,
			int extraDecimals){
		int numImages=0;

		for (int i=0;i<fittingStrategy.distortionCalibrationData.getNumImages();i++) {
			if((imageSelection==null) || ((i<imageSelection.length) && imageSelection[i])) numImages++;
		}
		double  [][] intrinsic=new double [numImages][];
		double  [][] extrinsic=new double [numImages][];
		double  [][] lensCoordinates=new double [numImages][];
		int [] imgIndices=new int[numImages];
		int index=0;
		for (int i=0;i<fittingStrategy.distortionCalibrationData.getNumImages();i++) {
			if((imageSelection==null) || ((i<imageSelection.length) && imageSelection[i])) imgIndices[index++]=i;
		}
		for (int imgIndex=0;imgIndex<numImages;imgIndex++) {
			int imgNum=imgIndices[imgIndex]; // image number
			if (this.debugLevel>2) {
				System.out.println("listImageParameters(), imgNum="+imgNum+" calcInterParamers():");
			}
Andrey Filippov's avatar
Andrey Filippov committed
4515
			this.lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
4516
					this.lensDistortionParameters,
4517 4518 4519 4520
					this.fittingStrategy.distortionCalibrationData.isTripod(),
					this.fittingStrategy.distortionCalibrationData.isCartesian(),
		    		this.fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
		    		this.fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
4521 4522 4523 4524 4525 4526 4527 4528 4529
					null, //this.interParameterDerivatives, // [22][]
//					fittingStrategy.distortionCalibrationData.pars[imgNum], // 22-long parameter vector for the image
					fittingStrategy.distortionCalibrationData.getParameters(imgNum), // 22-long parameter vector for the image
					null); // if no derivatives, null is OK
//					false); // calculate this.interParameterDerivatives -derivatives array (false - just this.values)
			intrinsic[imgIndex]=      lensDistortionParameters.getIntrinsicVector().clone();
			extrinsic[imgIndex]=      lensDistortionParameters.getExtrinsicVector().clone();
			lensCoordinates[imgIndex]=lensDistortionParameters.getLensCenterCoordinates();
		}
Andrey Filippov's avatar
Andrey Filippov committed
4530

Andrey Filippov's avatar
Andrey Filippov committed
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	    String header="Name\tUnits";
		for (int imgIndex=0;imgIndex<numImages;imgIndex++)
			header+="\t"+IJ.d2s(fittingStrategy.distortionCalibrationData.getImageTimestamp(imgIndices[imgIndex]),6);
	    StringBuffer sb = new StringBuffer();
	    if (showIndex) {
			sb.append("index \t");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				sb.append("\t"+imgIndices[imgIndex]);
			}
			sb.append("\n");
Andrey Filippov's avatar
Andrey Filippov committed
4541

4542 4543 4544 4545 4546 4547 4548 4549 4550
	    }
	    if (showGridMatch){
			sb.append("Grid Match"+"\tX/Y:ROT");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				int imgNum=imgIndices[imgIndex]; // image number
				int [] shiftRot=fittingStrategy.distortionCalibrationData.getUVShiftRot(imgNum);
				sb.append("\t"+shiftRot[0]+"/"+shiftRot[1]+":"+shiftRot[2]);
			}
			sb.append("\n");
Andrey Filippov's avatar
Andrey Filippov committed
4551

4552 4553 4554
			sb.append("Lasers(matched)"+"\t");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				int imgNum=imgIndices[imgIndex]; // image number
Andrey Filippov's avatar
Andrey Filippov committed
4555

4556 4557 4558 4559 4560 4561 4562 4563
    			int numPointers=0; // count number of laser pointers
    	        DistortionCalibrationData.GridImageParameters gip=fittingStrategy.distortionCalibrationData.getGridImageParameters(imgNum);
    			if (gip.laserPixelCoordinates!=null){
    				for (int j=0;j<gip.laserPixelCoordinates.length;j++) if (gip.laserPixelCoordinates[j]!=null) numPointers++;
    			}
    			sb.append("\t");
    			if (!gip.enabled) sb.append("(");
    			sb.append(numPointers+"("+gip.matchedPointers+"):"+gip.hintedMatch +
4564
    					" "+IJ.d2s(gip.getGridPeriod(),1));
4565 4566 4567
    			if (!gip.enabled) sb.append(")");
			}
			sb.append("\n");
Andrey Filippov's avatar
Andrey Filippov committed
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	    }
		if (showErrors) {
				sb.append("--- RMS "+IJ.d2s(rms,3+extraDecimals)+"\tpix");
				for (int imgIndex=0;imgIndex<numImages;imgIndex++){
					int imgNum=imgIndices[imgIndex]; // image number
					sb.append("\t"+IJ.d2s(errors[imgNum],3+extraDecimals));
				}
				sb.append("\n");
		}
		if (showPoints) {
			int totalPoints=0;
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				totalPoints+=numPairs[imgIndices[imgIndex]];
			}
			sb.append(" points "+totalPoints+"\t");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				sb.append("\t"+numPairs[imgIndices[imgIndex]]);
			}
			sb.append("\n");
			sb.append(" Diameter\trel");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				int imgNum=imgIndices[imgIndex]; // image number
				sb.append("\t"+IJ.d2s(this.fittingStrategy.distortionCalibrationData.gIP[imgNum].getGridDiameter(),2));
			}
			sb.append("\n");
		}
		if (showEyesisParameters) {
//			getImageSubcamera
			sb.append("Sub-camera\t");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++){
				int imgNum=imgIndices[imgIndex]; // image number
				sb.append("\t"+fittingStrategy.distortionCalibrationData.getImageSubcamera(imgNum));
			}
			sb.append("\n");
Andrey Filippov's avatar
Andrey Filippov committed
4602

4603
			for (int parNumber=0;parNumber<fittingStrategy.distortionCalibrationData.getNumDescriptions();parNumber++){
Andrey Filippov's avatar
Andrey Filippov committed
4604
				sb.append(
4605 4606
						fittingStrategy.distortionCalibrationData.descrField(parNumber,0)+"\t"+
						fittingStrategy.distortionCalibrationData.descrField(parNumber,2));
Andrey Filippov's avatar
Andrey Filippov committed
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
				for (int imgIndex=0;imgIndex<numImages;imgIndex++){
					int imgNum=imgIndices[imgIndex]; // image number
//					sb.append("\t"+IJ.d2s(fittingStrategy.distortionCalibrationData.pars[imgNum][parNumber],3+extraDecimals)); // TODO: make an array of decimals per parameter
					sb.append("\t"+IJ.d2s(fittingStrategy.distortionCalibrationData.getParameterValue(imgNum,parNumber),3+extraDecimals)); // TODO: make an array of decimals per parameter
				}
				sb.append("\n");
			}
		}
		if (showIntrinsicParameters) {
			sb.append("--- Intrinsic\t");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++) sb.append("\t---");
			sb.append("\n");
			for (int parNumber=0;parNumber<lensDistortionParameters.getIntrinsicNames().length;parNumber++){
				sb.append(
						lensDistortionParameters.getIntrinsicNames()[parNumber]+"\t"+
						lensDistortionParameters.getIntrinsicUnits()[parNumber]);
				for (int imgIndex=0;imgIndex<numImages;imgIndex++){
					sb.append("\t"+IJ.d2s(intrinsic[imgIndex][parNumber],3+extraDecimals)); // TODO: make an array of decimals per parameter
				}
				sb.append("\n");
			}
		}
		if (showExtrinsicParameters ||  showLensCoordinates) {
			sb.append("--- Extrinsic\t");
			for (int imgIndex=0;imgIndex<numImages;imgIndex++) sb.append("\t---");
			sb.append("\n");
	        if (showLensCoordinates){
				sb.append("Lens X(right)\tmm");
				for (int imgIndex=0;imgIndex<numImages;imgIndex++){
//					int imgNum=imgIndices[imgIndex]; // image number
					sb.append("\t"+IJ.d2s(lensCoordinates[imgIndex][0],3+extraDecimals));
				}
				sb.append("\n");
				sb.append("Lens Y(down)\tmm");
				for (int imgIndex=0;imgIndex<numImages;imgIndex++){
//					int imgNum=imgIndices[imgIndex]; // image number
					sb.append("\t"+IJ.d2s(lensCoordinates[imgIndex][1],3+extraDecimals));
				}
				sb.append("\n");
				sb.append("Lens Z(into)\tmm");
				for (int imgIndex=0;imgIndex<numImages;imgIndex++){
//					int imgNum=imgIndices[imgIndex]; // image number
					sb.append("\t"+IJ.d2s(lensCoordinates[imgIndex][2],3+extraDecimals));
				}
				sb.append("\n");
	        }
			if (showExtrinsicParameters){
				for (int parNumber=0;parNumber<lensDistortionParameters.getExtrinsicNames().length;parNumber++){
					sb.append(
							lensDistortionParameters.getExtrinsicNames()[parNumber]+"\t"+
							lensDistortionParameters.getExtrinsicUnits()[parNumber]);
					for (int imgIndex=0;imgIndex<numImages;imgIndex++){
						sb.append("\t"+IJ.d2s(extrinsic[imgIndex][parNumber],3+extraDecimals)); // TODO: make an array of decimals per parameter
					}
					sb.append("\n");
				}
			}
		}
	    new TextWindow("Camera/lens parameters", header, sb.toString(), 500,900);
	}
Andrey Filippov's avatar
Andrey Filippov committed
4667

Andrey Filippov's avatar
Andrey Filippov committed
4668 4669 4670 4671 4672 4673 4674 4675
	/**
	 * Calculate differences vector
	 * @param fX vector of calculated pixelX,pixelY on the sensors
	 * @return same dimension vector of differences from this.Y (measured grid pixelxX, pixelY)
	 */
	public double [] calcYminusFx(double [] fX){
		double [] result=this.Y.clone();
		for (int i=0;i<result.length;i++) result[i]-=fX[i];
Andrey Filippov's avatar
Andrey Filippov committed
4676
	    return result;
Andrey Filippov's avatar
Andrey Filippov committed
4677 4678
	}
	/**
Andrey Filippov's avatar
Andrey Filippov committed
4679
	 * Calcualte partial differences vector
Andrey Filippov's avatar
Andrey Filippov committed
4680 4681 4682
	 * @param fX vector of reprojected pixelX,pixelY on the sensors (number of elements - double number of points
	 * @param startIndex start index to extract (even number, twice point index)
	 * @param endIndex end index (1 greater than the last to extract)
Andrey Filippov's avatar
Andrey Filippov committed
4683
	 * @return partial differences (measured/corrected -reprojected), twice number of points long
Andrey Filippov's avatar
Andrey Filippov committed
4684 4685 4686 4687 4688 4689 4690
	 */
	public double [] calcYminusFx(double [] fX, int startIndex, int endIndex){
		double [] result=new double [endIndex-startIndex];
		for (int i=0;i<result.length;i++) {
			int index=startIndex+i;
			result[i]=this.Y[index]-fX[index];
		}
Andrey Filippov's avatar
Andrey Filippov committed
4691
		return result;
Andrey Filippov's avatar
Andrey Filippov committed
4692 4693
	}

Andrey Filippov's avatar
Andrey Filippov committed
4694

Andrey Filippov's avatar
Andrey Filippov committed
4695 4696 4697
	/**
	 * Calculate the RMS from the differences vector
	 * @param diff - differences vector
Andrey Filippov's avatar
Andrey Filippov committed
4698
	 * @return RMS for the mean error (in sensor pixels)
Andrey Filippov's avatar
Andrey Filippov committed
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	 */
	public double calcError(double [] diff){
		double result=0;
		if (this.weightFunction!=null) {
			for (int i=0;i<diff.length;i++) result+=diff[i]*diff[i]*this.weightFunction[i];
			result/=this.sumWeights;
		} else {
			for (int i=0;i<diff.length;i++) result+=diff[i]*diff[i];
			result/=diff.length;
		}
		return Math.sqrt(result)*this.RMSscale;
	}

Andrey Filippov's avatar
Andrey Filippov committed
4712

Andrey Filippov's avatar
Andrey Filippov committed
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	public double calcErrorDiffY(double [] fX){
		double result=0;
		if (this.weightFunction!=null) {
			for (int i=0;i<fX.length;i++){
				double diff=this.Y[i]-fX[i];
				result+=diff*diff*this.weightFunction[i];
			}
			result/=this.sumWeights;
		} else {
			for (int i=0;i<fX.length;i++){
				double diff=this.Y[i]-fX[i];
				result+=diff*diff;
			}
			result/=fX.length;
		}
		return Math.sqrt(result)*this.RMSscale;
	}
	public double calcErrorDiffY(
			double [] fX,
			double [] extraWeightedErrors,
			double [] extraWeights){
		double result=0;
		double effectiveWeight;
		if (this.weightFunction!=null) {
			effectiveWeight=this.sumWeights;
			for (int i=0;i<fX.length;i++){
				double diff=this.Y[i]-fX[i];
				result+=diff*diff*this.weightFunction[i];
			}
		} else {
			effectiveWeight=fX.length;
			for (int i=0;i<fX.length;i++){
				double diff=this.Y[i]-fX[i];
				result+=diff*diff;
			}
		}
		if ((extraWeightedErrors!=null) && (extraWeights!=null)) {
			for (int i=0;i<extraWeightedErrors.length;i++){
				result+=extraWeightedErrors[i];
				effectiveWeight+=extraWeights[i];
			}
		}
		result/=effectiveWeight;
		return Math.sqrt(result)*this.RMSscale;
	}

	public void resetBadNodes(){
		for (int imgNum=0;imgNum<fittingStrategy.distortionCalibrationData.gIP.length;imgNum++) if (fittingStrategy.distortionCalibrationData.gIP[imgNum]!=null){
			fittingStrategy.distortionCalibrationData.gIP[imgNum].resetBadNodes();
		}
	}

    public int markBadNodes(
//    		int numSeries,
    		double removeOverRMS,
    		double removeOverRMSNonweighted,
    		boolean verbose,
    		int debugLevel){
    	int debugThreshold=2;
//		this.seriesNumber=series;
    	resetBadNodes(); // before calculating weight function
Andrey Filippov's avatar
Andrey Filippov committed
4774
	    initFittingSeries(false,this.filterForAll,this.seriesNumber); // recalculate
Andrey Filippov's avatar
Andrey Filippov committed
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
    	int totalBadNodes=0;
		boolean [] selectedImages=fittingStrategy.selectedImages();
		double [] diff=calcYminusFx(this.currentfX);
		int index=0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) {
			double e2 =0.0;
//			errors[imgNum]=0.0;
			if (selectedImages[imgNum]) {
				int numThisRemoved=0;
				int len=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length*2;
				double w=0;
				int nw=0;
				if (this.weightFunction!=null) {
					for (int i=index;i<index+len;i++) {
						e2+=diff[i]*diff[i]*this.weightFunction[i];
						w+=this.weightFunction[i];
						if (this.weightFunction[i]>0.0) nw++;
					}
				} else {
					for (int i=index;i<index+len;i++) {
						e2+=diff[i]*diff[i];
						w+=1.0;
						nw++;
					}
				}
				if (w>0.0) {
//					e2/=w;
					double threshold2Weighted=   2.0*removeOverRMS*removeOverRMS*e2/nw; // 2.0 because x^2+y^2
					double threshold2NonWeighted=2.0*removeOverRMSNonweighted*removeOverRMSNonweighted*e2/w; // 2.0 because x^2+y^2
					if (debugLevel>debugThreshold){
						boolean someRemoved=false;
						for (int i=index;i<index+len;i+=2) {
							e2=(diff[i]*diff[i]+ diff[i+1]*diff[i+1]);
							if ((e2>threshold2NonWeighted) || ((this.weightFunction!=null) && ((e2*this.weightFunction[i]) > threshold2Weighted )) ) {
								double ww=(this.weightFunction==null)?1.0:(this.weightFunction[i]);
								if (ww>0.0) someRemoved=true;

							}
						}
						if (someRemoved || (debugLevel>2)) System.out.println("imgNum="+imgNum+" len="+len+" e2/w="+(e2/w)+" w="+w+" e2/nw="+(e2/nw)+
								" threshold2Weighted="+threshold2Weighted+" threshold2NonWeighted="+threshold2NonWeighted);
					}

					for (int i=index;i<index+len;i+=2) {
						e2=(diff[i]*diff[i]+ diff[i+1]*diff[i+1]);
						if ((e2>threshold2NonWeighted) || ((this.weightFunction!=null) && ((e2*this.weightFunction[i]) > threshold2Weighted )) ) {
							double ww=(this.weightFunction==null)?1.0:(this.weightFunction[i]);
							int pointIndex=(i-index)/2;
							if (ww>0.0) {
								fittingStrategy.distortionCalibrationData.gIP[imgNum].setBadNode(pointIndex);
								numThisRemoved++;
								if (debugLevel>debugThreshold){
									int iu=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[pointIndex][0];
									int iv=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[pointIndex][1];
									System.out.println(numThisRemoved+": "+pointIndex +
											" uv="+iu+":"+iv+
											" e2="+e2+" ww="+ww+" e2w="+
											(e2*ww)+" ["+diff[i]+":"+diff[i+1]+"]");
								}
							}
						}
					}
					if (verbose && (numThisRemoved>0)) {
						System.out.println("Image "+imgNum+": removed "+numThisRemoved+" nodes over threshold");
					}
					totalBadNodes+=numThisRemoved;
				}
				index+=len;
			}
		}
    	return totalBadNodes;
    }
	public boolean showImageReprojectionErrorsDialog( int debugLevel){
4849
		boolean eachImageInSet=false;
Andrey Filippov's avatar
Andrey Filippov committed
4850 4851 4852 4853
	    GenericDialog gd = new GenericDialog("Show Reprojection errors for image/image set/image selection");
		gd.addNumericField("Series number for image selection (-1 - all enabled images)", -1, 0);
		gd.addNumericField("Single image number to show (<0 - do not select)", -1,0);
		gd.addNumericField("Image set number to show (<0 - do not select)", -1,0);
4854
		gd.addCheckbox("Open each image in the set",     eachImageInSet);
Andrey Filippov's avatar
Andrey Filippov committed
4855 4856 4857 4858 4859 4860 4861
		gd.addCheckbox("Ask for weight function filter",     this.askFilter);
//		gd.addNumericField("Weight function filter (-1 - use default for all )",-1,0);
	    gd.showDialog();
	    if (gd.wasCanceled()) return false;
	    this.seriesNumber=        (int) gd.getNextNumber();
	    int singleImageNumber=    (int) gd.getNextNumber();
	    int imageSetNumber=       (int) gd.getNextNumber();
4862
	    eachImageInSet=                 gd.getNextBoolean();
Andrey Filippov's avatar
Andrey Filippov committed
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
	    this.askFilter=                 gd.getNextBoolean();
//	    int weightFunctionFilter= (int) gd.getNextNumber();
		int filter=this.filterForAll;
		if (this.askFilter) filter=selectFilter(filter);
	    int [] imageNumbers = null;
	    if (singleImageNumber>=0){
	    	imageNumbers=new int [1];
	    	imageNumbers[0]=singleImageNumber;
	    } else if (imageSetNumber>=0){
	    	int numInSet=0;
	    	for (int nChn=0;nChn<this.fittingStrategy.distortionCalibrationData.gIS[imageSetNumber].imageSet.length;nChn++){
	    		if (this.fittingStrategy.distortionCalibrationData.gIS[imageSetNumber].imageSet[nChn]!=null) numInSet++;
	    	}
	    	imageNumbers=new int [numInSet];
	    	numInSet=0;
	    	for (int nChn=0;nChn<this.fittingStrategy.distortionCalibrationData.gIS[imageSetNumber].imageSet.length;nChn++){
	    		if (this.fittingStrategy.distortionCalibrationData.gIS[imageSetNumber].imageSet[nChn]!=null) {
	    			imageNumbers[numInSet++]=this.fittingStrategy.distortionCalibrationData.gIS[imageSetNumber].imageSet[nChn].imgNumber;
	    		}
	    	}
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
	    	if (eachImageInSet){
	    		for (int nChn=0;nChn<imageNumbers.length;nChn++){
	    			int [] imageNumber={imageNumbers[nChn]};
	    			showImageReprojectionErrors(
	    		    		imageNumber, // if null - use all images in a series
	    		    		filter, //weightFunctionFilter,
	    		    		debugLevel);
	    		}
	    		// Do not exit, continue and show combine reprojection errors for all set
	    	}
Andrey Filippov's avatar
Andrey Filippov committed
4893 4894 4895 4896 4897 4898
	    }
	    showImageReprojectionErrors(
	    		imageNumbers, // if null - use all images in a series
	    		filter, //weightFunctionFilter,
	    		debugLevel);
	    return true;
Andrey Filippov's avatar
Andrey Filippov committed
4899

Andrey Filippov's avatar
Andrey Filippov committed
4900
	}
Andrey Filippov's avatar
Andrey Filippov committed
4901

Andrey Filippov's avatar
Andrey Filippov committed
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
    public void showImageReprojectionErrors(
    		int [] imageNumbers, // if null - use all images in a series
    		int filter,
    		int debugLevel){
    	if (filter<0) filter=this.filterForAll;
    	if (debugLevel>1) {
    		System.out.print("showImageReprojectionErrors: ");
    		if (imageNumbers!=null){
    			for (int i=0;i<imageNumbers.length;i++) System.out.print(" "+imageNumbers[i]);
    		} else {
        		System.out.println("imageNumbers is NULL");
    		}
    	}
Andrey Filippov's avatar
Andrey Filippov committed
4915
	    initFittingSeries(false, filter,this.seriesNumber); // recalculate
Andrey Filippov's avatar
Andrey Filippov committed
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		this.currentfX=calculateFxAndJacobian(this.currentVector, false); // is it always true here (this.jacobian==null)
		boolean [] tmpSelectedImages=fittingStrategy.selectedImages();
		boolean [] selectedImages;
		double [] diff=calcYminusFx(this.currentfX);
		if ((imageNumbers!=null) && (imageNumbers.length>0)){
			selectedImages=new boolean[tmpSelectedImages.length];
			for (int i=0;i<selectedImages.length;i++) selectedImages[i]=false;
			for (int i=0;i<imageNumbers.length;i++) if ((imageNumbers[i]>=0) && (imageNumbers[i]<=selectedImages.length)){
				selectedImages[imageNumbers[i]]=tmpSelectedImages[imageNumbers[i]];
			}
		} else {
			selectedImages=tmpSelectedImages;
4928 4929 4930 4931 4932 4933 4934
			int numImg = 0;
			for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]) numImg++;
			imageNumbers = new int [numImg];
			numImg = 0;
			for (int i=0;i<selectedImages.length;i++)  if (selectedImages[i]) {
				imageNumbers[numImg++] = i;
			}
Andrey Filippov's avatar
Andrey Filippov committed
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
		}
		int width= getGridWidth();
		int height=getGridHeight();
		double [][] imgData=new double[5][height * width]; // dPX, dPY, err
		String [] titles={"dX","dY", "Err","W_Err","Weight"};
		for (int i=0;i<(width*height);i++){
			for (int c=0;c<imgData.length;c++) imgData[c][i]=Double.NaN;
		}
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]){
			int len=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;
			int index=this.imageStartIndex[imgNum]; // pair index
			for (int i=0;i<len;i++){
				int u=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][0]+this.patternParameters.U0;
				int v=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][1]+this.patternParameters.V0;
				int vu=u+width*v;
				double w=this.weightFunction[2*(index+i)];
				double dx=diff[2*(index+i)];
				double dy=diff[2*(index+i)+1];
				double e2=dx*dx+dy*dy;
				if (w>0.0){
					if (Double.isNaN(imgData[0][vu])) for (int c=0;c<imgData.length;c++) imgData[c][vu]=0.0;
					imgData[0][vu]+=dx*w;
					imgData[1][vu]+=dy*w;
					imgData[2][vu]+=e2*w;
					imgData[4][vu]+=w;
				}
			}
		}
		int nonEmpty=0;
	    double sumWeights=0.0;
	    for (int vu=0;vu<(width*height);vu++) if (!Double.isNaN(imgData[0][vu])){
	    	nonEmpty++;
	    	sumWeights+=imgData[4][vu];
	    }
		if ((nonEmpty==0) || (sumWeights==0.0)){
			System.out.println("showImageReprojectionErrors():  No non-empty points");
			return;
		}
		double averageWeight=sumWeights/nonEmpty;
	    for (int vu=0;vu<(width*height);vu++) if (!Double.isNaN(imgData[0][vu])){
	    	imgData[0][vu]/=imgData[4][vu];
	    	imgData[1][vu]/=imgData[4][vu];
	    	imgData[2][vu] =Math.sqrt(imgData[2][vu]/imgData[4][vu]);
	    	imgData[3][vu] =Math.sqrt(imgData[2][vu]/averageWeight);
	    }
	    String title="RPRJ";
	    int maxNumInTitle=10;
	    for (int i=0;(i<imageNumbers.length) && (i<maxNumInTitle); i++) title+="-"+imageNumbers[i];
4983
		(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
4984 4985 4986 4987 4988 4989 4990
				imgData,
				width,
				height,
				true,
				title,
				titles);
    }
Andrey Filippov's avatar
Andrey Filippov committed
4991 4992 4993 4994




Andrey Filippov's avatar
Andrey Filippov committed
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	public double [] calcErrors(double [] diff){
		boolean [] selectedImages=fittingStrategy.selectedImages();
		double [] errors=new double [selectedImages.length];
		int index=0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) {
			errors[imgNum]=Double.NaN; //0.0;
			if (selectedImages[imgNum]) {
				errors[imgNum]=0.0;
				int len=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length*2;
				double w=0;
				if (this.weightFunction!=null) {
					for (int i=index;i<index+len;i++) {
						errors[imgNum]+=diff[i]*diff[i]*this.weightFunction[i];
						w+=this.weightFunction[i];
					}
				} else {
					for (int i=index;i<index+len;i++) {
						errors[imgNum]+=diff[i]*diff[i];
						w+=1.0;
					}
				}
				if (w>0.0) {
					errors[imgNum]/=w;
					errors[imgNum]=Math.sqrt(errors[imgNum])*this.RMSscale;
				} else {
					errors[imgNum]=Double.NaN;
				}
				index+=len;
			}
		}
		return errors;
	}
	/**
	 * Calculate number of used grid points (x/y pairs) for each image in the current fitting series
	 * @return
	 */
	public int [] calcNumPairs(){
		boolean [] selectedImages=fittingStrategy.selectedImages();
		int [] numPairs=new int [selectedImages.length];
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) {
			numPairs[imgNum]=0;
			if (selectedImages[imgNum]) {
				numPairs[imgNum]=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;
			}
		}
		return numPairs;
	}
	/**
Andrey Filippov's avatar
Andrey Filippov committed
5043
	 * Calculate corrections to the current parameter values
Andrey Filippov's avatar
Andrey Filippov committed
5044 5045 5046 5047 5048 5049 5050 5051
	 * @param fX calculated grid pixelX, PixelY for current parameter values
	 * @param lambda damping parameter
	 * @return array of deltas to be applied to the coefficients
	 */
	public double [] solveLevenbergMarquardtOldNotUsed(double [] fX, double lambda){
		// calculate JtJ
		double [] diff=calcYminusFx(fX);
		int numPars=this.jacobian.length; // number of parameters to be adjusted
Andrey Filippov's avatar
Andrey Filippov committed
5052
		int length=diff.length; // should be the same as this.jacobian[0].length
Andrey Filippov's avatar
Andrey Filippov committed
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	    double [][] JtByJmod=new double [numPars][numPars]; //Transposed Jacobian multiplied by Jacobian
	    double [] JtByDiff=new double [numPars];
	    for (int i=0;i<numPars;i++) for (int j=i;j<numPars;j++){
	    	JtByJmod[i][j]=0.0;
	    	if (this.weightFunction!=null)
	    		for (int k=0;k<length;k++) JtByJmod[i][j]+=this.jacobian[i][k]*this.jacobian[j][k]*this.weightFunction[k];
	    	else
	    		for (int k=0;k<length;k++) JtByJmod[i][j]+=this.jacobian[i][k]*this.jacobian[j][k];
	    }
	    for (int i=0;i<numPars;i++) { // subtract lambda*diagonal , fill the symmetrical half below the diagonal
	    	JtByJmod[i][i]+=lambda*JtByJmod[i][i]; //Marquardt mod
	    	for (int j=0;j<i;j++) JtByJmod[i][j]= JtByJmod[j][i]; // it is symmetrical matrix, just copy
	    }
	    for (int i=0;i<numPars;i++) {
	    	JtByDiff[i]=0.0;
	    	if (this.weightFunction!=null)
		    	for (int k=0;k<length;k++) JtByDiff[i]+=this.jacobian[i][k]*diff[k]*this.weightFunction[k];
	    	else
		    	for (int k=0;k<length;k++) JtByDiff[i]+=this.jacobian[i][k]*diff[k];

	    }
//	    M*Ma=Mb
	    Matrix M=new Matrix(JtByJmod);
//  public Matrix (double vals[], int m) {
/*
		if (this.debugLevel>2) {
			for (int n=0;n<fittingStrategy.distortionCalibrationData.pixelsXY.length;n++) {
				for (int i=0;i<fittingStrategy.distortionCalibrationData.pixelsXY[n].length;i++){
					System.out.println(n+":"+i+"  "+
							fittingStrategy.distortionCalibrationData.pixelsUV[n][i][0]+"/"+
							fittingStrategy.distortionCalibrationData.pixelsUV[n][i][1]+"  "+
							IJ.d2s(fittingStrategy.distortionCalibrationData.pixelsXY[n][i][0], 2)+"/"+
							IJ.d2s(fittingStrategy.distortionCalibrationData.pixelsXY[n][i][1], 2)
					);
				}
			}
		}
Andrey Filippov's avatar
Andrey Filippov committed
5090

Andrey Filippov's avatar
Andrey Filippov committed
5091
 */
Andrey Filippov's avatar
Andrey Filippov committed
5092

Andrey Filippov's avatar
Andrey Filippov committed
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
		if (this.debugLevel>3) {
//		if (this.debugLevel>1) {
			System.out.println("Jt*J -lambda* diag(Jt*J), lambda="+lambda+":");
			M.print(10, 5);
		}

	    Matrix Mb=new Matrix(JtByDiff,numPars); // single column
	    if (!(new LUDecomposition(M)).isNonsingular()){
	    	double [][] arr=M.getArray();
			System.out.println("Singular Matrix "+arr.length+"x"+arr[0].length);
			// any rowsx off all 0.0?
			for (int n=0;n<arr.length;n++){
				boolean zeroRow=true;
				for (int i=0;i<arr[n].length;i++) if (arr[n][i]!=0.0){
					zeroRow=false;
					break;
				}
				if (zeroRow){
					System.out.println("Row of all zeros: "+n);
				}
			}
//			M.print(10, 5);
	    	return null;
	    }
Andrey Filippov's avatar
Andrey Filippov committed
5117

Andrey Filippov's avatar
Andrey Filippov committed
5118 5119 5120 5121 5122 5123
//	    Matrix Ma=M.solve(Mb); // singular
	    if (this.debugLevel>0) System.out.print("Running Cholesky decomposition...");
	    long decompositionTime=System.nanoTime();
	    Matrix Ma=M.chol().solve(Mb); // singular
	    decompositionTime=System.nanoTime()-decompositionTime;
	    if (this.debugLevel>0) System.out.println("done in "+(decompositionTime/1E9)+" sec");
Andrey Filippov's avatar
Andrey Filippov committed
5124

Andrey Filippov's avatar
Andrey Filippov committed
5125 5126 5127
	    return Ma.getColumnPackedCopy();
	}

Andrey Filippov's avatar
Andrey Filippov committed
5128 5129


Andrey Filippov's avatar
Andrey Filippov committed
5130 5131 5132 5133
	public LMAArrays calculateJacobianArrays(double [] fX){
		// calculate JtJ
		double [] diff=calcYminusFx(fX);
		int numPars=this.jacobian.length; // number of parameters to be adjusted
Andrey Filippov's avatar
Andrey Filippov committed
5134
		int length=diff.length; // should be the same as this.jacobian[0].length
Andrey Filippov's avatar
Andrey Filippov committed
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
	    double [][] JtByJmod=new double [numPars][numPars]; //Transposed Jacobian multiplied by Jacobian
	    double [] JtByDiff=new double [numPars];
	    for (int i=0;i<numPars;i++) for (int j=i;j<numPars;j++){
	    	JtByJmod[i][j]=0.0;
	    	if (this.weightFunction!=null)
	    		for (int k=0;k<length;k++) JtByJmod[i][j]+=this.jacobian[i][k]*this.jacobian[j][k]*this.weightFunction[k];
	    	else
	    		for (int k=0;k<length;k++) JtByJmod[i][j]+=this.jacobian[i][k]*this.jacobian[j][k];
	    }
	    for (int i=0;i<numPars;i++) { // subtract lambda*diagonal , fill the symmetrical half below the diagonal
//	    	JtByJmod[i][i]+=lambda*JtByJmod[i][i]; //Marquardt mod
	    	for (int j=0;j<i;j++) JtByJmod[i][j]= JtByJmod[j][i]; // it is symmetrical matrix, just copy
	    }
	    for (int i=0;i<numPars;i++) {
	    	JtByDiff[i]=0.0;
	    	if (this.weightFunction!=null)
		    	for (int k=0;k<length;k++) JtByDiff[i]+=this.jacobian[i][k]*diff[k]*this.weightFunction[k];
	    	else
		    	for (int k=0;k<length;k++) JtByDiff[i]+=this.jacobian[i][k]*diff[k];

	    }
Andrey Filippov's avatar
Andrey Filippov committed
5156

Andrey Filippov's avatar
Andrey Filippov committed
5157 5158 5159 5160
   		LMAArrays lMAArrays = new LMAArrays();
   		lMAArrays.jTByJ=JtByJmod;
   		lMAArrays.jTByDiff=JtByDiff;
   		return lMAArrays;
Andrey Filippov's avatar
Andrey Filippov committed
5161 5162
/*

Andrey Filippov's avatar
Andrey Filippov committed
5163 5164 5165
//	    M*Ma=Mb
	    Matrix M=new Matrix(JtByJmod);
//  public Matrix (double vals[], int m) {
Andrey Filippov's avatar
Andrey Filippov committed
5166

Andrey Filippov's avatar
Andrey Filippov committed
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		if (this.debugLevel>2) {
//		if (this.debugLevel>1) {
			System.out.println("Jt*J -lambda* diag(Jt*J), lambda="+lambda+":");
			M.print(10, 5);
		}

	    Matrix Mb=new Matrix(JtByDiff,numPars); // single column
	    if (!(new LUDecomposition(M)).isNonsingular()){
			System.out.println("Singular Matrix");
			M.print(10, 5);
	    	return null;
	    }
	    Matrix Ma=M.solve(Mb); // singular
	    return Ma.getColumnPackedCopy();
Andrey Filippov's avatar
Andrey Filippov committed
5181
*/
Andrey Filippov's avatar
Andrey Filippov committed
5182
	}
Andrey Filippov's avatar
Andrey Filippov committed
5183 5184 5185



Andrey Filippov's avatar
Andrey Filippov committed
5186 5187
	public LMAArrays calculateJacobianArrays (
			final boolean [] selectedImages, // selected images to process
Andrey Filippov's avatar
Andrey Filippov committed
5188
			final double [] Y,  // should be initialized
Andrey Filippov's avatar
Andrey Filippov committed
5189 5190 5191 5192 5193 5194 5195 5196 5197
			final double [] fX, // should be initialized to correct length, data is not needed
			final double [] vector,  // parameters vector
			final int    [] imageStartIndex, // index of the first point of each image (including extra element in the end so n+1 is always valid)
			final double [][] patternXYZ, // this.targetXYZ
			final double [] weightFunction, // may be null - make it twice smaller? - same for X and Y?
			final LensDistortionParameters lensDistortionParametersProto,
//			final double lambda,
			int threadsMax,
			boolean updateStatus){
Andrey Filippov's avatar
Andrey Filippov committed
5198

Andrey Filippov's avatar
Andrey Filippov committed
5199 5200 5201 5202
		// calculate JtJ
//		double [] diff=calcYminusFx(fX);
//		int numPars=this.jacobian.length; // number of parameters to be adjusted
		final int numPars=vector.length; // number of parameters to be adjusted
Andrey Filippov's avatar
Andrey Filippov committed
5203 5204
//		int length=diff.length; // should be the same as this.jacobian[0].length
//		final int length=fX.length; // should be the same as this.jacobian[0].length
Andrey Filippov's avatar
Andrey Filippov committed
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
		final double [][] JtByJmod=new double [numPars][numPars]; //Transposed Jacobian multiplied by Jacobian
		final double [] JtByDiff=new double [numPars];
	    for (int i=0;i<numPars;i++){
	    	JtByDiff[i]=0.0;
	    	for (int j=0;j<numPars;j++) JtByJmod[i][j]=0.0;
	    }
	    final int debugLevel=this.debugLevel;
   		final Thread[] threads = newThreadArray(threadsMax);
   		final AtomicInteger imageNumberAtomic = new AtomicInteger(0);
   		final AtomicInteger imageFinishedAtomic = new AtomicInteger(0);
   		final double [] progressValues=new double [selectedImages.length];
   		int numSelectedImages=0;
   		for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]) numSelectedImages++;
   		int selectedIndex=0;
   		for (int i=0;i<selectedImages.length;i++) {
   			progressValues[i]=(selectedIndex+1.0)/numSelectedImages;
   			if (selectedImages[i]) selectedIndex++;
   			if (selectedIndex>=numSelectedImages) selectedIndex--;
   		}
   		final AtomicInteger stopRequested=this.stopRequested;
		final AtomicBoolean interruptedAtomic=new AtomicBoolean();
   		for (int ithread = 0; ithread < threads.length; ithread++) {
   			threads[ithread] = new Thread() {
Andrey Filippov's avatar
Andrey Filippov committed
5228 5229
   				@Override
				public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
   					LensDistortionParameters lensDistortionParameters=lensDistortionParametersProto.clone(); // see - if that is needed - maybe new is OK
   					//   					LensDistortionParameters lensDistortionParameters= new LensDistortionParameters();
   					for (int numImage=imageNumberAtomic.getAndIncrement(); (numImage<selectedImages.length) && !interruptedAtomic.get();numImage=imageNumberAtomic.getAndIncrement()){
   						double [][] partialJacobian= calculatePartialFxAndJacobian(
   								numImage,      // number of grid image
   								vector,  // parameters vector
   								patternXYZ, // this.targetXYZ
   								fX,     // non-overlapping segments will be filled
   								imageStartIndex, // start index in patternXYZ array (length - difference to the next, includes extra last element)
   								lensDistortionParameters, // initialize one per each tread? Or for each call?
   								true); // when false, modifies only this.lensDistortionParameters.*

   						int length=2*(imageStartIndex[numImage+1]-imageStartIndex[numImage]);
   						int start= 2*imageStartIndex[numImage];

   						double [][] partialJtByJmod=new double [numPars][numPars]; // out of heap space
   						double []   partialJtByDiff=new double [numPars];
Andrey Filippov's avatar
Andrey Filippov committed
5247

Andrey Filippov's avatar
Andrey Filippov committed
5248 5249 5250 5251 5252 5253 5254 5255
   						for (int i=0;i<numPars;i++) if (partialJacobian[i]!=null) {
   							for (int j=i;j<numPars;j++) if (partialJacobian[j]!=null) {
   								partialJtByJmod[i][j]=0.0;
   								if (weightFunction!=null) {
   									for (int k=0;k<length;k++) partialJtByJmod[i][j]+=partialJacobian[i][k]*partialJacobian[j][k]*weightFunction[start+k];
   								} else {
   									for (int k=0;k<length;k++) partialJtByJmod[i][j]+=partialJacobian[i][k]*partialJacobian[j][k];
   								}
Andrey Filippov's avatar
Andrey Filippov committed
5256
   							}
Andrey Filippov's avatar
Andrey Filippov committed
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
   						}

   						double [] partialDiff=new double[length];
   						for (int k=0;k<length;k++) 	partialDiff[k]=Y[start+k]-fX[start+k];

   						for (int i=0;i<numPars;i++) if (partialJacobian[i]!=null) {
   							partialJtByDiff[i]=0.0;
   							if (weightFunction!=null)
   								for (int k=0;k<length;k++) partialJtByDiff[i]+=partialJacobian[i][k]*partialDiff[k]*weightFunction[start+k];
   							else
   								for (int k=0;k<length;k++) partialJtByDiff[i]+=partialJacobian[i][k]*partialDiff[k];

   						}
   						// wrong! fix it
Andrey Filippov's avatar
Andrey Filippov committed
5271
/*
Andrey Filippov's avatar
Andrey Filippov committed
5272 5273 5274 5275 5276 5277
   						synchronized(this){
   							for (int i=0;i<numPars;i++) if (partialJacobian[i]!=null){
   								JtByDiff[i]+=partialJtByDiff[i];
   								for (int j=i;j<numPars;j++) JtByJmod[i][j]+=partialJtByJmod[i][j];
   							}
   						}
Andrey Filippov's avatar
Andrey Filippov committed
5278
 */
Andrey Filippov's avatar
Andrey Filippov committed
5279 5280 5281 5282 5283 5284 5285
   						synchronizedCombinePartialJacobians(
   								JtByJmod, //Transposed Jacobian multiplied by Jacobian
   								JtByDiff,
   								partialJacobian,
   								partialJtByDiff,
   								partialJtByJmod,
   								numPars	);
Andrey Filippov's avatar
Andrey Filippov committed
5286

Andrey Filippov's avatar
Andrey Filippov committed
5287 5288 5289
   						final int numFinished=imageFinishedAtomic.getAndIncrement();
//   						IJ.showProgress(progressValues[numFinished]);
   						SwingUtilities.invokeLater(new Runnable() {
Andrey Filippov's avatar
Andrey Filippov committed
5290 5291
   							@Override
							public void run() {
Andrey Filippov's avatar
Andrey Filippov committed
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
   								// Here, we can safely update the GUI
   								// because we'll be called from the
   								// event dispatch thread
   								IJ.showProgress(progressValues[numFinished]);
   							}
   						});
   						if (stopRequested.get()==1){ // ASAP
   							interruptedAtomic.set(true);
   						}
//   						if (debugLevel>1) System.out.println("IJ.showProgress("+progressValues[numImage]+")");
//   						if (debugLevel>1) IJ.showStatus("Progress "+IJ.d2s(100*progressValues[numImage],2)+"%");
   					}
   				}
   			};
   		}
   		startAndJoin(threads);
   		if (interruptedAtomic.get()) {
   			System.out.println("calculateJacobianArrays() aborted by user request");
   			return null;
   		}
   		if (debugLevel>3){
   			String msg="calculateJacobianArrays() ALL_trace=";
   			for (int ii=0;ii<numPars;ii++) msg+=IJ.d2s(JtByJmod[ii][ii],5);
   			System.out.println(msg);

   		}

   		for (int i=0;i<numPars;i++) { // subtract lambda*diagonal , fill the symmetrical half below the diagonal
   			for (int j=0;j<i;j++) JtByJmod[i][j]= JtByJmod[j][i]; // it is symmetrical matrix, just copy
   		}
   		LMAArrays lMAArrays = new LMAArrays();
   		lMAArrays.jTByJ=JtByJmod;
   		lMAArrays.jTByDiff=JtByDiff;
   		if (debugLevel>3){
   			String msg="calculateJacobianArrays() lMAArrays.jTByJ trace=";
   			for (int ii=0;ii<numPars;ii++) msg+=IJ.d2s(lMAArrays.jTByJ[ii][ii],5);
   			System.out.println(msg);

   		}
   		return lMAArrays;
	}

	public synchronized void synchronizedCombinePartialJacobians(
			double [][] JtByJmod, //Transposed Jacobian multiplied by Jacobian
			double []   JtByDiff,
			double [][] partialJacobian,
			double []   partialJtByDiff,
			double [][] partialJtByJmod,
			int numPars
	){
		for (int i=0;i<numPars;i++) if (partialJacobian[i]!=null){
			JtByDiff[i]+=partialJtByDiff[i];
			for (int j=i;j<numPars;j++) JtByJmod[i][j]+=partialJtByJmod[i][j];
		}
	}

Andrey Filippov's avatar
Andrey Filippov committed
5348 5349 5350



Andrey Filippov's avatar
Andrey Filippov committed
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	public double [] solveLMA(
			LMAArrays lMAArrays,
			double lambda){
		double [][] JtByJmod= lMAArrays.jTByJ.clone();
		int numPars=JtByJmod.length;
		for (int i=0;i<numPars;i++){
			JtByJmod[i]=lMAArrays.jTByJ[i].clone();
   			JtByJmod[i][i]+=lambda*JtByJmod[i][i]; //Marquardt mod
		}
//	    M*Ma=Mb
	    Matrix M=new Matrix(JtByJmod);
//  public Matrix (double vals[], int m) {
Andrey Filippov's avatar
Andrey Filippov committed
5363

Andrey Filippov's avatar
Andrey Filippov committed
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
		if (this.debugLevel>2) {
//		if (this.debugLevel>1) {
			System.out.println("Jt*J -lambda* diag(Jt*J), lambda="+lambda+":");
			M.print(10, 5);
		}

	    Matrix Mb=new Matrix(lMAArrays.jTByDiff,numPars); // single column
	    if (!(new LUDecomposition(M)).isNonsingular()){
	    	double [][] arr=M.getArray();
			System.out.println("Singular Matrix "+arr.length+"x"+arr[0].length);
			// any rowsx off all 0.0?
			for (int n=0;n<arr.length;n++){
				boolean zeroRow=true;
				for (int i=0;i<arr[n].length;i++) if (arr[n][i]!=0.0){
					zeroRow=false;
					break;
				}
				if (zeroRow){
					System.out.println("Row of all zeros: "+n);
				}
			}
//			M.print(10, 5);
	    	return null;
	    }
	    Matrix Ma=M.solve(Mb); // singular
	    return Ma.getColumnPackedCopy();
Andrey Filippov's avatar
Andrey Filippov committed
5390

Andrey Filippov's avatar
Andrey Filippov committed
5391
	}
Andrey Filippov's avatar
Andrey Filippov committed
5392 5393


Andrey Filippov's avatar
Andrey Filippov committed
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	/**
	 * Calculates  next parameters vector, holds some arrays
	 * @param numSeries
	 * @return array of two booleans: { improved, finished}
	 */
	public boolean [] stepLevenbergMarquardtFirst(int numSeries){
		double [] deltas=null;
		if (this.currentVector==null) {
			int filter=this.filterForAll;
			if (this.askFilter) filter=selectFilter(filter);
			initFittingSeries(false,filter,numSeries); // first step in series
			this.currentRMS=-1;
			this.currentRMSPure=-1;
			this.currentfX=null; // invalidate
			this.jacobian=null;  // invalidate
			this.lMAArrays=null;
			lastImprovements[0]=-1.0;
			lastImprovements[1]=-1.0;
		}
		// calculate  this.currentfX, this.jacobian if needed
		if (this.debugLevel>2) {
			System.out.println("this.currentVector");
			for (int i=0;i<this.currentVector.length;i++){
				System.out.println(i+": "+ this.currentVector[i]);
			}
		}
		//    	if ((this.currentfX==null)|| ((this.jacobian==null) && !this.threadedLMA )) {
		if ((this.currentfX==null)|| (this.lMAArrays==null)) {
			if (this.updateStatus){
//				IJ.showStatus(this.seriesNumber+": "+"Step #"+this.iterationStepNumber+" RMS="+IJ.d2s(this.currentRMS,8)+ " ("+IJ.d2s(this.firstRMS,8)+")");
				IJ.showStatus(this.seriesNumber+": initial Jacobian matrix calculation. Points:"+this.Y.length+" Parameters:"+this.currentVector.length);
			}
			if (this.debugLevel>1) {
				System.out.println(this.seriesNumber+": initial Jacobian matrix calculation. Points:"+this.Y.length+" Parameters:"+this.currentVector.length);
			}
    		if (this.threadedLMA) {
    			this.currentfX=new double[this.Y.length];
    			//    			deltas=solveLevenbergMarquardtThreaded(
    			this.lMAArrays=calculateJacobianArrays(
    					this.fittingStrategy.selectedImages(), // selected images to process
Andrey Filippov's avatar
Andrey Filippov committed
5434
    					this.Y,  // should be initialized
Andrey Filippov's avatar
Andrey Filippov committed
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
    					this.currentfX, // should be initialized to correct length, data is not needed
    					this.currentVector,  // parameters vector
    					this.imageStartIndex, // index of the first point of each image (including extra element in the end so n+1 is always valid)
    					this.targetXYZ, // this.targetXYZ
    					this.weightFunction, // may be null - make it twice smaller? - same for X and Y?
    					this.lensDistortionParameters,
    					//    					this.lambda,
    					this.threadsMax,
    					this.updateStatus);
    			if (this.lMAArrays == null) {
    				return null ; // aborted
    			}
    		} else {
    			this.currentfX=calculateFxAndJacobian(this.currentVector, true); // is it always true here (this.jacobian==null)
    			this.lMAArrays=calculateJacobianArrays(this.currentfX);
//    			deltas=solveLevenbergMarquardt(this.currentfX,this.lambda);
    		}
    		// add termes that push selected extrinsic parameters towards average (global, per station, per tilt-station)
    		this.currentRMSPure= calcErrorDiffY(this.currentfX);
    	   	if ((this.fittingStrategy.varianceModes!=null) && (this.fittingStrategy.varianceModes[numSeries]!=this.fittingStrategy.varianceModeDisabled)) {
    	   		this.fittingStrategy.addVarianceToLMA(
    	    			numSeries,
    	    			this.currentVector,
    	    			this.lMAArrays.jTByJ, // jacobian multiplied by Jacobian transposed (or null)
    	    			this.lMAArrays.jTByDiff);
    	   		this.currentRMS= calcErrorDiffY(
    	   				this.currentfX,
    	   				this.fittingStrategy.getVarianceError2(), //double [] extraWeightedErrors,
    	   				this.fittingStrategy.getWeights()); //double [] extraWeights);
    			if (this.updateStatus){
    				IJ.showStatus(this.seriesNumber+": initial RMS="+IJ.d2s(this.currentRMS,8)+
    						" ("+IJ.d2s(this.currentRMSPure,8)+")"+
    						". Calculating next Jacobian. Points:"+this.Y.length+" Parameters:"+this.currentVector.length);
    			}
5469
    			if ((this.debugLevel>0) && ((this.debugLevel>1) || ((System.nanoTime()-this.startTime)>10000000000.0))) {
Andrey Filippov's avatar
Andrey Filippov committed
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
    				System.out.println(this.seriesNumber+": initial RMS="+IJ.d2s(this.currentRMS,8)+
    						" ("+IJ.d2s(this.currentRMSPure,8)+")"+
    						". Calculating next Jacobian. Points:"+this.Y.length+" Parameters:"+this.currentVector.length);
    			}

    	   	} else {
        		this.currentRMS= this.currentRMSPure;
    			if (this.updateStatus){
    				IJ.showStatus(this.seriesNumber+": initial RMS="+IJ.d2s(this.currentRMS,8)+
    						". Calculating next Jacobian. Points:"+this.Y.length+" Parameters:"+this.currentVector.length);
    			}
    			if (this.debugLevel>1) {
    				System.out.println(this.seriesNumber+": initial RMS="+IJ.d2s(this.currentRMS,8)+
    						". Calculating next Jacobian. Points:"+this.Y.length+" Parameters:"+this.currentVector.length);
    			}
    	   	}
    	} else {
    		this.currentRMSPure= calcErrorDiffY(this.currentfX);
    	   	if ((this.fittingStrategy.varianceModes!=null) && (this.fittingStrategy.varianceModes[numSeries]!=this.fittingStrategy.varianceModeDisabled)) {
    	   		this.fittingStrategy.addVarianceToLMA(// recalculating as this may keep from nextVector (or just being restored)
    	    			numSeries,
    	    			this.currentVector,
    	    			null, //this.lMAArrays.jTByJ, // jacobian multiplied by Jacobian transposed (or null)
    	    			null); //this.lMAArrays.jTByDiff);

    	   		this.currentRMS= calcErrorDiffY(
    	   				this.currentfX,
    	   				this.fittingStrategy.getVarianceError2(), //double [] extraWeightedErrors,
    	   				this.fittingStrategy.getWeights()); //double [] extraWeights);
    	   	} else {
        		this.currentRMS= this.currentRMSPure;
    	   	}
Andrey Filippov's avatar
Andrey Filippov committed
5502

Andrey Filippov's avatar
Andrey Filippov committed
5503 5504 5505 5506 5507 5508 5509 5510
    	}
//		this.currentRMS= calcError(calcYminusFx(this.currentfX));
    	if (this.firstRMS<0) {
    		this.firstRMS=this.currentRMS;
    		this.firstRMSPure=this.currentRMSPure;
    	}
// calculate deltas
//    	double [] deltas=solveLevenbergMarquardt(this.currentfX,fittingStrategy.getLambda());
Andrey Filippov's avatar
Andrey Filippov committed
5511

Andrey Filippov's avatar
Andrey Filippov committed
5512
		deltas=solveLMA(this.lMAArrays,	this.lambda	);
Andrey Filippov's avatar
Andrey Filippov committed
5513

Andrey Filippov's avatar
Andrey Filippov committed
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
    	boolean matrixNonSingular=true;
    	if (deltas==null) {
    		deltas=new double[this.currentVector.length];
    		for (int i=0;i<deltas.length;i++) deltas[i]=0.0;
    		matrixNonSingular=false;
    	}
		if (this.debugLevel>2) {
			System.out.println("deltas");
			for (int i=0;i<deltas.length;i++){
				System.out.println(i+": "+ deltas[i]);
			}
		}
Andrey Filippov's avatar
Andrey Filippov committed
5526
// apply deltas
Andrey Filippov's avatar
Andrey Filippov committed
5527 5528
    	this.nextVector=this.currentVector.clone();
    	for (int i=0;i<this.nextVector.length;i++) this.nextVector[i]+=deltas[i];
Andrey Filippov's avatar
Andrey Filippov committed
5529
// another option - do not calculate J now, just fX. and late - calculate both if it was improvement
Andrey Filippov's avatar
Andrey Filippov committed
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
//    	save current Jacobian
		if (this.debugLevel>2) {
			System.out.println("this.nextVector");
			for (int i=0;i<this.nextVector.length;i++){
				System.out.println(i+": "+ this.nextVector[i]);
			}
		}

//        this.savedJacobian=this.jacobian;
        this.savedLMAArrays=lMAArrays.clone();
        this.jacobian=null; // not needed, just to catch bugs
Andrey Filippov's avatar
Andrey Filippov committed
5541
// calculate next vector and Jacobian  (this.jacobian)
Andrey Filippov's avatar
Andrey Filippov committed
5542
//    	this.nextfX=calculateFxAndJacobian(this.nextVector,true); //=========== OLD
Andrey Filippov's avatar
Andrey Filippov committed
5543

Andrey Filippov's avatar
Andrey Filippov committed
5544 5545 5546 5547 5548
		if (this.threadedLMA) {
			this.nextfX=new double[this.Y.length];
			//    			deltas=solveLevenbergMarquardtThreaded(
			this.lMAArrays=calculateJacobianArrays(
					this.fittingStrategy.selectedImages(), // selected images to process
Andrey Filippov's avatar
Andrey Filippov committed
5549
					this.Y,  // should be initialized
Andrey Filippov's avatar
Andrey Filippov committed
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
					this.nextfX, // should be initialized to correct length, data is not needed
					this.nextVector,  // parameters vector
					this.imageStartIndex, // index of the first point of each image (including extra element in the end so n+1 is always valid)
					this.targetXYZ, // this.targetXYZ
					this.weightFunction, // may be null - make it twice smaller? - same for X and Y?
					this.lensDistortionParameters,
					//    					this.lambda,
					this.threadsMax,
					this.updateStatus);
			if (this.lMAArrays == null) {
				return null ; // aborted
			}
		} else {
	    	this.nextfX=calculateFxAndJacobian(this.nextVector,true);
			this.lMAArrays=calculateJacobianArrays(this.nextfX);
		}
//		this.nextRMS=calcErrorDiffY(this.nextfX);
Andrey Filippov's avatar
Andrey Filippov committed
5567

Andrey Filippov's avatar
Andrey Filippov committed
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
		this.nextRMSPure= calcErrorDiffY(this.nextfX);
	   	if ((this.fittingStrategy.varianceModes!=null) && (this.fittingStrategy.varianceModes[numSeries]!=this.fittingStrategy.varianceModeDisabled)) {
	   		this.fittingStrategy.addVarianceToLMA(
	    			numSeries,
	    			this.nextVector,
	    			this.lMAArrays.jTByJ, // jacobian multiplied by Jacobian transposed (or null)
	    			this.lMAArrays.jTByDiff);
	   		this.nextRMS= calcErrorDiffY(
	   				this.nextfX,
	   				this.fittingStrategy.getVarianceError2(), //double [] extraWeightedErrors,
	   				this.fittingStrategy.getWeights()); //double [] extraWeights);
	   	} else {
	   		this.nextRMS= this.nextRMSPure;
	   	}

		this.lastImprovements[1]=this.lastImprovements[0];
		this.lastImprovements[0]=this.currentRMS-this.nextRMS;
		if (this.debugLevel>2) {
			System.out.println("stepLMA this.currentRMS="+this.currentRMS+
					", this.currentRMSPure="+this.currentRMSPure+
					", this.nextRMS="+this.nextRMS+
					", this.nextRMSPure="+this.nextRMSPure+
					", delta="+(this.currentRMS-this.nextRMS)+
					", deltaPure="+(this.currentRMSPure-this.nextRMSPure));
		}
		boolean [] status={matrixNonSingular && (this.nextRMS<=this.currentRMS),!matrixNonSingular};
		// additional test if "worse" but the difference is too small, it was be caused by computation error, like here:
		//stepLevenbergMarquardtAction() step=27, this.currentRMS=0.17068403807026408,   this.nextRMS=0.1706840380702647
Andrey Filippov's avatar
Andrey Filippov committed
5596

Andrey Filippov's avatar
Andrey Filippov committed
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
		if (!status[0] && matrixNonSingular) {
			if (this.nextRMS<(this.currentRMS+this.currentRMS*this.thresholdFinish*0.01)) {
				this.nextRMS=this.currentRMS;
				this.nextRMSPure=this.currentRMSPure;
				status[0]=true;
				status[1]=true;
				this.lastImprovements[0]=0.0;
				if (this.debugLevel>1) {
					System.out.println("New RMS error is larger than the old one, but the difference is too small to be trusted ");
					System.out.println(
							"stepLMA this.currentRMS="+this.currentRMS+
							", this.currentRMSPure="+this.currentRMSPure+
							", this.nextRMS="+this.nextRMS+
							", this.nextRMSPure="+this.nextRMSPure+
							", delta="+(this.currentRMS-this.nextRMS)+
							", deltaPure="+(this.currentRMSPure-this.nextRMSPure));
				}
Andrey Filippov's avatar
Andrey Filippov committed
5614

Andrey Filippov's avatar
Andrey Filippov committed
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
			}
		}
    	if (status[0] && matrixNonSingular) { //improved
    		status[1]=(this.iterationStepNumber>this.numIterations) || ( // done
    				(this.lastImprovements[0]>=0.0) &&
    				(this.lastImprovements[0]<this.thresholdFinish*this.currentRMS) &&
    				(this.lastImprovements[1]>=0.0) &&
    				(this.lastImprovements[1]<this.thresholdFinish*this.currentRMS));
    	} else if (matrixNonSingular){
//    		this.jacobian=this.savedJacobian;// restore saved Jacobian
    		this.lMAArrays=this.savedLMAArrays; // restore Jt*J and Jt*diff
Andrey Filippov's avatar
Andrey Filippov committed
5626

Andrey Filippov's avatar
Andrey Filippov committed
5627 5628 5629
    		status[1]=(this.iterationStepNumber>this.numIterations) || // failed
    		((this.lambda*this.lambdaStepUp)>this.maxLambda);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
5630 5631
///this.currentRMS
//TODO: add other failures leading to result failure?
Andrey Filippov's avatar
Andrey Filippov committed
5632 5633 5634 5635 5636 5637
		if (this.debugLevel>2) {
			System.out.println("stepLevenbergMarquardtFirst("+numSeries+")=>"+status[0]+","+status[1]);
		}
		return status;
    }
    /**
Andrey Filippov's avatar
Andrey Filippov committed
5638
     * Apply fitting step
Andrey Filippov's avatar
Andrey Filippov committed
5639
     */
Andrey Filippov's avatar
Andrey Filippov committed
5640
    public void stepLevenbergMarquardtAction(){//
Andrey Filippov's avatar
Andrey Filippov committed
5641
    	this.iterationStepNumber++;
Andrey Filippov's avatar
Andrey Filippov committed
5642
// apply/revert,modify lambda
Andrey Filippov's avatar
Andrey Filippov committed
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
		if (this.debugLevel>1) {
			System.out.println(
					"stepLevenbergMarquardtAction() step="+this.iterationStepNumber+
					", this.currentRMS="+this.currentRMS+
					", this.currentRMSPure="+this.currentRMSPure+
					", this.nextRMS="+this.nextRMS+
					", this.nextRMSPure="+this.nextRMSPure+
					" lambda="+this.lambda+" at "+IJ.d2s(0.000000001*(System.nanoTime()-this.startTime),3)+" sec");
		}
    	if (this.nextRMS<this.currentRMS) { //improved
    		this.lambda*=this.lambdaStepDown;
    		this.currentRMS=this.nextRMS;
    		this.currentRMSPure=this.nextRMSPure;
    		this.currentfX=this.nextfX;
    		this.currentVector=this.nextVector;
    	} else {
    		this.lambda*=this.lambdaStepUp;
//    		this.jacobian=this.savedJacobian;// restore saved Jacobian
    		this.lMAArrays=this.savedLMAArrays; // restore Jt*J and Jt*diff
    	}
    }
Andrey Filippov's avatar
Andrey Filippov committed
5664

Andrey Filippov's avatar
Andrey Filippov committed
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
    /**
     * Dialog to select Levenberg-Marquardt algorithm and related parameters
     * @return true if OK, false if canceled
     */
    public boolean selectLMAParameters(){
    	int numSeries=fittingStrategy.getNumSeries();
	    GenericDialog gd = new GenericDialog("Levenberg-Marquardt algorithm parameters for cameras distortions/locations");
		gd.addNumericField("Iteration number to start (0.."+(numSeries-1)+")", this.seriesNumber, 0);
		gd.addNumericField("Initial LMA Lambda ",            this.lambda, 5);
		gd.addNumericField("Multiply lambda on success",     this.lambdaStepDown, 5);
		gd.addNumericField("Threshold RMS to exit LMA",      this.thresholdFinish, 7,9,"pix");
		gd.addNumericField("Multiply lambda on failure",     this.lambdaStepUp, 5);
		gd.addNumericField("Threshold lambda to fail",       this.maxLambda, 5);
		gd.addNumericField("Maximal number of iterations",   this.numIterations, 0);

		gd.addCheckbox("Dialog after each iteration step",   this.stopEachStep);
		gd.addCheckbox("Dialog after each iteration series", this.stopEachSeries);
		gd.addCheckbox("Dialog after each failure",          this.stopOnFailure);
		gd.addCheckbox("Ask for weight function filter",     this.askFilter);
Andrey Filippov's avatar
Andrey Filippov committed
5684

Andrey Filippov's avatar
Andrey Filippov committed
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
		gd.addCheckbox("Show modified parameters",           this.showParams);
		gd.addCheckbox("Show debug images before correction",this.showThisImages);
		gd.addCheckbox("Show debug images after correction", this.showNextImages);
		gd.addNumericField("Maximal number of threads",   this.threadsMax, 0);
		gd.addCheckbox("Use memory-saving/multithreaded version", this.threadedLMA);
	    gd.showDialog();
	    if (gd.wasCanceled()) return false;
	    this.seriesNumber=     (int) gd.getNextNumber();
		this.lambda=                 gd.getNextNumber();
		this.lambdaStepDown=         gd.getNextNumber();
		this.thresholdFinish=        gd.getNextNumber();
		this.lambdaStepUp=           gd.getNextNumber();
		this.maxLambda=              gd.getNextNumber();
		this.numIterations=    (int) gd.getNextNumber();
		this.stopEachStep=           gd.getNextBoolean();
		this.stopEachSeries=         gd.getNextBoolean();
		this.stopOnFailure=          gd.getNextBoolean();
		this.askFilter=              gd.getNextBoolean();
		this.showParams=             gd.getNextBoolean();
		this.showThisImages=         gd.getNextBoolean();
		this.showNextImages=         gd.getNextBoolean();
		this.threadsMax=       (int) gd.getNextNumber();
		this.threadedLMA=            gd.getNextBoolean();
	    return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
5710 5711


Andrey Filippov's avatar
Andrey Filippov committed
5712 5713 5714 5715 5716 5717 5718
    public boolean dialogLMAStep(boolean [] state){
    	String [] states={
    			"Worse, increase lambda",
    			"Better, decrease lambda",
    			"Failed to fit",
    			"Fitting Successful"};
    	int iState=(state[0]?1:0)+(state[1]?2:0);
Andrey Filippov's avatar
Andrey Filippov committed
5719

Andrey Filippov's avatar
Andrey Filippov committed
5720
	    GenericDialog gd = new GenericDialog("Levenberg-Marquardt algorithm step");
5721
//    	String [][] parameterDescriptions=fittingStrategy.distortionCalibrationData.parameterDescriptions;
Andrey Filippov's avatar
Andrey Filippov committed
5722 5723
    	gd.addMessage("Current state="+states[iState]);
    	gd.addMessage("Iteration step="+this.iterationStepNumber);
Andrey Filippov's avatar
Andrey Filippov committed
5724

Andrey Filippov's avatar
Andrey Filippov committed
5725 5726 5727 5728 5729 5730 5731
    	gd.addMessage("Initial RMS="+IJ.d2s(this.firstRMS,6)+", Current RMS="+IJ.d2s(this.currentRMS,6)+", new RMS="+IJ.d2s(this.nextRMS,6));
    	gd.addMessage("Pure initial RMS="+IJ.d2s(this.firstRMSPure,6)+", Current RMS="+IJ.d2s(this.currentRMSPure,6)+", new RMS="+IJ.d2s(this.nextRMSPure,6));
    	if (this.showParams) {
    		for (int i=0;i<this.currentVector.length;i++){
    			int parNum=fittingStrategy.parameterMap[i][1];
    			int imgNum=fittingStrategy.parameterMap[i][0];
    			double delta= this.nextVector[i] - this.currentVector[i];
5732 5733 5734 5735 5736
//    			gd.addMessage(i+": "+parameterDescriptions[parNum][0]+
//    					"["+imgNum+"]("+parameterDescriptions[parNum][2]+") "+IJ.d2s(this.currentVector[i],3)+
//    					" + "+IJ.d2s(delta,3)+" = "+IJ.d2s(this.nextVector[i],3));
    			gd.addMessage(i+": "+fittingStrategy.distortionCalibrationData.descrField(parNum,0)+
    					"["+imgNum+"]("+fittingStrategy.distortionCalibrationData.descrField(parNum,2)+") "+IJ.d2s(this.currentVector[i],3)+
Andrey Filippov's avatar
Andrey Filippov committed
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
    					" + "+IJ.d2s(delta,3)+" = "+IJ.d2s(this.nextVector[i],3));
    		}
    	}
		gd.addNumericField("Lambda ",                        this.lambda, 5);
		gd.addNumericField("Multiply lambda on success",     this.lambdaStepDown, 5);
		gd.addNumericField("Threshold RMS to exit LMA",      this.thresholdFinish, 7,9,"pix");
		gd.addNumericField("Multiply lambda on failure",     this.lambdaStepUp, 5);
		gd.addNumericField("Threshold lambda to fail",       this.maxLambda, 5);
		gd.addNumericField("Maximal number of iterations",   this.numIterations, 0);

		gd.addCheckbox("Dialog after each iteration step",   this.stopEachStep);
		gd.addCheckbox("Dialog after each iteration series", this.stopEachSeries);
		gd.addCheckbox("Dialog after each failure",          this.stopOnFailure);
		gd.addCheckbox("Show modified parameters",           this.showParams);
		gd.addCheckbox("Show debug images before correction",this.showThisImages);
		gd.addCheckbox("Show debug images after correction", this.showNextImages);
		gd.addMessage("Done will save the current (not new!) state and exit, Continue will proceed according to LMA");
		gd.enableYesNoCancel("Continue", "Done");
		WindowTools.addScrollBars(gd);

	    gd.showDialog();
	    if (gd.wasCanceled()) {
	    	this.saveSeries=false;
	    	return false;
	    }
		this.lambda=                 gd.getNextNumber();
		this.lambdaStepDown=         gd.getNextNumber();
		this.thresholdFinish=        gd.getNextNumber();
		this.lambdaStepUp=           gd.getNextNumber();
		this.maxLambda=              gd.getNextNumber();
		this.numIterations=    (int) gd.getNextNumber();
		this.stopEachStep=           gd.getNextBoolean();
		this.stopEachSeries=         gd.getNextBoolean();
		this.stopOnFailure=          gd.getNextBoolean();
		this.showParams=             gd.getNextBoolean();
		this.showThisImages=         gd.getNextBoolean();
		this.showNextImages=         gd.getNextBoolean();
	    this.saveSeries=true;
	    return gd.wasOKed();
    }
Andrey Filippov's avatar
Andrey Filippov committed
5777

Andrey Filippov's avatar
Andrey Filippov committed
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
    public boolean modifyGrid(
    		DistortionCalibrationData distortionCalibrationData,
			int threadsMax,
			boolean updateStatus){
    	if (fittingStrategy==null) {
    		String msg="Fitting strategy does not exist, exiting";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if (distortionCalibrationData.sensorMasks==null){
    		String msg="Sensor mask(s) are not defined";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if (distortionCalibrationData.eyesisCameraParameters==null){
    		String msg="Eyesis camera parameters (and sensor dimensions) are not defined";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
//    	if (! selectGridEnhanceParameters()) return false;
//    	int series=refineParameters.showDialog("Select Grid Tuning Parameters", 0xdc0, fittingStrategy.getNumSeries());
//    	int series=refineParameters.showDialog("Select Grid Tuning Parameters", 0x31cc0, (this.seriesNumber>=0)?this.seriesNumber:0); // 0x1dco with show result, but we can not show it easily
Andrey Filippov's avatar
Andrey Filippov committed
5800
// todo - add and implement 0x10000 to show just one individual image
Andrey Filippov's avatar
Andrey Filippov committed
5801 5802 5803 5804 5805 5806
//    	int series=refineParameters.showDialog("Select Grid Tuning Parameters", 0x21cc0, (this.seriesNumber>=0)?this.seriesNumber:0); // 0x1dco with show result, but we can not show it easily
    	int series=refineParameters.showDialog(
    			"Select Grid Tuning Parameters",
    			0x61000,
    			((this.seriesNumber>=0)?this.seriesNumber:0),
    			null); // averageRGB - only for target flat-field correction
Andrey Filippov's avatar
Andrey Filippov committed
5807 5808


Andrey Filippov's avatar
Andrey Filippov committed
5809 5810
    	if (series<0) return false;
    	this.seriesNumber=series;
Andrey Filippov's avatar
Andrey Filippov committed
5811

Andrey Filippov's avatar
Andrey Filippov committed
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
		int filter=this.filterForTargetGeometry;
		if (this.askFilter) filter=selectFilter(filter);
    	initFittingSeries(true,filter,this.seriesNumber); // first step in series
//    	initFittingSeries(true,this.filterForTargetGeometry, this.seriesNumber); // first step in series
    	this.currentfX=calculateFxAndJacobian(this.currentVector, false);
    	//        	this.currentRMS= calcError(calcYminusFx(this.currentfX));
    	if (this.debugLevel>2) {
    		System.out.println("this.currentVector");
    		for (int i=0;i<this.currentVector.length;i++){
    			System.out.println(i+": "+ this.currentVector[i]);
    		}
    	}
    	if (this.showThisImages) showDiff (this.currentfX, "residual-series-"+this.seriesNumber);
    	if (this.refineParameters.resetVariations) {
    		this.patternParameters.resetStationZCorr();
    	}
    	double [][][] correctionCombo= calculateGridXYZCorr3D(
    			this.refineParameters.variationPenalty,
    			this.refineParameters.fixXY,
                this.refineParameters.useVariations?(this.fittingStrategy.zGroups[this.seriesNumber]):null, //stationGroups,
				this.refineParameters.grid3DCorrection,
				this.refineParameters.rotateCorrection,
				this.refineParameters.grid3DMaximalZCorr, //20.0,
				this.refineParameters.noFallBack,
				this.refineParameters.targetShowPerImage,
				threadsMax,
				updateStatus);
    	double [][] gridXYZCorr=correctionCombo[0];
		double [][] gridZCorr3d =correctionCombo[1];
		double [][] gridZCorr3dWeight =correctionCombo[2];
		String [] titles={"X-correction(mm)","Y-correction(mm)","Z-correction","Weight"};
    	String [] titlesStations=new String [2*gridZCorr3d.length];
    	for (int i=0;i<gridZCorr3d.length;i++){
    		titlesStations[i]="Z_"+i;
    		titlesStations[i+gridZCorr3d.length]="W_"+i;
    	}
    	if (this.refineParameters.targetShowThisCorrection) {
    		if (this.debugLevel>1){
    			double [][] debugData=new double [2*gridZCorr3d.length][];
    	    	for (int i=0;i<gridZCorr3d.length;i++){
    	    		debugData[i]=gridZCorr3d[i];
    	    		debugData[i+gridZCorr3d.length]=gridZCorr3dWeight[i];
    	    	}
        		this.SDFA_INSTANCE.showArrays(debugData, getGridWidth(), getGridHeight(),  true, "Z corrections", titlesStations);
    		}
    	}


Andrey Filippov's avatar
Andrey Filippov committed
5860
// TODO: make configurable and optional
Andrey Filippov's avatar
Andrey Filippov committed
5861 5862 5863 5864 5865 5866 5867 5868
		shrinkExtrapolateGridCorrection(
				gridXYZCorr, // dx,dy,dz, mask >0
				gridZCorr3d,
				getGridWidth(),
				1, //preShrink,
				5, // expand,
				3.0, //  sigma,
				2.0); //double ksigma
Andrey Filippov's avatar
Andrey Filippov committed
5869

Andrey Filippov's avatar
Andrey Filippov committed
5870 5871 5872
    	if (this.refineParameters.targetShowThisCorrection) {
    		this.SDFA_INSTANCE.showArrays(gridXYZCorr, getGridWidth(), getGridHeight(),  true, "Grid corrections", titles);
    		if (this.debugLevel>1){
Andrey Filippov's avatar
Andrey Filippov committed
5873

Andrey Filippov's avatar
Andrey Filippov committed
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
    		}
    	}
    	if (!this.refineParameters.targetApplyCorrection) return false;
    	patternParameters.applyGridCorrection(gridXYZCorr, this.refineParameters.targetCorrectionScale);
    	patternParameters.applyZGridCorrection(gridZCorr3d, this.refineParameters.targetCorrectionScale);
    	return true;
    }

    public boolean modifyGrid0(DistortionCalibrationData distortionCalibrationData){
    	if (fittingStrategy==null) {
    		String msg="Fitting strategy does not exist, exiting";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if (distortionCalibrationData.sensorMasks==null){
    		String msg="Sensor mask(s) are not defined";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if (distortionCalibrationData.eyesisCameraParameters==null){
    		String msg="Eyesis camera parameters (and sensor dimensions) are not defined";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
//    	if (! selectGridEnhanceParameters()) return false;
//    	int series=refineParameters.showDialog("Select Grid Tuning Parameters", 0xdc0, fittingStrategy.getNumSeries());
//    	int series=refineParameters.showDialog("Select Grid Tuning Parameters", 0x31cc0, (this.seriesNumber>=0)?this.seriesNumber:0); // 0x1dco with show result, but we can not show it easily
Andrey Filippov's avatar
Andrey Filippov committed
5901
// todo - add and implement 0x10000 to show just one individual image
Andrey Filippov's avatar
Andrey Filippov committed
5902 5903 5904 5905 5906 5907
//    	int series=refineParameters.showDialog("Select Grid Tuning Parameters", 0x21cc0, (this.seriesNumber>=0)?this.seriesNumber:0); // 0x1dco with show result, but we can not show it easily
    	int series=refineParameters.showDialog(
    			"Select Grid Tuning Parameters",
    			0x61000,
    			((this.seriesNumber>=0)?this.seriesNumber:0),
    			null); // averageRGB - only for target flat-field correction
Andrey Filippov's avatar
Andrey Filippov committed
5908 5909


Andrey Filippov's avatar
Andrey Filippov committed
5910 5911
    	if (series<0) return false;
    	this.seriesNumber=series;
Andrey Filippov's avatar
Andrey Filippov committed
5912 5913 5914



Andrey Filippov's avatar
Andrey Filippov committed
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
		int filter=this.filterForTargetGeometry;
		if (this.askFilter) filter=selectFilter(filter);
    	initFittingSeries(true,filter,this.seriesNumber); // first step in series
//    	initFittingSeries(true,this.filterForTargetGeometry, this.seriesNumber); // first step in series
    	this.currentfX=calculateFxAndJacobian(this.currentVector, false);
    	//        	this.currentRMS= calcError(calcYminusFx(this.currentfX));
    	if (this.debugLevel>2) {
    		System.out.println("this.currentVector");
    		for (int i=0;i<this.currentVector.length;i++){
    			System.out.println(i+": "+ this.currentVector[i]);
    		}
    	}
    	if (this.showThisImages) showDiff (this.currentfX, "residual-series-"+this.seriesNumber);
Andrey Filippov's avatar
Andrey Filippov committed
5928

Andrey Filippov's avatar
Andrey Filippov committed
5929 5930 5931 5932 5933 5934 5935 5936
    	double [][] gridXYZCorr=null;
		gridXYZCorr=	calculateGridXYZCorr3D(
//				distortionCalibrationData,
				this.refineParameters.grid3DCorrection,
				this.refineParameters.rotateCorrection,
				this.refineParameters.grid3DMaximalZCorr, //20.0,
				this.refineParameters.targetShowPerImage);

Andrey Filippov's avatar
Andrey Filippov committed
5937
// TODO: make configurable and optional
Andrey Filippov's avatar
Andrey Filippov committed
5938 5939 5940 5941 5942 5943 5944 5945
		shrinkExtrapolateGridCorrection(
				gridXYZCorr, // dx,dy,dz, mask >0
				null,
				getGridWidth(),
				1, //preShrink,
				5, // expand,
				3.0, //  sigma,
				2.0); //double ksigma
Andrey Filippov's avatar
Andrey Filippov committed
5946

Andrey Filippov's avatar
Andrey Filippov committed
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
    	String [] titles={"X-correction(mm)","Y-correction(mm)","Z-correction","Weight"};
    	if (this.refineParameters.targetShowThisCorrection) {
    		this.SDFA_INSTANCE.showArrays(gridXYZCorr, getGridWidth(), getGridHeight(),  true, "Grid corrections", titles);
    	}
    	if (!this.refineParameters.targetApplyCorrection) return false;
    	patternParameters.applyGridCorrection(gridXYZCorr, this.refineParameters.targetCorrectionScale);
    	return true;
    }

    public boolean modifyPixelCorrection(DistortionCalibrationData distortionCalibrationData){ // old
    	if (fittingStrategy==null) {
    		String msg="Fitting strategy does not exist, exiting";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if (distortionCalibrationData.eyesisCameraParameters==null){
    		String msg="Eyesis camera parameters (and sensor dimensions) are not defined";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
5967
    	//	fittingStrategy.distortionCalibrationData.readAllGrids();
Andrey Filippov's avatar
Andrey Filippov committed
5968
//    	if (! selectGridEnhanceParameters()) return false;
Andrey Filippov's avatar
Andrey Filippov committed
5969

Andrey Filippov's avatar
Andrey Filippov committed
5970 5971 5972 5973 5974 5975 5976
    	int series=refineParameters.showDialog(
    			"Select Lens Distrortion Residual Compensation Parameters",
    			0x1efff,
    			((this.seriesNumber>=0)?this.seriesNumber:0),
    			null); // averageRGB - only for target flat-field correction
    	if (series<0) return false;
    	this.seriesNumber=series;
Andrey Filippov's avatar
Andrey Filippov committed
5977

Andrey Filippov's avatar
Andrey Filippov committed
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
		int filter=this.filterForSensor;
		if (this.askFilter) filter=selectFilter(filter);
    	initFittingSeries(true,filter,this.seriesNumber); // first step in series now uses pattern alpha
//    	initFittingSeries(true,this.filterForSensor,this.seriesNumber); // first step in series now uses pattern alpha
    	this.currentfX=calculateFxAndJacobian(this.currentVector, false);
    	//        	this.currentRMS= calcError(calcYminusFx(this.currentfX));
    	if (this.debugLevel>2) {
    		System.out.println("this.currentVector");
    		for (int i=0;i<this.currentVector.length;i++){
    			System.out.println(i+": "+ this.currentVector[i]);
    		}
    	}
 //   	if (this.showThisImages) showDiff (this.currentfX, "residual-series-"+this.seriesNumber);
    	double [][][] sensorXYCorr=	calculateSensorXYCorr(
    			distortionCalibrationData,
    			this.refineParameters.showPerImage,
    			this.refineParameters.showIndividualNumber,
    			this.refineParameters.usePatternAlpha);
    	String [] titles={"X-corr(pix)","Y-corr(pix)","alpha","weight","Red","Green","Blue"};
    	if (this.refineParameters.extrapolate) {
    		boolean [] whichExtrapolate={true, true,false,false,true,true,true};
    		boolean [] whichPositive=   {false,false,false,false,true,true,true};
    		IJ.showStatus("Extrapolating sensor corrections...");
    		for (int numChn=0;numChn<sensorXYCorr.length;numChn++) if (sensorXYCorr[numChn]!=null){
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
    			int decimate=getDecimateMasks(numChn);
    			int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
    			int sHeight=(getSensorHeight(numChn)-1)/decimate+1;
    	    	if (this.refineParameters.showUnfilteredCorrection) {
    	    		this.SDFA_INSTANCE.showArrays(sensorXYCorr[numChn], sWidth, sHeight,  true, "chn_"+numChn+"_extra_correction", titles);
    	    	}




Andrey Filippov's avatar
Andrey Filippov committed
6012 6013 6014 6015
    			for (int i=0;i<whichPositive.length;i++) if (whichPositive[i]){
    				logScale(sensorXYCorr[numChn][i],this.refineParameters.fatZero);
    			}
    		    boolean extrapolateOK=extrapolateSensorCorrection( //ava.lang.NullPointerException  at Distortions.modifyPixelCorrection(Distortions.java:2595)
6016
    		    		numChn,
Andrey Filippov's avatar
Andrey Filippov committed
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
    		    		whichExtrapolate,
    		    		sensorXYCorr[numChn],
    		    		sensorXYCorr[numChn][2],// alpha - it is more pessimistic than fittingStrategy.distortionCalibrationData.sensorMasks[numChn]
//    		    		fittingStrategy.distortionCalibrationData.sensorMasks[numChn],
    		    		this.refineParameters.alphaThreshold,
    		    		this.refineParameters.extrapolationSigma,
    		    		this.refineParameters.extrapolationKSigma);
    			IJ.showProgress(numChn+1, sensorXYCorr.length);
    			for (int i=0;i<whichPositive.length;i++) if (whichPositive[i]){
    				unLogScale(sensorXYCorr[numChn][i],this.refineParameters.fatZero);
    			}
    			if (!extrapolateOK) sensorXYCorr[numChn]=null; // no correction for too small areas
     		}
			IJ.showProgress(1.0);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
6032

Andrey Filippov's avatar
Andrey Filippov committed
6033 6034
    	if (this.refineParameters.showExtrapolationCorrection && this.refineParameters.extrapolate && this.refineParameters.smoothCorrection) {
    		for (int numChn=0;numChn<sensorXYCorr.length;numChn++) if (sensorXYCorr[numChn]!=null){
6035 6036 6037 6038
    			int decimate=getDecimateMasks(numChn);
    			int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
    			int sHeight=(getSensorHeight(numChn)-1)/decimate+1;
    			this.SDFA_INSTANCE.showArrays(sensorXYCorr[numChn], sWidth, sHeight,  true, "chn_"+numChn+"_extrapolated", titles);
Andrey Filippov's avatar
Andrey Filippov committed
6039 6040 6041 6042 6043 6044 6045
    		}
    	}

    	if (this.refineParameters.smoothCorrection) {
    		boolean [] whichBlur={true,true,false,false,true,true,true};
    		IJ.showStatus("Bluring sensor corrections...");
    		for (int numChn=0;numChn<sensorXYCorr.length;numChn++) if (sensorXYCorr[numChn]!=null){
6046 6047 6048
    			int decimate=getDecimateMasks(numChn);
    			int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
    			int sHeight=(getSensorHeight(numChn)-1)/decimate+1;
Andrey Filippov's avatar
Andrey Filippov committed
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
    			DoubleGaussianBlur gb=new DoubleGaussianBlur();
    			for (int m=0;m<whichBlur.length;m++) if (whichBlur[m]){
    			gb.blurDouble(sensorXYCorr[numChn][m],
    					sWidth,
    					sHeight,
    					this.refineParameters.smoothSigma/decimate,
    					this.refineParameters.smoothSigma/decimate,
    					 0.01);
    			}
    			IJ.showProgress(numChn+1, sensorXYCorr.length);
     		}
			IJ.showProgress(1.0);
Andrey Filippov's avatar
Andrey Filippov committed
6061
    	}
Andrey Filippov's avatar
Andrey Filippov committed
6062 6063
    	if (this.refineParameters.showThisCorrection ) {
    		for (int numChn=0;numChn<sensorXYCorr.length;numChn++) if (sensorXYCorr[numChn]!=null){
6064 6065 6066 6067
    			int decimate=getDecimateMasks(numChn);
    			int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
    			int sHeight=(getSensorHeight(numChn)-1)/decimate+1;
    			this.SDFA_INSTANCE.showArrays(sensorXYCorr[numChn], sWidth, sHeight,  true, "chn_"+numChn+"_filtered", titles);
Andrey Filippov's avatar
Andrey Filippov committed
6068 6069 6070 6071 6072
    		}
    	}
//   	if (!selectCorrectionScale()) return false;
		IJ.showStatus("Applying corrections:"+((!this.refineParameters.applyCorrection && !this.refineParameters.applyFlatField)?
				"none ":((this.refineParameters.applyCorrection?"geometry ":"")+(this.refineParameters.applyFlatField?"flat field":""))));
Andrey Filippov's avatar
Andrey Filippov committed
6073 6074


Andrey Filippov's avatar
Andrey Filippov committed
6075 6076 6077
		addOldXYCorrectionToCurrent(
    			this.refineParameters.correctionScale,
    			sensorXYCorr);
Andrey Filippov's avatar
Andrey Filippov committed
6078

Andrey Filippov's avatar
Andrey Filippov committed
6079 6080 6081 6082 6083 6084 6085 6086
    	boolean result=applySensorCorrection(
    			this.refineParameters.applyCorrection,
    			this.refineParameters.applyFlatField,
    			this.refineParameters.correctionScale,
    			sensorXYCorr,
    			distortionCalibrationData);
    	if (this.refineParameters.showCumulativeCorrection) {
    		for (int numChn=0;numChn<sensorXYCorr.length;numChn++) if (sensorXYCorr[numChn]!=null){
6087 6088 6089 6090
    			int decimate=getDecimateMasks(numChn);
    			int sWidth= (getSensorWidth(numChn)-1)/decimate+1;
    			int sHeight=(getSensorHeight(numChn)-1)/decimate+1;
    			this.SDFA_INSTANCE.showArrays(sensorXYCorr[numChn], sWidth, sHeight,  true, "Cumulative_chn_"+numChn+"_corrections", titles);
Andrey Filippov's avatar
Andrey Filippov committed
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
    		}
    	}
    	if (result) {
    		// NEED to update from all?
//			updateCameraParametersFromCalculated(true); // update camera parameters from all (even disabled) images
			updateCameraParametersFromCalculated(false); // update camera parameters from enabled only images (may overwrite some of the above)

    	}
		IJ.showStatus("");

    	return result;
    }
Andrey Filippov's avatar
Andrey Filippov committed
6103

Andrey Filippov's avatar
Andrey Filippov committed
6104 6105 6106
    public void resetSensorCorrection(){
    	this.pixelCorrection=null;
    	this.pathNames=null;
Andrey Filippov's avatar
Andrey Filippov committed
6107
    }
Andrey Filippov's avatar
Andrey Filippov committed
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
    public void resetSensorCorrection(int sensorNum){
    	if ((this.pixelCorrection!=null) && (sensorNum<this.pixelCorrection.length) && (sensorNum>=0)) {
    		this.pixelCorrection[sensorNum]=null;
    		this.pathNames[sensorNum]=null;
    	}
    }
    public void initSensorCorrection(){
    	int numLayers=7;
    	int numChannels=this.fittingStrategy.distortionCalibrationData.getNumChannels(); // number of used channels
    	this.pixelCorrection=new double [numChannels][][];
    	this.pathNames=new String[numChannels];
    	double [][] masks=this.fittingStrategy.distortionCalibrationData.calculateSensorMasks();
    	for (int i=0;i<this.pixelCorrection.length;i++){
    		this.pixelCorrection[i]=new double [numLayers][];
    		this.pathNames[i]=null;
    		for (int n=0;n<numLayers;n++) this.pixelCorrection[i][n]=new double [masks[i].length];
    		for (int j=0;j<masks[i].length;j++) {
        		this.pixelCorrection[i][0][j]=0.0;
        		this.pixelCorrection[i][1][j]=0.0;
        		this.pixelCorrection[i][2][j]=masks[i][j];
    			this.pixelCorrection[i][3][j]=1.0;
    			this.pixelCorrection[i][4][j]=1.0;
    			this.pixelCorrection[i][5][j]=1.0;
    		}
    	}
    }
Andrey Filippov's avatar
Andrey Filippov committed
6134

Andrey Filippov's avatar
Andrey Filippov committed
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
    /*
     * Adds new correction to the current one with the result to the new one. If update, the old arrays are also modified/created
     */
    public boolean applySensorCorrection(
    		boolean update,
    		boolean updateFlatField,
    		double scale,
    		double [][][] sensorXYCorr,
    		DistortionCalibrationData distortionCalibrationData){
		int numLayers=6;
6145 6146 6147 6148 6149 6150 6151
///		int decimate=distortionCalibrationData.eyesisCameraParameters.decimateMasks;
///		int width= distortionCalibrationData.eyesisCameraParameters.sensorWidth;
///		int height=distortionCalibrationData.eyesisCameraParameters.sensorHeight;
///    	if ((this.pixelCorrection!=null) && (this.pixelCorrectionDecimation!=decimate)){
///    		IJ.showMessage("Error","Can not apply correction as the current correction and the new one have different decimations");
///    		return false;
///    	}
Andrey Filippov's avatar
Andrey Filippov committed
6152 6153
    	if ((this.pixelCorrection==null) && !update && !updateFlatField) return true;
    	if (update){
6154 6155 6156
///    		this.pixelCorrectionDecimation=decimate;
///    		this.pixelCorrectionWidth=width;
///    		this.pixelCorrectionHeight=height;
Andrey Filippov's avatar
Andrey Filippov committed
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
    	}
        if (this.pixelCorrection==null) {
        	if (this.debugLevel>1) System.out.println("Initializing pixelCorrection array");
        	this.pixelCorrection=new double [sensorXYCorr.length][][];
        	this.pathNames=new String[sensorXYCorr.length];
        	for (int i=0;i<this.pixelCorrection.length;i++){
        		this.pixelCorrection[i]=null;
        		this.pathNames[i]=null;
        	}
        }
Andrey Filippov's avatar
Andrey Filippov committed
6167

Andrey Filippov's avatar
Andrey Filippov committed
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
        if (this.pixelCorrection.length<sensorXYCorr.length){ // OK to update even if !update
        	if (this.debugLevel>1) System.out.println("Increasing number of sensors in pixelCorrection array");
        	double [][][] tmp=new double[sensorXYCorr.length][][];
        	String [] tmpPaths=new String[sensorXYCorr.length];
        	for (int i=0;i<tmp.length;i++){
        		if (i<this.pixelCorrection.length){
        			tmp[i]=this.pixelCorrection[i];
        			tmpPaths[i]=this.pathNames[i];
        		}
        		else {
        			tmp[i]=null;
        			tmpPaths[i]=null;
        		}
        	}
        	this.pixelCorrection=tmp;
        	this.pathNames=tmpPaths;
        }
        for (int i=0;i<sensorXYCorr.length;i++) if (sensorXYCorr[i]!=null){
        	boolean in6=sensorXYCorr[i].length==6; // was - 7
        	int indxR=in6?3:4;
        	int indxG=in6?4:5;
        	int indxB=in6?5:6;
Andrey Filippov's avatar
Andrey Filippov committed
6190
        	double [] sensorMask=in6?((fittingStrategy.distortionCalibrationData.sensorMasks==null)?null:fittingStrategy.distortionCalibrationData.sensorMasks[i]):sensorXYCorr[i][2];
Andrey Filippov's avatar
Andrey Filippov committed
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
        	if (this.pixelCorrection[i]==null) {
        		if (update || updateFlatField) {
        			this.pixelCorrection[i]=new double [numLayers][];
        			this.pixelCorrection[i][0]=sensorXYCorr[i][0];
        			this.pixelCorrection[i][1]=sensorXYCorr[i][1];
        			if (sensorMask!=null){
        				this.pixelCorrection[i][2]=sensorMask;
        			} else {
        				this.pixelCorrection[i][2]= new double[this.pixelCorrection[i][0].length];
    					for (int j=0;j<this.pixelCorrection[i][2].length;j++) this.pixelCorrection[i][2][j]=1.0;
        			}
        			if (sensorXYCorr[i].length>=7){
        				this.pixelCorrection[i][3]=sensorXYCorr[i][indxR];
        				this.pixelCorrection[i][4]=sensorXYCorr[i][indxG];
        				this.pixelCorrection[i][5]=sensorXYCorr[i][indxB];
        			} else {
        				for (int n=3;n<numLayers;n++){
        					this.pixelCorrection[i][n]=new double[this.pixelCorrection[0].length];
        					for (int j=0;j<this.pixelCorrection[i][0].length;j++) this.pixelCorrection[i][n][j]=1.0;
        				}

        			}
        		}
        	} else  {
        		for (int j=0;j<sensorXYCorr[i][0].length;j++){
        			// removed - now it is already done
///        			sensorXYCorr[i][0][j]=this.pixelCorrection[i][0][j]+scale*sensorXYCorr[i][0][j];
///        			sensorXYCorr[i][1][j]=this.pixelCorrection[i][1][j]+scale*sensorXYCorr[i][1][j];
        			if (scale==1.0) { // recovering from Double.NaN in old values - still do not know where it came from in the first place
        			} else {
        				if (!in6){
        					sensorXYCorr[i][2][j]=this.pixelCorrection[i][2][j]+scale*(sensorXYCorr[i][2][j]-this.pixelCorrection[i][2][j]);
        				}
            			sensorXYCorr[i][indxR][j]=this.pixelCorrection[i][3][j]+scale*(sensorXYCorr[i][indxR][j]-this.pixelCorrection[i][3][j]);
            			sensorXYCorr[i][indxG][j]=this.pixelCorrection[i][4][j]+scale*(sensorXYCorr[i][indxG][j]-this.pixelCorrection[i][4][j]);
            			sensorXYCorr[i][indxB][j]=this.pixelCorrection[i][5][j]+scale*(sensorXYCorr[i][indxB][j]-this.pixelCorrection[i][5][j]);
Andrey Filippov's avatar
Andrey Filippov committed
6227

Andrey Filippov's avatar
Andrey Filippov committed
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
        			}
        		}
        		if (update){
        			this.pixelCorrection[i][0]=sensorXYCorr[i][0];
        			this.pixelCorrection[i][1]=sensorXYCorr[i][1];
        		}
        		if (updateFlatField){
        			if (!in6){
        				this.pixelCorrection[i][2]=sensorXYCorr[i][2];
        			}
        			this.pixelCorrection[i][3]=sensorXYCorr[i][indxR];
        			this.pixelCorrection[i][4]=sensorXYCorr[i][indxG];
        			this.pixelCorrection[i][5]=sensorXYCorr[i][indxB];
        		}
        	}
        }
        return true;
Andrey Filippov's avatar
Andrey Filippov committed
6245

Andrey Filippov's avatar
Andrey Filippov committed
6246 6247 6248 6249 6250 6251 6252 6253
    }
    public String getSensorPath(int numSensor){ //<0 - first available;
    	if ((this.pathNames == null) || (numSensor>=this.pathNames.length)) return null;
    	if (numSensor>=0) return this.pathNames[numSensor];
    	for (int i=0;i<this.pathNames.length;i++) if ((this.pathNames[i]!=null) && (this.pathNames[i].length()>0)) return this.pathNames[i];
    	return null;
    }
    public void saveDistortionAsImageStack(
6254 6255
    		DistortionCalibrationData distortionCalibrationData, // null OK
    		CamerasInterface camerasInterface, // to save channel map
Andrey Filippov's avatar
Andrey Filippov committed
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
    		String title,
    		String path,
    		boolean emptyOK){
    	int indexPeriod=path.indexOf('.',path.lastIndexOf(Prefs.getFileSeparator()));
    	int indexSuffix=indexPeriod;
    	String digits="0123456789";
    	for (int i=1;i<=2;i++) if (digits.indexOf(path.charAt(indexSuffix-1))>=0) indexSuffix--; // remove 1 or 2 digits before period
    	boolean hadSuffix= (path.charAt(indexSuffix-1)=='-');
    	int numSubCameras=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0].length;
    	for (int chNum=0;chNum<numSubCameras;chNum++) if (emptyOK  || ((this.pixelCorrection!=null) && (chNum<this.pixelCorrection.length) && (this.pixelCorrection[chNum]!=null)))  {
    		String channelPath= (hadSuffix?path.substring(0,indexSuffix):(path.substring(0,indexPeriod)+"-"))+
    		String.format("%02d",chNum)+path.substring(indexPeriod);
    		saveDistortionAsImageStack(
6269
    				distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
6270 6271 6272 6273 6274 6275 6276
    				camerasInterface, // to save channel map
    				title,
    				channelPath,
    				chNum,
    				emptyOK);
    	}
    }
Andrey Filippov's avatar
Andrey Filippov committed
6277

Andrey Filippov's avatar
Andrey Filippov committed
6278
    public ImagePlus saveDistortionAsImageStack(
6279 6280
    		DistortionCalibrationData distortionCalibrationData, // null OK
    		CamerasInterface camerasInterface, // to save channel map
Andrey Filippov's avatar
Andrey Filippov committed
6281 6282 6283 6284 6285
    		String title,
    		String path,
    		int numSensor,
    		boolean emptyOK){
    	ImagePlus imp=getDistortionAsImageStack(
6286
    			distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
    			camerasInterface, // to save channel map
    			title,
    			numSensor,
    			emptyOK);
    	if (imp==null) return null;
    	boolean realData= (this.pixelCorrection!=null) && (this.pixelCorrection[numSensor]!=null);
    	FileSaver fs=new FileSaver(imp);
    	String msg="Saving "+(realData?"":"EMPTY")+" sensor distortions to "+path;
    	if (updateStatus) IJ.showStatus(msg);
    	if (this.debugLevel>0) System.out.println(msg);
    	fs.saveAsTiffStack(path);
    	if (this.pathNames==null){
    		this.pathNames=new String[this.fittingStrategy.distortionCalibrationData.getNumChannels()];
Andrey Filippov's avatar
Andrey Filippov committed
6300
    		for (int i=0;i<this.pathNames.length;i++) this.pathNames[i]=null;
Andrey Filippov's avatar
Andrey Filippov committed
6301 6302 6303 6304 6305 6306
    	}
    	this.pathNames[numSensor]=path;
    	return imp;
    }

//  /    	int numChannels=this.fittingStrategy.distortionCalibrationData.getNumChannels(); // number of used channels
Andrey Filippov's avatar
Andrey Filippov committed
6307
// TODO: Currently saves data from Station 0
Andrey Filippov's avatar
Andrey Filippov committed
6308
    public ImagePlus getDistortionAsImageStack(
6309 6310
    		DistortionCalibrationData distortionCalibrationData, // null OK - will use old way from fittingStrategy
    		CamerasInterface camerasInterface, // to save channel map
Andrey Filippov's avatar
Andrey Filippov committed
6311 6312 6313
    		String title,
    		int numSensor,
    		boolean emptyOK){
6314 6315 6316
    	if (distortionCalibrationData == null) {
    		distortionCalibrationData = this.fittingStrategy.distortionCalibrationData;
    	}
Andrey Filippov's avatar
Andrey Filippov committed
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
    	int stationNumber=0;
    	String [] titles={"X-corr","Y-corr","mask","R-vign","G-vign","B-vign"};
    	double [][] pixelCorr=null;
    	if (!emptyOK &&((this.pixelCorrection==null) ||
    			(numSensor<0) ||
    		(numSensor>=this.pixelCorrection.length) ||
    		(this.pixelCorrection[numSensor]==null)))
    			{
    		String msg="Sensor correction data is not available";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
    	if ((this.pixelCorrection!=null) && (numSensor>=0) && (numSensor<this.pixelCorrection.length))
    		pixelCorr=this.pixelCorrection[numSensor];
6331 6332 6333 6334 6335 6336

    	int width =  distortionCalibrationData.eyesisCameraParameters.getSensorWidth(numSensor) /
    			distortionCalibrationData.eyesisCameraParameters.getDecimateMasks(numSensor);
    	int height = distortionCalibrationData.eyesisCameraParameters.getSensorHeight(numSensor) /
    			distortionCalibrationData.eyesisCameraParameters.getDecimateMasks(numSensor);

Andrey Filippov's avatar
Andrey Filippov committed
6337 6338
//    	int length=this.pixelCorrection[numSensor][0].length; // should be == width*height
    	int length=width*height;
Andrey Filippov's avatar
Andrey Filippov committed
6339

Andrey Filippov's avatar
Andrey Filippov committed
6340 6341 6342
    	float [][]pixels=new float [titles.length][length]; // dx, dy, sensor mask,v-r,v-g,v-b
    	// assuming all sensors have the same dimension
    	double [] mask=null;
6343 6344 6345 6346
    	if (distortionCalibrationData.sensorMasks.length<=numSensor) return null; // no data
    	if ((distortionCalibrationData.sensorMasks!=null) &&
    			(distortionCalibrationData.sensorMasks[numSensor]!=null)){
    		mask=distortionCalibrationData.sensorMasks[numSensor];
Andrey Filippov's avatar
Andrey Filippov committed
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
    	}

    	for (int index=0;index<length;index++){
    		if (pixelCorr==null){
        		pixels[0][index]=  0.0f;
        		pixels[1][index]=  0.0f;
        		for (int n=3;n<pixels.length;n++) pixels[n][index]= 1.0f; // normalize?
    		} else {
    			pixels[0][index]=  (float) pixelCorr[0][index];
    			pixels[1][index]=  (float) pixelCorr[1][index];
        		for (int n=3;n<pixels.length;n++) pixels[n][index]= (float) pixelCorr[n][index];
    		}
    		// get sensor mask here
    		pixels[2][index]=  (mask==null)? 1.0f:((float) mask[index]);
Andrey Filippov's avatar
Andrey Filippov committed
6361

Andrey Filippov's avatar
Andrey Filippov committed
6362 6363 6364 6365 6366 6367 6368
    	}
    	ImagePlus imp=null;
  		ImageStack stack=new ImageStack(width,height);
   		for (int n=0;n<pixels.length;n++)  stack.addSlice(titles[n],    pixels[n]);
   		imp = new ImagePlus(title, stack);
        // set properties sufficient to un-apply distortions to the image
   		// First - corrections
6369
    	EyesisSubCameraParameters subCam=distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[stationNumber][numSensor];
6370
    	subCam.updateCartesian(); // recalculate other parameters
6371
    	double entrancePupilForward=distortionCalibrationData.eyesisCameraParameters.entrancePupilForward[stationNumber];
Andrey Filippov's avatar
Andrey Filippov committed
6372 6373 6374 6375
    	imp.setProperty("VERSION",  "1.0");
    	imp.setProperty("comment_arrays",  "Array corrections from acquired image to radially distorted, in pixels");
    	imp.setProperty("arraysSet",  ""+(pixelCorr!=null)); // per-pixel arrays are not set, using 0.0
    	imp.setProperty("maskSet",     ""+(mask!=null)); // per-pixel masks is not set, using 1.0
6376 6377 6378
    	imp.setProperty("pixelCorrectionWidth",  ""+distortionCalibrationData.eyesisCameraParameters.getSensorWidth(numSensor)); // this.pixelCorrectionWidth);
    	imp.setProperty("pixelCorrectionHeight", ""+distortionCalibrationData.eyesisCameraParameters.getSensorHeight(numSensor));
    	imp.setProperty("pixelCorrectionDecimation", ""+distortionCalibrationData.eyesisCameraParameters.getDecimateMasks(numSensor));
Andrey Filippov's avatar
Andrey Filippov committed
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
    	imp.setProperty("comment_decimation", "when decimation use integer divide to find the index, corection values are in non-decimated pixels");
    	imp.setProperty("distortion_formula",  "(normalized by distortionRadius in mm) Rdist/R=A8*R^7+A7*R^6+A6*R^5+A5*R^4+A*R^3+B*R^2+C*R+(1-A6-A7-A6-A5-A-B-C)");
    	imp.setProperty("distortionRadius", ""+subCam.distortionRadius);
    	imp.setProperty("distortionRadius_unuts", "mm");
    	imp.setProperty("focalLength", ""+subCam.focalLength);
    	imp.setProperty("focalLength_units", "mm");
    	imp.setProperty("pixelSize", ""+subCam.pixelSize);
    	imp.setProperty("pixelSize_units", "um");
    	imp.setProperty("distortionA8", ""+subCam.distortionA8);
    	imp.setProperty("distortionA7", ""+subCam.distortionA7);
    	imp.setProperty("distortionA6", ""+subCam.distortionA6);
    	imp.setProperty("distortionA5", ""+subCam.distortionA5);
    	imp.setProperty("distortionA", ""+subCam.distortionA);
    	imp.setProperty("distortionB", ""+subCam.distortionB);
    	imp.setProperty("distortionC", ""+subCam.distortionC);
    	imp.setProperty("comment_px0_py0", "lens center on the sensor, in pixels");
    	imp.setProperty("px0", ""+subCam.px0);
    	imp.setProperty("py0", ""+subCam.py0);
    	imp.setProperty("comment_azimuth", "lens center azimuth, CW from top, degrees");
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
    	imp.setProperty("height",  ""+subCam.height);
    	imp.setProperty("comment_elevation", "lens elevation from horizontal, positive - above horizon, degrees");
    	imp.setProperty("elevation",  ""+subCam.theta);
    	imp.setProperty("comment_roll", "lens rotation around the lens axis. Positive - CW looking to the target, degrees");
    	imp.setProperty("roll",  ""+subCam.psi);

    	imp.setProperty("comment_cartesian", "Use cartesian coordinates for the sensor in the camera CS (forward, right,aheading), instead of (radius, azimuth, heading)");
    	imp.setProperty("cartesian",  ""+subCam.cartesian);
// cartesian parameters
    	imp.setProperty("comment_forward", "lens forward (towards target) displacement in the camera CS");
    	imp.setProperty("forward",  ""+subCam.forward);
    	imp.setProperty("comment_right", "lens right (looking towards target) displacement in the camera CS");
    	imp.setProperty("right",  ""+subCam.right);
    	imp.setProperty("comment_aheading", "lens axis horizontal direction, degrees. Positive - CW from the target (looking from top)");
    	imp.setProperty("aheading",  ""+subCam.heading);
// cylindrical parameters
Andrey Filippov's avatar
Andrey Filippov committed
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
    	imp.setProperty("azimuth", ""+subCam.azimuth);
    	imp.setProperty("comment_radius", "lens center distance from the camera vertical axis, mm");
    	imp.setProperty("radius",  ""+subCam.radius);
    	imp.setProperty("comment_height", "lens center vertical position from the head center, mm");
    	imp.setProperty("comment_heading", "lens heading - added to azimuth");
    	imp.setProperty("heading",  ""+subCam.phi);

    	imp.setProperty("comment_channel", "number of the sensor (channel) in the camera");
    	imp.setProperty("channel",  ""+numSensor);
    	imp.setProperty("comment_subcamera", "number of the subcamera with individual IP, starting with 0");
6424 6425 6426 6427 6428 6429 6430 6431
    	if (camerasInterface != null) {
    		subCam.subcamera =   camerasInterface.getSubCamera(numSensor);
    		subCam.sensor_port = camerasInterface.getSensorPort(numSensor);
    		subCam.subchannel =  camerasInterface.getSubChannel(numSensor);
    	}

    	imp.setProperty("subcamera",  ""+subCam.subcamera);
		imp.setProperty("sensor_port",""+subCam.sensor_port);
Andrey Filippov's avatar
Andrey Filippov committed
6432

Andrey Filippov's avatar
Andrey Filippov committed
6433
    	imp.setProperty("comment_subchannel", "number of the sensor port on a subcamera (0..2)");
6434
    	imp.setProperty("subchannel",  ""+subCam.subchannel);
Andrey Filippov's avatar
Andrey Filippov committed
6435 6436
    	imp.setProperty("comment_entrancePupilForward",  "entrance pupil distance from the azimuth/radius/height, outwards in mm");
    	imp.setProperty("entrancePupilForward",  ""+entrancePupilForward); // currently global, decoders will use per-sensor
6437
       	imp.setProperty("comment_defects", "Sensor hot/cold pixels list as x:y:difference");
Andrey Filippov's avatar
Andrey Filippov committed
6438

6439 6440
       	imp.setProperty("comment_lensDistortionModel", "Integer specifying lens distrotion model (0 - radial)");
       	imp.setProperty("lensDistortionModel", ""+subCam.lensDistortionModel);
Andrey Filippov's avatar
Andrey Filippov committed
6441

6442 6443 6444 6445 6446 6447 6448 6449
		for (int i=0;i<subCam.r_xy.length;i++){
			imp.setProperty("r_xy_"+i+"_x",subCam.r_xy[i][0]+"");
			imp.setProperty("r_xy_"+i+"_y",subCam.r_xy[i][1]+"");
		}
		for (int i=0;i<subCam.r_od.length;i++){
			imp.setProperty("r_od_"+i+"_o",subCam.r_od[i][0]+"");
			imp.setProperty("r_od_"+i+"_d",subCam.r_od[i][1]+"");
		}
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
       	if (subCam.defectsXY!=null){
    		StringBuffer sb = new StringBuffer();
    		for (int i=0;i<subCam.defectsXY.length;i++){
    			if (sb.length()>0) sb.append(" ");
    			sb.append(subCam.defectsXY[i][0]+":"+subCam.defectsXY[i][1]+":"+subCam.defectsDiff[i]);
    		}
    		imp.setProperty("defects", sb.toString());
//       	} else {
//    		imp.setProperty("defects", null);
       	}
Andrey Filippov's avatar
Andrey Filippov committed
6460

Andrey Filippov's avatar
Andrey Filippov committed
6461 6462 6463 6464 6465
    	//camerasInterface, numSensor
    	(new JP46_Reader_camera(false)).encodeProperiesToInfo(imp);
    	imp.getProcessor().resetMinAndMax();
    	return imp;
    }
Andrey Filippov's avatar
Andrey Filippov committed
6466 6467


6468
    public void setDistortionFromImageStack(
6469 6470
    		DistortionCalibrationData distortionCalibrationData, // null OK
    		EyesisCameraParameters eyesisCameraParameters, // null OK
6471 6472 6473
    		String path,
    		boolean overwriteExtrinsic,
    		boolean overwriteDistortion){
Andrey Filippov's avatar
Andrey Filippov committed
6474
    	int indexPeriod=path.indexOf('.',path.lastIndexOf(Prefs.getFileSeparator()));
6475 6476 6477 6478 6479 6480 6481
    	if (eyesisCameraParameters == null) {
    		eyesisCameraParameters = fittingStrategy.distortionCalibrationData.eyesisCameraParameters;
    	}
    	if (distortionCalibrationData == null) {
    		distortionCalibrationData = fittingStrategy.distortionCalibrationData;
    	}
    	int numSubCameras=distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0].length;
Andrey Filippov's avatar
Andrey Filippov committed
6482 6483 6484
    	for (int chNum=0;chNum<numSubCameras;chNum++){
    		String channelPath=path.substring(0,indexPeriod-2)+String.format("%02d",chNum)+path.substring(indexPeriod);
    		try { // disable here for now
6485 6486 6487 6488 6489 6490 6491
    			setDistortionFromImageStack(
    					distortionCalibrationData,
    					channelPath,
    					chNum,
    					false,
    					overwriteExtrinsic,
    					overwriteDistortion);
Andrey Filippov's avatar
Andrey Filippov committed
6492 6493 6494 6495 6496 6497
    		} catch (Exception e) {
    			System.out.println("setDistortionFromImageStack(): " + e.toString());
    			e.printStackTrace();
    		}
    	}
    }
Andrey Filippov's avatar
Andrey Filippov committed
6498

6499
    public void setDistortionFromImageStack(
6500
    		DistortionCalibrationData distortionCalibrationData,
6501 6502 6503 6504 6505
    		String path,
    		int numSensor,
    		boolean reportProblems,
    		boolean overwriteExtrinsic,
    		boolean overwriteDistortion){
6506 6507
    	Opener opener=new Opener();
    	ImagePlus imp=opener.openImage("", path);
Andrey Filippov's avatar
Andrey Filippov committed
6508 6509 6510 6511 6512 6513 6514
    	if (imp==null) {
    		if (!reportProblems) return;
    		String msg="Failed to read sensor calibration data file "+path;
    		IJ.showMessage("Error",msg);
    		System.out.println(msg);
    		throw new IllegalArgumentException (msg);
    	}
6515
    	if (this.debugLevel>0) System.out.println("Read "+path+" as a sensor calibration data");
Andrey Filippov's avatar
Andrey Filippov committed
6516
    	(new JP46_Reader_camera(false)).decodeProperiesFromInfo(imp);
6517 6518 6519 6520 6521
    	setDistortionFromImageStack(distortionCalibrationData,
    			imp,
    			numSensor,
    			overwriteExtrinsic,
    			overwriteDistortion);
Andrey Filippov's avatar
Andrey Filippov committed
6522 6523
    	this.pathNames[numSensor]=path;
    }
Andrey Filippov's avatar
Andrey Filippov committed
6524

Andrey Filippov's avatar
Andrey Filippov committed
6525
    //TODO: look more after testing. Currently all station parameters are set from the sensor images, may be minor differences
6526
    public void setDistortionFromImageStack(
6527
    		DistortionCalibrationData distortionCalibrationData,
6528 6529 6530 6531
    		ImagePlus imp,
    		int numSensor,
    		boolean overwriteExtrinsic,
    		boolean overwriteDistortion){
6532 6533 6534
    	if (distortionCalibrationData == null) {
    		distortionCalibrationData = this.fittingStrategy.distortionCalibrationData;
    	}
Andrey Filippov's avatar
Andrey Filippov committed
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
//    	int corrX=0,corrY=1,
    	int corrMask=2;
    	if (numSensor<0) {
    		System.out.println("setDistortionFromImageStack(): Tried to read negative channel");
    		return;
    	}
//		System.out.println("setDistortionFromImageStack(): processing channel channel "+numSensor);
    	if (imp == null){
    		String msg="Distortions image is null";
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
        String [] requiredProperties={
        		"pixelCorrectionWidth",
        		"pixelCorrectionHeight",
        		"pixelCorrectionDecimation",
        		"distortionRadius",
        		"focalLength",
        		"pixelSize",
//        		"distortionA8",
//        		"distortionA7",
//        		"distortionA6",
        		"distortionA5",
        		"distortionA",
        		"distortionB",
        		"distortionC",
        		"px0",
        		"py0"};
        for (int i=0; i<requiredProperties.length;i++) if (imp.getProperty(requiredProperties[i])==null){
    		String msg="Required property "+requiredProperties[i]+" is not defined in "+imp.getTitle();
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
        }
Andrey Filippov's avatar
Andrey Filippov committed
6568

Andrey Filippov's avatar
Andrey Filippov committed
6569 6570 6571 6572 6573
    	if (imp.getStackSize()<3){
    		String msg="Expecting >=3 slices, got "+imp.getStackSize();
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
6574

Andrey Filippov's avatar
Andrey Filippov committed
6575 6576 6577 6578 6579
		ImageStack stack = imp.getStack();
		float [][] pixels =new float[stack.getSize()][];
    	for (int i=0;i<pixels.length;i++) pixels[i]= (float[]) stack.getPixels(i+1);


6580
        int numSubCameras=distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0].length;
Andrey Filippov's avatar
Andrey Filippov committed
6581 6582 6583 6584 6585 6586
        if (numSensor>=numSubCameras){
    		String msg="Loaded calibration channel number "+numSensor+"is higher than maximal in the system "+(numSubCameras-1);
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
        }
//		System.out.println("setDistortionFromImageStack(): processing channel channel "+numSensor);
Andrey Filippov's avatar
Andrey Filippov committed
6587

Andrey Filippov's avatar
Andrey Filippov committed
6588
    	EyesisSubCameraParameters subCam;
6589 6590
    	EyesisCameraParameters cam=     distortionCalibrationData.eyesisCameraParameters;
        if ((distortionCalibrationData!=null) && (distortionCalibrationData.eyesisCameraParameters!=null)){
6591 6592 6593 6594
        	// Now it is the same
///    		distortionCalibrationData.eyesisCameraParameters.decimateMasks=this.pixelCorrectionDecimation;
///    		distortionCalibrationData.eyesisCameraParameters.sensorWidth=  this.pixelCorrectionWidth;
///    		distortionCalibrationData.eyesisCameraParameters.sensorHeight=this.pixelCorrectionHeight;
Andrey Filippov's avatar
Andrey Filippov committed
6595
        }
6596 6597
        for (int stationNumber=0; stationNumber < distortionCalibrationData.eyesisCameraParameters.numStations; stationNumber++){
        	subCam=distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[stationNumber][numSensor];
6598 6599 6600
        	distortionCalibrationData.eyesisCameraParameters.setSensorWidth(  numSensor, Integer.parseInt ((String) imp.getProperty("pixelCorrectionWidth")));
        	distortionCalibrationData.eyesisCameraParameters.setSensorHeight( numSensor, Integer.parseInt ((String) imp.getProperty("pixelCorrectionHeight")));
        	distortionCalibrationData.eyesisCameraParameters.setDecimateMasks(numSensor, Integer.parseInt ((String) imp.getProperty("pixelCorrectionDecimation")));
Andrey Filippov's avatar
Andrey Filippov committed
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626

        	subCam.distortionRadius=        Double.parseDouble((String) imp.getProperty("distortionRadius"));
        	subCam.focalLength=             Double.parseDouble((String) imp.getProperty("focalLength"));
        	subCam.pixelSize=               Double.parseDouble((String) imp.getProperty("pixelSize"));
        	if (imp.getProperty("distortionA8")!=null) {
        		subCam.distortionA8=            Double.parseDouble((String) imp.getProperty("distortionA8"));
        	} else subCam.distortionA8=0.0;
        	if (imp.getProperty("distortionA7")!=null) {
        		subCam.distortionA7=            Double.parseDouble((String) imp.getProperty("distortionA7"));
        	} else subCam.distortionA7=0.0;
        	if (imp.getProperty("distortionA6")!=null) {
        		subCam.distortionA6=            Double.parseDouble((String) imp.getProperty("distortionA6"));
        	} else subCam.distortionA6=0.0;
        	subCam.distortionA5=            Double.parseDouble((String) imp.getProperty("distortionA5"));
        	subCam.distortionA=             Double.parseDouble((String) imp.getProperty("distortionA"));
        	subCam.distortionB=             Double.parseDouble((String) imp.getProperty("distortionB"));
        	subCam.distortionC=             Double.parseDouble((String) imp.getProperty("distortionC"));
        	subCam.px0=                     Double.parseDouble((String) imp.getProperty("px0"));
        	subCam.py0=                     Double.parseDouble((String) imp.getProperty("py0"));
        	if (imp.getProperty("azimuth")  !=null) subCam.azimuth= Double.parseDouble((String) imp.getProperty("azimuth"));
        	if (imp.getProperty("radius")   !=null) subCam.radius=  Double.parseDouble((String) imp.getProperty("radius"));
        	if (imp.getProperty("height")   !=null) subCam.height=  Double.parseDouble((String) imp.getProperty("height"));
        	if (imp.getProperty("entrancePupilForward")!=null) cam.entrancePupilForward[stationNumber]= Double.parseDouble((String) imp.getProperty("entrancePupilForward"));
        	if (imp.getProperty("heading")  !=null) subCam.phi=     Double.parseDouble((String) imp.getProperty("heading"));
        	if (imp.getProperty("elevation")!=null) subCam.theta=   Double.parseDouble((String) imp.getProperty("elevation"));
        	if (imp.getProperty("roll")!=null) subCam.psi=          Double.parseDouble((String) imp.getProperty("roll"));
Andrey Filippov's avatar
Andrey Filippov committed
6627

6628 6629 6630
        	if (imp.getProperty("forward")  !=null) subCam.forward=  Double.parseDouble((String) imp.getProperty("forward"));
        	if (imp.getProperty("right")    !=null) subCam.right=    Double.parseDouble((String) imp.getProperty("right"));
        	if (imp.getProperty("aheading") !=null) subCam.heading= Double.parseDouble((String) imp.getProperty("aheading"));
Andrey Filippov's avatar
Andrey Filippov committed
6631

6632 6633 6634 6635 6636 6637
        	if (imp.getProperty("cartesian") !=null) {
        		subCam.cartesian= Boolean.parseBoolean((String) imp.getProperty("cartesian"));
        		subCam.updateCartesian(); // recalculate other parameters (they may or may nort be provided
        	} else {
        		subCam.cartesian = false;
        	}
Andrey Filippov's avatar
Andrey Filippov committed
6638 6639

        	// Update intrinsic image parameters
Andrey Filippov's avatar
Andrey Filippov committed
6640 6641
        	this.lensDistortionParameters.pixelSize=subCam.pixelSize;
        	this.lensDistortionParameters.distortionRadius=subCam.distortionRadius;
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
        	if (imp.getProperty("defects")!=null) {
        		String sDefects=(String) imp.getProperty("defects");
        		String [] asDefects=sDefects.trim().split(" ");
        		subCam.defectsXY=new int [asDefects.length][2];
        		subCam.defectsDiff=new double [asDefects.length];
        		for (int i=0;i<asDefects.length;i++) {
        			String [] stDefect=asDefects[i].split(":");
        			subCam.defectsXY[i][0]=Integer.parseInt(stDefect[0]);
        			subCam.defectsXY[i][1]=Integer.parseInt(stDefect[1]);
        			subCam.defectsDiff[i]=Double.parseDouble(stDefect[2]);
        		}
        	} else {
        		subCam.defectsXY=null;
        		subCam.defectsDiff=null;
        	}
6657
 // non-radial
6658
        	if (imp.getProperty("lensDistortionModel")  !=null) subCam.lensDistortionModel= Integer.parseInt((String) imp.getProperty("lensDistortionModel"));
6659 6660 6661 6662 6663 6664 6665 6666 6667
        	subCam.setDefaultNonRadial();
			for (int i=0;i<subCam.r_xy.length;i++) {
				if (imp.getProperty("r_xy_"+i+"_x")  !=null) subCam.r_xy[i][0]= Double.parseDouble((String) imp.getProperty("r_xy_"+i+"_x"));
				if (imp.getProperty("r_xy_"+i+"_y")  !=null) subCam.r_xy[i][1]= Double.parseDouble((String) imp.getProperty("r_xy_"+i+"_y"));
			}
			for (int i=0;i<subCam.r_od.length;i++) {
				if (imp.getProperty("r_od_"+i+"_o")  !=null) subCam.r_od[i][0]= Double.parseDouble((String) imp.getProperty("r_od_"+i+"_o"));
				if (imp.getProperty("r_od_"+i+"_d")  !=null) subCam.r_od[i][1]= Double.parseDouble((String) imp.getProperty("r_od_"+i+"_d"));
			}
6668 6669 6670
			if (imp.getProperty("subcamera")   !=null) subCam.subcamera=   Integer.parseInt((String) imp.getProperty("subcamera"));
			if (imp.getProperty("sensor_port") !=null) subCam.sensor_port= Integer.parseInt((String) imp.getProperty("sensor_port"));
			if (imp.getProperty("subchannel")  !=null) subCam.subchannel=   Integer.parseInt((String) imp.getProperty("subchannel"));
Andrey Filippov's avatar
Andrey Filippov committed
6671
        }
6672 6673 6674 6675 6676


        for (int imgNum=0;imgNum < distortionCalibrationData.getNumImages();imgNum++){
        	int imageSubCam=  distortionCalibrationData.getImageSubcamera(imgNum);
        	int stationNumber=distortionCalibrationData.getImageStation(imgNum);
Andrey Filippov's avatar
Andrey Filippov committed
6677 6678
        	if (imageSubCam==numSensor){
        		// vector from the data we just set
6679 6680 6681
        		double [] parVector=           distortionCalibrationData.eyesisCameraParameters.getParametersVector(stationNumber,imageSubCam);
        		if       (overwriteExtrinsic)  distortionCalibrationData.setSubcameraParameters(parVector,imgNum);
        		else  if (overwriteDistortion) distortionCalibrationData.setIntrinsicParameters(parVector,imgNum);
Andrey Filippov's avatar
Andrey Filippov committed
6682 6683
        	}
        }
Andrey Filippov's avatar
Andrey Filippov committed
6684

Andrey Filippov's avatar
Andrey Filippov committed
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
        // now read the calibration data and mask
    	if (this.pixelCorrection==null) {
    		this.pixelCorrection=new double [numSubCameras][][];
    		this.pathNames=new String [numSubCameras];
    		for (int i=0;i<this.pixelCorrection.length;i++){
    			this.pixelCorrection[i]=null;
    			this.pathNames[i]=null;
    		}
    	}
        if (numSensor>=this.pixelCorrection.length){ // increase number of elements
        	double [][][] tmp=this.pixelCorrection.clone();
        	String [] tmpPaths=this.pathNames.clone();
        	this.pixelCorrection=new double[numSensor+1][][];
        	this.pathNames=new String[numSensor+1];
        	for (int i=0;i<this.pixelCorrection.length;i++)
        		if (i<tmp.length){
        			this.pixelCorrection[i]=tmp[i];
        			this.pathNames[i]=tmpPaths[i];
        		}else {
        			this.pixelCorrection[i]=null;
        			this.pathNames[i]=null;
        		}
        }
        int numLayers=6; //corr-x, corr-y,mask, ff-R, ff-G, ff-b
        if (numLayers<pixels.length) numLayers=pixels.length; // for the future?
//        this.pixelCorrection[numSensor]=new double [pixels.length] [pixels[0].length];
        this.pixelCorrection[numSensor]=new double [numLayers][pixels[0].length];
        for (int i= 0;i<this.pixelCorrection[numSensor][0].length;i++){
        	for (int n=0;n<pixels.length;n++)	this.pixelCorrection[numSensor][n][i]=pixels[n][i]; // mask will go to two places
        }
        if (pixels.length<numLayers){
            for (int i= 0;i<this.pixelCorrection[numSensor][0].length;i++){
            	for (int n=pixels.length;n<numLayers;n++)	this.pixelCorrection[numSensor][n][i]=1.0; // default ff if no data is available
            }
        }
Andrey Filippov's avatar
Andrey Filippov committed
6720
        // now mask
Andrey Filippov's avatar
Andrey Filippov committed
6721 6722 6723 6724 6725 6726 6727
        boolean defined=false;
		for (int i=0;i<pixels[2].length;i++) if ((pixels[2][i]!=0.0) && (pixels[2][i]!=1.0)){
			defined=true;
			break;
		}
//    	System.out.println("setDistortionFromImageStack(): defined="+defined );
		if (defined) {
6728 6729 6730 6731 6732
	        if (distortionCalibrationData.sensorMasks==null) {
	        	distortionCalibrationData.sensorMasks=new double [numSubCameras][];
	        	for (int i=0;i<distortionCalibrationData.sensorMasks.length;i++)
	        		distortionCalibrationData.sensorMasks[i]=null;
//	        	System.out.println("setDistortionFromImageStack(): created distortionCalibrationData.sensorMasks["+numSubCameras+"] of null-s" );
Andrey Filippov's avatar
Andrey Filippov committed
6733
	        }
6734 6735 6736 6737 6738 6739
	        if (numSensor>=distortionCalibrationData.sensorMasks.length){ // increase number of elements
	        	double [][] tmp=distortionCalibrationData.sensorMasks;
	        	distortionCalibrationData.sensorMasks=new double[numSensor+1][];
	        	for (int i=0;i<distortionCalibrationData.sensorMasks.length;i++)
	        		if (i<tmp.length)distortionCalibrationData.sensorMasks[i]=tmp[i];
	        		else distortionCalibrationData.sensorMasks[i]=null;
Andrey Filippov's avatar
Andrey Filippov committed
6740
	        }
6741 6742 6743
	        if (distortionCalibrationData.sensorMasks[numSensor]==null){
	        	distortionCalibrationData.sensorMasks[numSensor]=new double[pixels[corrMask].length];
//	        	System.out.println("setDistortionFromImageStack(): created distortionCalibrationData.sensorMasks["+numSensor+"] of ["+pixels[corrMask].length+"]" );
Andrey Filippov's avatar
Andrey Filippov committed
6744
	        }
6745 6746
	        for (int i= 0;i<distortionCalibrationData.sensorMasks[numSensor].length;i++) // null pointer
	        	distortionCalibrationData.sensorMasks[numSensor][i]=pixels[corrMask][i];
Andrey Filippov's avatar
Andrey Filippov committed
6747 6748 6749 6750
		}
    }
    /**
     * Accumulate per-sensor grid R,G,B intensities using current sensor flat-field values
Andrey Filippov's avatar
Andrey Filippov committed
6751
     * @param serNumber - fitting series number to select images (-1 - all enabled)
Andrey Filippov's avatar
Andrey Filippov committed
6752 6753 6754 6755 6756 6757
     * @param sensorMasks "pessimistic" masks to use only center (low-vignetting) part of each sensor (at least on the first runs?)
     * @param minContrast - minimal contrast to consider a node
     * @param threshold - not yet used - disregard grid nodes with low data - in the end
     * @param interpolate - interpolate sensor data
     * @param maskThresholdOcclusion suspect occlusion only if grid is missing in the area where sensor mask is above this threshold
     * @param expandOcclusion - shrink defined grid on image by this steps - to handle occlusion by rollers
Andrey Filippov's avatar
Andrey Filippov committed
6758
     * @param fadeOcclusion - fade shrank occlusion border
Andrey Filippov's avatar
Andrey Filippov committed
6759 6760 6761
     * @param ignoreSensorFlatField - ignorfe previously calculated sensors flat-field calibration
     * @return
     */
Andrey Filippov's avatar
Andrey Filippov committed
6762

Andrey Filippov's avatar
Andrey Filippov committed
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
    public double [][][][] calculateGridFlatField(
    		int serNumber,
    		double [][] sensorMasks,
    		double minContrast,
    		double threshold,
    		boolean interpolate,
    		double maskThresholdOcclusion,
    		int expandOcclusion,
    		double fadeOcclusion,
    		boolean ignoreSensorFlatField){
   // TODO: add standard weight function used elsethere.
    	int indexContrast=2;
    	boolean [] selectedImages=fittingStrategy.selectedImages(serNumber); // negative series number OK - will select all enabled
    	int gridHeight=this.patternParameters.gridGeometry.length;
    	int gridWidth=this.patternParameters.gridGeometry[0].length;
    	// was not here
6779 6780 6781
///		this.pixelCorrectionDecimation=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.decimateMasks;
///		this.pixelCorrectionWidth=   fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorWidth;
///		this.pixelCorrectionHeight=  fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorHeight;
Andrey Filippov's avatar
Andrey Filippov committed
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822

    	int maxChannel=0;
    	int numStations=this.patternParameters.getNumStations();
       	for (int numImg=0;numImg<fittingStrategy.distortionCalibrationData.gIP.length;numImg++) if (selectedImages[numImg]){
    		if (fittingStrategy.distortionCalibrationData.gIP[numImg].channel>maxChannel) maxChannel=fittingStrategy.distortionCalibrationData.gIP[numImg].channel;
    	}

    	double [][][][] sensorGrids=new double [numStations][maxChannel+1][][]; //{alpha, red,green, blue}
    	for (int ns=0;ns<sensorGrids.length;ns++) for (int n=0;n<sensorGrids[ns].length;n++) sensorGrids[ns][n]=null;
    	// For each sensor separately accumulate grid intensity using current sensor flat field calibration
    	for (int numImg=0;numImg<fittingStrategy.distortionCalibrationData.gIP.length;numImg++) if (selectedImages[numImg]) {
    		int channel=fittingStrategy.distortionCalibrationData.gIP[numImg].channel;
    		int station=fittingStrategy.distortionCalibrationData.gIP[numImg].getStationNumber();
    		if (sensorMasks[channel]==null) continue;
    		if (sensorGrids[station][channel]==null){ // null pointer
    			sensorGrids[station][channel]=new double [4][gridHeight*gridWidth]; //{alpha, red,green, blue}
    			for (int c=0;c<sensorGrids[station][channel].length;c++){
    				for (int i=0;i<sensorGrids[station][channel][0].length;i++) sensorGrids[station][channel][c][i]=0.0;
    			}
    		}
    		double [][] pixelsXY=fittingStrategy.distortionCalibrationData.gIP[numImg].pixelsXY;
    		if ((pixelsXY.length<1) || (pixelsXY[0].length<6)){
    			if (this.debugLevel>0) System.out.println("No flat-field data in image #"+numImg+
    					" - "+fittingStrategy.distortionCalibrationData.gIP[numImg].path+
    					" pixelsXY.length="+pixelsXY.length+
    					" pixelsXY[0].length="+((pixelsXY.length==0)?"nan": pixelsXY[0].length));
    			continue;
    		}
    		int [][]    pixelsUV=fittingStrategy.distortionCalibrationData.gIP[numImg].pixelsUV;
    		double [] defaultVector={0.0, 0.0, 0.0, 1.0, 1.0, 1.0};
 //   		double [] sensorMask=sensorMasks[channel];
    		// detect if there is any occlusion (i.e. by goniometer rollers)
//    		double [] green=new double [pixelsXY.length];
    		boolean [] bMask=new boolean [gridHeight*gridWidth];
    		double [] mask=new double[bMask.length];
    		for (int i=0;i<bMask.length;i++){
    			bMask[i]=false;
    			mask[i]=0.0;
    		}
    		for (int i=0;i<pixelsXY.length;i++){
    			double [] xyzmrgb=patternParameters.getXYZM(
Andrey Filippov's avatar
Andrey Filippov committed
6823
    					pixelsUV[i][0],
Andrey Filippov's avatar
Andrey Filippov committed
6824 6825 6826 6827 6828 6829 6830
    					pixelsUV[i][1],
    					false,
    					station);
    			if (xyzmrgb!=null){
    	   			int index=patternParameters.getGridIndex(pixelsUV[i][0], pixelsUV[i][1]);
    	   			bMask[index]=(pixelsXY[i][indexContrast]>=minContrast);
    	   			mask[index]=interpolateMask (
6831
    	   					channel,
Andrey Filippov's avatar
Andrey Filippov committed
6832
        					sensorMasks[channel],
Andrey Filippov's avatar
Andrey Filippov committed
6833
        					pixelsXY[i][0],
Andrey Filippov's avatar
Andrey Filippov committed
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
        					pixelsXY[i][1]);
    			}
    		}
    		boolean [] occlusionMask=new boolean[bMask.length];
    		for (int i=0;i<occlusionMask.length;i++){
    			occlusionMask[i]=false;
    		}
    		boolean occlusion=false;
    		for (int i=1;i<(gridHeight-1);i++){
    			for (int j=1;j<(gridWidth-1);j++){
    				int index=i*gridWidth+j;
    				if (bMask[index]){
    					if ((   !bMask[(i-1)*gridWidth+j] ||
    							!bMask[(i+1)*gridWidth+j] ||
    							!bMask[i*    gridWidth+j-1] ||
    							!bMask[i*    gridWidth+j+1]) &&
    							(mask[index]>=maskThresholdOcclusion)
    					){
    						occlusionMask[index]=true;
    						occlusion=true;
    					}
    				}
    			}
    		}
    		if (occlusion){
    			for (int n=0;n<expandOcclusion;n++){ // expand
    				boolean [] bMaskPrevious=occlusionMask.clone();
    				for (int i=1;i<(gridHeight-1);i++){
Andrey Filippov's avatar
Andrey Filippov committed
6862
    					for (int j=1;j<(gridWidth-1);j++){
Andrey Filippov's avatar
Andrey Filippov committed
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
    						if (!occlusionMask[i*gridHeight+j]){
    							if (
    									bMaskPrevious[(i-1)*gridWidth+j] ||
    									bMaskPrevious[(i+1)*gridWidth+j] ||
    									bMaskPrevious[i*    gridWidth+j-1] ||
    									bMaskPrevious[i*    gridWidth+j+1]){
    								occlusionMask[i*gridWidth+j]=true;
    							}
    						}
    					}
    				}
    			}
        		double [] maskNonOccluded=new double [occlusionMask.length];
        		for (int i=0;i<maskNonOccluded.length;i++) maskNonOccluded[i]=occlusionMask[i]?0.0:1.0;
        		if (fadeOcclusion>0.0){
        			(new DoubleGaussianBlur() ).blurDouble(
        					maskNonOccluded,
        					gridWidth,
        					gridHeight,
        					fadeOcclusion,
        					fadeOcclusion,
        					0.01);
        		}
        		if (fadeOcclusion>=0.0 )for (int i=0;i<mask.length;i++){
    				double d=2.0*(maskNonOccluded[i]-0.5);
    				mask[i]*=(!occlusionMask[i] && (d>0))?(d*d):0.0;
    			}
    		}
    		for (int i=0;i<pixelsXY.length;i++){
    			double [] xyzmrgb=patternParameters.getXYZM(
Andrey Filippov's avatar
Andrey Filippov committed
6893
    					pixelsUV[i][0],
Andrey Filippov's avatar
Andrey Filippov committed
6894 6895 6896 6897 6898 6899 6900 6901
    					pixelsUV[i][1],
    					false,
    					station);
    			if (xyzmrgb==null) continue; // out of grid
    			double [] vector=ignoreSensorFlatField?defaultVector:
    				((interpolate)?
    					interpolateCorrectionVector (
    							channel,
Andrey Filippov's avatar
Andrey Filippov committed
6902
    							pixelsXY[i][0],
Andrey Filippov's avatar
Andrey Filippov committed
6903 6904 6905
    							pixelsXY[i][1]):
 						getCorrectionVector (
 								channel,
Andrey Filippov's avatar
Andrey Filippov committed
6906
 								pixelsXY[i][0],
Andrey Filippov's avatar
Andrey Filippov committed
6907 6908 6909
 								pixelsXY[i][1]))	;
    			int index=patternParameters.getGridIndex(pixelsUV[i][0], pixelsUV[i][1]);
    			double weight=mask[index];
Andrey Filippov's avatar
Andrey Filippov committed
6910

Andrey Filippov's avatar
Andrey Filippov committed
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
    			sensorGrids[station][channel][0][index]+=weight;
    			for (int c=0;c<3;c++)if (vector[c+3]>0.0){
    				sensorGrids[station][channel][c+1][index]+=weight*pixelsXY[i][c+3]/vector[c+3];
    			}
    		}
    	}
    	for (int station=0;station<sensorGrids.length;station++){
    		for (int channel=0;channel<sensorGrids[station].length; channel++) if (sensorGrids[station][channel]!=null){
    			if (this.pixelCorrection[channel]==null) {
    				sensorGrids[station][channel]=null;
    			} else {
    				for (int i=0;i<sensorGrids[station][channel][0].length;i++){
    					if (sensorGrids[station][channel][0][i]<threshold) {
    						for (int j=0;j<sensorGrids[station][channel].length;j++) sensorGrids[station][channel][j][i]=0.0;
    					} else {
    						for (int j=1;j<sensorGrids[station][channel].length;j++) sensorGrids[station][channel][j][i]/=sensorGrids[station][channel][0][i];
    					}
    				}
    			}
    		}
    	}
    	return sensorGrids;
    }
Andrey Filippov's avatar
Andrey Filippov committed
6934

Andrey Filippov's avatar
Andrey Filippov committed
6935 6936 6937 6938
    public double [] getCorrectionVector(
			int chnNum,
			double px,
			double py){
6939 6940 6941
		int sensorCorrWidth= getSensorCorrWidth(chnNum);
		int indexXY=((int) Math.floor(px/getDecimateMasks(chnNum))) +
		((int) Math.floor(py/getDecimateMasks(chnNum)))*sensorCorrWidth;
Andrey Filippov's avatar
Andrey Filippov committed
6942 6943 6944 6945
		double []vector=new double[this.pixelCorrection[chnNum].length];
		for (int i=0;i<vector.length;i++) vector[i]=this.pixelCorrection[chnNum][i][indexXY];
        return vector;
    }
Andrey Filippov's avatar
Andrey Filippov committed
6946

Andrey Filippov's avatar
Andrey Filippov committed
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
    /**
     * Calculate color flat-field data for the pattern grid, calculate pattern grid mask (alpha)
     * @param referenceStation - station number for unity target brightness
     * @param flatFields partial, per-station, per-sensor pattern flat-field data
     * @param shrinkForMatching shrink pattern mask for calculating pattern average (removing unreliable borders)
     * @param resetMask reset pattern mask to default before (re)-calculating mask
     * @param maxDiffNeighb maximal relative difference between neghbor nodes (ignoring off-grid)
     * @param shrinkMask shrink result mask
     * @param fadeMask smooth fade the alpha on the pattern edge, keep zeros zeros
     * @return {alpha, r,g,b,number of images used} for each view group separately
     */
Andrey Filippov's avatar
Andrey Filippov committed
6958

Andrey Filippov's avatar
Andrey Filippov committed
6959 6960 6961 6962 6963 6964 6965 6966
    public double [][][][] combineGridFlatField(
    		int referenceStation,
    		double [][][][] flatFields,
    		double shrinkForMatching,
    		boolean resetMask,
    		double maxDiffNeighb,  // maximal allowed relative difference between neighbour nodes (relative), 0 - do not  filter any
    		int shrinkMask, // shrink result mask
    		double fadeMask
Andrey Filippov's avatar
Andrey Filippov committed
6967
    		){
Andrey Filippov's avatar
Andrey Filippov committed
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
    	int maskIndex=3;
//    	if (resetMask) patternParameters.calculateGridGeometry(false);
    	if (resetMask) patternParameters.calculateGridGeometryAndPhotometric(false);
    	double [][][] gridGeometry= patternParameters.getGeometry();
    	int [] viewMap=	patternParameters.getViewMap();

    	int gridHeight=gridGeometry.length;
    	int gridWidth=gridGeometry[0].length;
    	int numStations=patternParameters.getNumStations();
    	int numViews=patternParameters.getNumViews();
    	double [][][][] viewPatterns=new double [numStations][numViews][][];
		double [][][] gridMask= new double[numStations][numViews][gridWidth*gridHeight];
		double [][] scaleIndividual=new double[flatFields[referenceStation].length][3]; // scale individual sensor patters before averaging
    	for (int station=0;station<numStations;station++){
    		for (int numView=0;numView<numViews;numView++){
    			viewPatterns[station][numView]=null;
//    			double [] gridMask= new double[gridWidth*gridHeight];
    			for (int v=0;v<gridHeight;v++) for (int u=0;u<gridWidth;u++) gridMask[station][numView][u+v*gridWidth]=(gridGeometry[v][u]!=null)?gridGeometry[v][u][maskIndex]:0.0;
    			if (shrinkForMatching>0){
    				(new DoubleGaussianBlur() ).blurDouble(gridMask[station][numView], gridWidth, gridHeight, shrinkForMatching, shrinkForMatching, 0.01);
    				for (int i=0;i<gridMask[station][numView].length;i++){
    					double d=2.0*(gridMask[station][numView][i]-0.5);
    					gridMask[station][numView][i]=(d>0)?(d*d):(0.0);
    				}
    			}
    			for (int v=0;v<gridHeight;v++) for (int u=0;u<gridWidth;u++){
    				if ((gridGeometry[v][u]==null) || (gridGeometry[v][u][maskIndex]<=0.0)) gridMask[station][numView][u+v*gridWidth]=0.0;
    			}
    			if (this.debugLevel>2){
    				this.SDFA_INSTANCE.showArrays(gridMask[station][numView], gridWidth, gridHeight,   "MATCH_MASK"+numView);
    			}
//    			double [][] scaleIndividual=new double[flatFields[station].length][3]; // scale individual sensor patters before averaging
    			//    		for (int numSensor=0;numSensor<flatFields.length; numSensor++ ) if (flatFields[numSensor]!=null){
    			// process only sensors from the same view of the target (i.e. 0 - eyesis head, 1 - eyesis bottom)
    			if (station==referenceStation) {
    				int numUsedSensors=0;
    				for (int numSensor=0;numSensor<flatFields[station].length; numSensor++ ) if ((flatFields[station][numSensor]!=null) && (viewMap[numSensor]==numView)){
    					numUsedSensors++;
    					double [] weightedSums={0.0,0.0,0.0};
    					double sumWeights=0;
    					for (int i=0;i<flatFields[station][numSensor][0].length;i++){
    						if ((gridMask[station][numView][i]>0.0) && (flatFields[station][numSensor][0][i]>1.0)){ // more than one overlapping image
    							double weight=flatFields[station][numSensor][0][i]*gridMask[station][numView][i];
    							sumWeights+=weight;
    							for (int c=0;c<weightedSums.length;c++) weightedSums[c]+=weight*flatFields[station][numSensor][c+1][i];

    						}
    					}
    					for (int c=0;c<weightedSums.length;c++){
    						scaleIndividual[numSensor][c]=patternParameters.averageRGB[c]*sumWeights/weightedSums[c];
    						if (this.debugLevel>2){
    							System.out.println("combineGridFlatField(): scaleIndividual["+numSensor+"]["+c+"]="+scaleIndividual[numSensor][c]);
    						}
    					}

    				}
    				if (numUsedSensors==0){
    					System.out.println("No data for target view #"+numView+" reference station ="+referenceStation);
    					continue;
    				}
    			}

    		}
    	}
    	for (int station=0;station<numStations;station++){
    		for (int numView=0;numView<numViews;numView++){
    			//    		double [][] combinedPattern=new double [5][gridWidth*gridHeight];
    			viewPatterns[station][numView]=new double [5][gridWidth*gridHeight];
    			double [][] combinedPattern=viewPatterns[station][numView];
    			for (int i=0;i<combinedPattern[0].length;i++){
    				double sumWeights=0;
    				double [] weightedSums={0.0,0.0,0.0};
    				for (int numSensor=0;numSensor<flatFields[station].length; numSensor++ ) if ((flatFields[station][numSensor]!=null) && (viewMap[numSensor]==numView)){
    					double weight=flatFields[station][numSensor][0][i];
    					sumWeights+=weight;
    					for (int c=0;c<weightedSums.length;c++) weightedSums[c]+=weight*flatFields[station][numSensor][c+1][i]*scaleIndividual[numSensor][c];
    				}
Andrey Filippov's avatar
Andrey Filippov committed
7045
    				combinedPattern[4][i]=sumWeights; // just for debugging - no, actually used? - number of images used for this grid node
Andrey Filippov's avatar
Andrey Filippov committed
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
    				for (int c=0;c<weightedSums.length;c++){
    					combinedPattern[c+1][i]=(sumWeights>0.0)?(weightedSums[c]/sumWeights):0.0;
    				}

    			}
    			/*
    		}
    	}
    	for (int station=0;station<viewPatterns.length;station++){
    		for (int numView=0;numView<viewPatterns[station].length;numView++){

    			double [][] combinedPattern=viewPatterns[station][numView];
Andrey Filippov's avatar
Andrey Filippov committed
7058
    	*/
Andrey Filippov's avatar
Andrey Filippov committed
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
    			//    	double [] gridMask[station][numView]= new double[gridWidth*gridHeight];
    			// calculate final mask
    			for (int v=0;v<gridHeight;v++) for (int u=0;u<gridWidth;u++) gridMask[station][numView][u+v*gridWidth]=(gridGeometry[v][u]!=null)?gridGeometry[v][u][maskIndex]:0.0;
    			if (maxDiffNeighb>0.0) { // throw away bad (having sharp gradients) nodes
    				int expWidth=gridWidth+2;
    				int expHeight=gridHeight+2;
    				double [] expandedGrid=new double [expWidth*expHeight];
    				boolean [] enabled=new boolean[expandedGrid.length];
    				for (int v=0;v<expHeight;v++) for (int u=0;u<expWidth;u++){
    					int index=u+expWidth*v;
    					if ((u==0) || (v==0) || (u==(expWidth-1)) || (v==(expHeight-1))){
    						expandedGrid[index]=0.0;
    						enabled[index]=false;
    					} else {
    						int indexSrc=(u-1)+gridWidth*(v-1);
    						expandedGrid[index]=(combinedPattern[1][indexSrc]+combinedPattern[2][indexSrc]+combinedPattern[3][indexSrc])/3.0; // average value;
    						enabled[index]=gridMask[station][numView][indexSrc]>0.0;
    					}
    				}
    				boolean [] badNodes=enabled.clone();
    				int [] dirs={
    						-expWidth-1,-expWidth,-expWidth+1,  1,
    						expWidth+1, expWidth, expWidth-1, -1};
    				int numBadOnTheBorder=1; // just to make while(true) happy
    				int minNeighb=3; // remove nodes with less than 3 neighbors
    				while (numBadOnTheBorder>0){
    					// build/update badNodes array
    					numBadOnTheBorder=0;
    					int numBad=0;
    					double [] diffs = new double [8];
Andrey Filippov's avatar
Andrey Filippov committed
7089
    					int [] indices=new int [8];
Andrey Filippov's avatar
Andrey Filippov committed
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
    					for (int i=0;i<8;i++) {
    						diffs[i]=  -1.0; // diff==0 on isolated pair?
    						indices[i]=-1;
    					}
    					for (int index=0;index<badNodes.length;index++) if (badNodes[index]){
    						int numNeighb=0;
    						double maxDiff=0.0;
    						for (int dir=0;dir<dirs.length;dir++) {
    							int index1=index+dirs[dir];
    							if (enabled[index1]) {
    								numNeighb++;
    								double d=2.0*Math.abs((expandedGrid[index1]-expandedGrid[index])/(expandedGrid[index]+expandedGrid[index1]));
    								if (maxDiff<d) maxDiff=d;
    							}
    						}
    						if ((maxDiff<((maxDiffNeighb*numNeighb)/minNeighb)) && (numNeighb>=minNeighb)){ //more neighbors - more likely to keep
    							badNodes[index]=false; // rehabilitate node
    						} else {
    							numBad++;
    							if (numNeighb<8) { // do nothing if bad node is inside - it may be removed in the next passes
    								numBadOnTheBorder++;
    								if (maxDiff>diffs[numNeighb]){
    									diffs[numNeighb]=maxDiff;
    									indices[numNeighb]=index;
    								}
    							}
    						}
    					}
    					if (this.debugLevel>1) System.out.println("combineGridFlatField(): "+numBad+" bad nodes, "+numBadOnTheBorder+" of them on the border");
    					if (numBadOnTheBorder==0) break; // nothing to remove - break from the while(true) loop
    					// find bad node with least enabled neighbors - there will be one at least
    					for (int n=0;n<8;n++){
    						if (indices[n]>=0){
    							enabled[indices[n]]=false;   // disable this node
    							badNodes[indices[n]]=false;  // and remove from bad nodes (it is dead now)
    							// Any orphans around (were not bad, but now have to few neighbors)
    							for (int dir=0;dir<dirs.length;dir++) {
    								int index1=indices[n]+dirs[dir];
    								if (enabled[index1]) {
    									badNodes[index1]=true;
    								}
    							}
    							break;
    						}
    					}
    				}
    				// shrink enabled cells by shrinkMask
    				for (int n=0;n<shrinkMask;n++){
    					for (int i=0;i<badNodes.length;i++) badNodes[i]=false;
    					for (int v=1;v<(expHeight-1);v++) for (int u=1;u<(expWidth-1);u++){
    						int index=u+expWidth*v;
    						badNodes[index]=!enabled[index+1] || !enabled[index-1] || !enabled[index+expWidth] || !enabled[index-expWidth];
    					}
    					for (int i=0;i<badNodes.length;i++) if (badNodes[i]) enabled[i]=false;
    				}
    				// copy back to the gridMask[station][numView]
    				for (int v=1;v<(expHeight-1);v++) for (int u=1;u<(expWidth-1);u++){
    					int index=u+expWidth*v;
    					int indexSrc=(u-1)+gridWidth*(v-1);
    					if (!enabled[index]) gridMask[station][numView][indexSrc]=0.0;
    				}
    				for (int i=0;i<gridMask[station][numView].length;i++) if (gridMask[station][numView][i]==0.0){
    					combinedPattern[1][i]=0.0;
    					combinedPattern[2][i]=0.0;
    					combinedPattern[3][i]=0.0;
    				}

    			}
    			// fade mask on the borders, keep zeros - zeros
    			if (fadeMask>0.0){
    				double [] gridMask1=gridMask[station][numView].clone();
    				(new DoubleGaussianBlur() ).blurDouble(gridMask[station][numView], gridWidth, gridHeight, fadeMask, fadeMask, 0.01);
    				for (int i=0;i<gridMask[station][numView].length;i++){
    					double d=2.0*(gridMask[station][numView][i]-0.5);
    					gridMask[station][numView][i]=(gridMask1[i]>0)?((d>0)?(d*d):(0.0)):0.0;
    					if (combinedPattern[4][i]==0.0) gridMask[station][numView][i]=0.0; // how can it be zero combinedPattern[4][i] with non-zero gridMask[i]?
    				}
    			}
        		combinedPattern[0]=gridMask[station][numView];
    		}
    	}
    	return viewPatterns;
    }
    /**
     * Applies calculated [][] pattern alpha, r,g,b to the current grid geometry
     * @param patternFlatField
     */
Andrey Filippov's avatar
Andrey Filippov committed
7177
    public void applyGridFlatField(
Andrey Filippov's avatar
Andrey Filippov committed
7178 7179 7180
    		double [][][][] patternFlatField // {alpha, red,green,blue, number of images used}[pixel_index] for each view of the pattern
    ){
    	for (int station=0;station<patternParameters.getNumStations();station++){
Andrey Filippov's avatar
Andrey Filippov committed
7181
    		for (int nView=0;nView<patternParameters.getNumViews();nView++)
Andrey Filippov's avatar
Andrey Filippov committed
7182 7183 7184 7185 7186 7187 7188 7189
    			if ((patternFlatField[station]!=null) && (patternFlatField[station][nView]!=null)) {
    				double [][] photometrics=patternParameters.getPhotometricByView(station,nView);
    				photometrics[0]=patternFlatField[station][nView][1].clone(); // red
    				photometrics[1]=patternFlatField[station][nView][2].clone(); // green
    				photometrics[2]=patternFlatField[station][nView][3].clone(); // blue
    				photometrics[3]=patternFlatField[station][nView][0].clone(); // alpha
    			}
    	}
Andrey Filippov's avatar
Andrey Filippov committed
7190
    	/*
Andrey Filippov's avatar
Andrey Filippov committed
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
    	double [][][] gridGeometry= patternParameters.getGeometry();
    	int gridHeight=gridGeometry.length;
    	int gridWidth=gridGeometry[0].length;
    	for (int v=0;v<gridHeight;v++) for (int u=0;u<gridWidth;u++) {
    		int index=u+v*gridWidth;
    		gridGeometry[v][u][3]=patternFlatField[0][index];
    		gridGeometry[v][u][4]=patternFlatField[1][index];
    		gridGeometry[v][u][5]=patternFlatField[2][index];
    		gridGeometry[v][u][6]=patternFlatField[3][index];
    	}
    	 */
    }
    /**
     * Remove areas on the target flat-field data with specular reflections of the lamps by matching different views
     * @param highPassSigma - subtract weighted average of the difference with this
     * @param thershold mismatch causing 50% drop of the weight function
     * @param numIterations number of iterations of comparing to the weighted/masked average
     * @param apply apply changes
     * @param debugShowMode 0 - do not show debug images, 1 show only during last iteration, 2 - show always
     */
    public void removeSpecular (
    		boolean positiveDiffOnly,
    		double highPassSigma,
    		double lowPassSigma,
    		double thershold,
    		int numIterations,
    		boolean apply,
    		int debugShowMode){ // 0 - none, 1 - last iteration, 2 - all iterations
    	int debugThreshold=1;
    	int length=0;
Andrey Filippov's avatar
Andrey Filippov committed
7221

Andrey Filippov's avatar
Andrey Filippov committed
7222 7223 7224 7225 7226 7227 7228 7229
    	double [][][] weights=new double [patternParameters.getNumStations()][patternParameters.getNumViews()][];
		double [][][][] photometrics=new double [patternParameters.getNumStations()][patternParameters.getNumViews()][][];
		double [][][][] highPassDiff=new double [patternParameters.getNumStations()][patternParameters.getNumViews()][][];
		double [][][][] lowPassDiff=new double [patternParameters.getNumStations()][patternParameters.getNumViews()][][];

		int width=  patternParameters.gridGeometry[0].length;
		int height= patternParameters.gridGeometry.length;
    	for (int station=0;station<patternParameters.getNumStations();station++){
Andrey Filippov's avatar
Andrey Filippov committed
7230
    		for (int nView=0;nView<patternParameters.getNumViews();nView++) {
Andrey Filippov's avatar
Andrey Filippov committed
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
    			photometrics[station][nView]=patternParameters.getPhotometricByView(station,nView);
    			if (photometrics[station][nView]!=null){
    				length=photometrics[0][0][3].length; // should all be the same length (or null)
    				weights[station][nView]=new double [length];
    				for (int nPix=0;nPix<length;nPix++) weights[station][nView][nPix]=(photometrics[station][nView][3][nPix]>0.0)?1.0:0.0;
    			} else {
    				weights[station][nView]=null;
    			}
    		}
    	}
    	double threshold23=9.0*thershold*thershold;
    	for (int nIter=0;nIter<numIterations;nIter++){
    		boolean showDebug=(debugShowMode>1) || ((debugShowMode>0) && (nIter== (numIterations-1)));
        	// Calculate weighted average among different stations/views.
    		double [][] average=new double [4][length];
    		for (int nPix=0;nPix<length;nPix++){
    			double w0=0.0;
    	    	for (int station=0;station<patternParameters.getNumStations();station++){
    	    		for (int nView=0;nView<patternParameters.getNumViews();nView++) {
    	    			if (photometrics[station][nView]!=null){
    	    				double w=weights[station][nView][nPix]*photometrics[station][nView][3][nPix];
    	    				average[0][nPix]+=w*photometrics[station][nView][0][nPix];
    	    				average[1][nPix]+=w*photometrics[station][nView][1][nPix];
    	    				average[2][nPix]+=w*photometrics[station][nView][2][nPix];
    	    				w0+=w;
    	    			}
    	    		}
    	    	}
    	    	double k= (w0>0.0)?(1.0/w0):0.0;
    	    	average[0][nPix]*=k;
    	    	average[1][nPix]*=k;
    	    	average[2][nPix]*=k;
    	    	average[3][nPix]=w0/(patternParameters.getNumStations()*patternParameters.getNumViews());
    		}
    		double [][][][] diffFromAverage=new double [photometrics.length][photometrics[0].length][4][length];
        	// Scale each station/view for best fit
	    	for (int station=0;station<patternParameters.getNumStations();station++){
	    		for (int nView=0;nView<patternParameters.getNumViews();nView++) {
	    			double scale=0.0;
	    			if (photometrics[station][nView]!=null){
	    				double [] weightsHighLowPass=new double[length];
	    				double sf2=0.0,sfg=0.0;
	    				for (int nPix=0;nPix<length;nPix++){
    	    				double w=weights[station][nView][nPix]*photometrics[station][nView][3][nPix];
    	    				weightsHighLowPass[nPix]=w;
    	    				sf2+=w*(photometrics[station][nView][0][nPix]*photometrics[station][nView][0][nPix]+
    	    						photometrics[station][nView][1][nPix]*photometrics[station][nView][1][nPix]+
    	    						photometrics[station][nView][2][nPix]*photometrics[station][nView][2][nPix]);
    	    				sfg+=w*(photometrics[station][nView][0][nPix]*average[0][nPix]+
    	    						photometrics[station][nView][1][nPix]*average[1][nPix]+
    	    						photometrics[station][nView][2][nPix]*average[2][nPix]);
Andrey Filippov's avatar
Andrey Filippov committed
7282

Andrey Filippov's avatar
Andrey Filippov committed
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	    				}
	    				scale=sfg/sf2;
	    				if ((this.debugLevel>=debugThreshold) && showDebug){
	    					System.out.println("removeSpecular(), pass"+nIter+" scale["+station+"]["+nView+"]="+scale);
	    				}
//	    				Calculate difference from average
	    				for (int nPix=0;nPix<length;nPix++){
	    					if (photometrics[station][nView][3][nPix]>0.0){
	    						for (int c=0;c<3;c++){
	    							double d=scale*photometrics[station][nView][c][nPix]-average[c][nPix];
	    							diffFromAverage[station][nView][c][nPix]=d;
	    						}
	    					}
	    				}
	    				if (highPassSigma>0.0){
	    					double [] weightsHighPass=weightsHighLowPass.clone();
	    					(new DoubleGaussianBlur()).blurDouble(
	    							weightsHighPass,
	    							width,
	    							height,
	    							highPassSigma,
	    							highPassSigma,
	    							0.01);
	    					highPassDiff[station][nView]=new double [3][];
	    					for (int c=0;c<3;c++){
	    	    				highPassDiff[station][nView][c]=diffFromAverage[station][nView][c].clone(); // deep
Andrey Filippov's avatar
Andrey Filippov committed
7309

Andrey Filippov's avatar
Andrey Filippov committed
7310 7311
	    						for (int nPix=0;nPix<length;nPix++){
	    							highPassDiff[station][nView][c][nPix]*=weightsHighLowPass[nPix];
Andrey Filippov's avatar
Andrey Filippov committed
7312
	    						}
Andrey Filippov's avatar
Andrey Filippov committed
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
		    					(new DoubleGaussianBlur()).blurDouble(
		    							highPassDiff[station][nView][c],
		    							width,
		    							height,
		    							highPassSigma,
		    							highPassSigma,
		    							0.01);
	    						for (int nPix=0;nPix<length;nPix++){
	    							highPassDiff[station][nView][c][nPix]=
	    								diffFromAverage[station][nView][c][nPix]-
	    								((weightsHighPass[nPix]>0)?(highPassDiff[station][nView][c][nPix]/weightsHighPass[nPix]):0.0);
Andrey Filippov's avatar
Andrey Filippov committed
7324
	    						}
Andrey Filippov's avatar
Andrey Filippov committed
7325 7326 7327 7328
	    					}
	    				} else {
    	    				highPassDiff[station][nView]=diffFromAverage[station][nView].clone(); // shallow
	    				}
Andrey Filippov's avatar
Andrey Filippov committed
7329

Andrey Filippov's avatar
Andrey Filippov committed
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
	    				if (lowPassSigma>0.0){
	    					double [] weightsLowPass=weightsHighLowPass.clone();
	    					(new DoubleGaussianBlur()).blurDouble(
	    							weightsLowPass,
	    							width,
	    							height,
	    							lowPassSigma,
	    							lowPassSigma,
	    							0.01);
	    					lowPassDiff[station][nView]=new double [3][];
	    					for (int c=0;c<3;c++){
	    						lowPassDiff[station][nView][c]=highPassDiff[station][nView][c].clone();
	    						for (int nPix=0;nPix<length;nPix++){
	    							lowPassDiff[station][nView][c][nPix]*=weightsHighLowPass[nPix];
Andrey Filippov's avatar
Andrey Filippov committed
7344
	    						}
Andrey Filippov's avatar
Andrey Filippov committed
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
		    					(new DoubleGaussianBlur()).blurDouble(
		    							lowPassDiff[station][nView][c],
		    							width,
		    							height,
		    							lowPassSigma,
		    							lowPassSigma,
		    							0.01);
	    						for (int nPix=0;nPix<length;nPix++){
	    							lowPassDiff[station][nView][c][nPix]=
	    								(weightsLowPass[nPix]>0)?(lowPassDiff[station][nView][c][nPix]/weightsLowPass[nPix]):0.0;
Andrey Filippov's avatar
Andrey Filippov committed
7355
	    						}
Andrey Filippov's avatar
Andrey Filippov committed
7356 7357 7358 7359 7360
	    					}
	    				} else {
    	    				lowPassDiff[station][nView]=highPassDiff[station][nView].clone(); // shallow
    					}

Andrey Filippov's avatar
Andrey Filippov committed
7361 7362 7363


// TODO: display, calculate new weight from filtered difference.
Andrey Filippov's avatar
Andrey Filippov committed
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
// Calculate new weight
	    				for (int nPix=0;nPix<length;nPix++){
	    					if (photometrics[station][nView][3][nPix]>0.0){
	    						double e2=0.0;
	    						for (int c=0;c<3;c++){
	    							double d=lowPassDiff[station][nView][c][nPix];
//	    							double d=scale*photometrics[station][nView][c][nPix]-average[c][nPix];
//	    							diffFromAverage[station][nView][c][nPix]=d;
	    							if (!positiveDiffOnly || (d>0)) e2+=d*d;
	    						}
	    						weights[station][nView][nPix]=1.0/(e2/threshold23+1.0);
	    					} else {
	    						weights[station][nView][nPix]=0.0;
	    					}
	    				}
Andrey Filippov's avatar
Andrey Filippov committed
7379

Andrey Filippov's avatar
Andrey Filippov committed
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
	    			}
	    		}
	    	}
	    	if ((this.debugLevel>=debugThreshold) && showDebug) {
	    		String [] titles = new String [weights.length*weights[0].length];
	    		double [][] debugData= new double [weights.length*weights[0].length][];
	        	for (int station=0;station<patternParameters.getNumStations();station++){
	        		for (int nView=0;nView<patternParameters.getNumViews();nView++) {
	        			int n=station*weights[0].length+nView;
	        			titles[n]="S"+station+" V"+nView;
	        			if (photometrics[station][nView]!=null){
	        				debugData[n]=weights[station][nView];
	        			}
	        		}
	        	}
7395
	        	(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
	        			debugData,
	        			width,
	        			height,
	        			true,
	        			"GridWeights"+nIter,
	        			titles);
	        	double [][] debugDiffGreen= new double [weights.length*weights[0].length][];
	        	double [][] debugHighpassDiffGreen= new double [weights.length*weights[0].length][];
	        	double [][] debugLowpassDiffGreen= new double [weights.length*weights[0].length][];
	        	for (int station=0;station<patternParameters.getNumStations();station++){
	        		for (int nView=0;nView<patternParameters.getNumViews();nView++) {
	        			int n=station*weights[0].length+nView;
	        			debugDiffGreen[n]=diffFromAverage[station][nView][1];
	        			debugHighpassDiffGreen[n]=highPassDiff[station][nView][1];
	        			debugLowpassDiffGreen[n]=lowPassDiff[station][nView][1];
	        		}
	        	}
7413
	        	if (this.debugLevel>=(debugThreshold+1)) (new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
7414 7415 7416 7417 7418 7419
	        			debugDiffGreen,
	        			width,
	        			height,
	        			true,
	        			"DiffGreen"+nIter,
	        			titles);
7420
	        	if (this.debugLevel>=(debugThreshold+1)) (new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
7421 7422 7423 7424 7425 7426
	        			debugHighpassDiffGreen,
	        			width,
	        			height,
	        			true,
	        			"HighpassGreen"+nIter,
	        			titles);
Andrey Filippov's avatar
Andrey Filippov committed
7427

7428
	        	(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
7429 7430 7431 7432 7433 7434
	        			debugLowpassDiffGreen,
	        			width,
	        			height,
	        			true,
	        			"LowpassGreen"+nIter,
	        			titles);
Andrey Filippov's avatar
Andrey Filippov committed
7435

Andrey Filippov's avatar
Andrey Filippov committed
7436
	        	String [] averageTitles={"Red","Green","Blue","Weight"};
7437
	        	(new ShowDoubleFloatArrays()).showArrays(
Andrey Filippov's avatar
Andrey Filippov committed
7438 7439 7440 7441 7442 7443
	        			average,
	        			width,
	        			height,
	        			true,
	        			"Average-"+nIter,
	        			averageTitles);
Andrey Filippov's avatar
Andrey Filippov committed
7444

Andrey Filippov's avatar
Andrey Filippov committed
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
	    	}
    	} // for (int nIter=0;nIter<numIterations;nIter++){
    	// Apply new weights
    	if (apply) {
    		for (int station=0;station<patternParameters.getNumStations();station++){
    			for (int nView=0;nView<patternParameters.getNumViews();nView++) {
    				if (photometrics[station][nView]!=null){
    					for (int nPix=0;nPix<length;nPix++) photometrics[station][nView][3][nPix]*=weights[station][nView][nPix];
    				}
    			}
    		}
    	}
Andrey Filippov's avatar
Andrey Filippov committed
7457

Andrey Filippov's avatar
Andrey Filippov committed
7458 7459 7460
    }

    /**
Andrey Filippov's avatar
Andrey Filippov committed
7461
     *
Andrey Filippov's avatar
Andrey Filippov committed
7462
     * @param shrink sensor mask by this amount (sensor, non-decimated pixels)
Andrey Filippov's avatar
Andrey Filippov committed
7463 7464 7465
     * @param radius radial mask - zero if farther than radius, 0.5*(cos(pi*r/radius)+1.0) if less
     * @param minimalAlpha - zero mask below this threshold
     * @return returns arrray with the same size as sensorMask that corresponds to low-vignetting areas of the sensor/lens
Andrey Filippov's avatar
Andrey Filippov committed
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
     */
    // Using station 0 - should be not much difference
    public double [][] nonVignettedMasks(
    		double shrink,
    		double radius,
    		double minimalAlpha){
    	if (this.pixelCorrection==null){
    		initSensorCorrection();
    	}
    	double [][]masks=new double [this.pixelCorrection.length][];
    	int maskIndex=2;
    	for (int numSensor=0;numSensor<masks.length;numSensor++){
    		if (this.pixelCorrection[numSensor]==null) masks[numSensor] = null;
    		else {
    			masks[numSensor] = fittingStrategy.distortionCalibrationData.nonVignettedMask(
    					this.pixelCorrection[numSensor][maskIndex],
7482 7483
    					getSensorWidth(numSensor), // this.pixelCorrectionWidth,
    					getSensorHeight(numSensor), // this.pixelCorrectionHeight,
Andrey Filippov's avatar
Andrey Filippov committed
7484 7485 7486 7487 7488 7489 7490 7491 7492
    	        		fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numSensor].px0,     // lens center X (sensor, non-decimated pix)
    	        		fittingStrategy.distortionCalibrationData.eyesisCameraParameters.eyesisSubCameras[0][numSensor].py0,     // lens center Y (sensor, non-decimated pix)
    	        		shrink,
    	        		radius,
    	        		minimalAlpha);
//    			System.out.println("nonVignettedMasks(), masks["+numSensor+"].length="+masks[numSensor].length);
    		}
    	}
    	return masks;
Andrey Filippov's avatar
Andrey Filippov committed
7493 7494
    }

7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
    // Use series0 to find grid mismatch (and set it correctly). Uses that pattern in the world coordinate system is
    // approximately in XY plane, so by freezing all other parameters but GXY0 and GXY1 it is possible to find
    // the pattern grid match.
    public int [] findImageGridOffset(
    		int num_img,
    		boolean even,
    		PatternParameters patternParameters) {

		// set series 0 to this set images
		boolean [] selection = fittingStrategy.selectAllImages(0); // enable all images in series 0
		for (int i=0;i<selection.length;i++) selection[i]=false;
		selection[num_img]=true;
		fittingStrategy.setImageSelection(0,selection);
		seriesNumber=   0; // start from 0;
		initFittingSeries(false, filterForAll,0); // will set this.currentVector
		//this.stopAfterThis[numSeries]
		fittingStrategy.stopAfterThis[0]=true;
		stopEachStep=      false;
		stopEachSeries=    false; // will not ask for confirmation after done
		lambda =           fittingStrategy.lambdas[0];
		boolean   LMA_OK = false;
		try {
			LMA_OK = 	LevenbergMarquardt (false, true); //  skip dialog, dry run (no updates)
		} catch (Exception e) {
			// LMA failed - e.g. not enough points (Singular Matrix)
		}
		if (!LMA_OK) {
			return null; // LMA did not converge
		}
		double [] new_XY = {this.currentVector[0],this.currentVector[1]};
		DistortionCalibrationData dcd = this.fittingStrategy.distortionCalibrationData;
//		int num_set = dcd.gIP[num_img].getSetNumber();
		double [] 	ref_XYZ = dcd.getXYZ(num_img);
		double []   diff_XY = {
				new_XY[0] -ref_XYZ[0],
				new_XY[1] -ref_XYZ[1]};

//save safe settings to run LMA manually (or save what was set)
		seriesNumber=      0; // start from 0;
		initFittingSeries  (false,filterForAll,0); // will set this.currentVector
		stopEachSeries=    true; // will not ask for confirmation after done
		stopOnFailure=     true;
		lambda=            fittingStrategy.lambdas[0];

		int [] grid_offset = dcd.suggestOffset (
        		num_img,
        		diff_XY, // This XYZ minus reference XYZ  z is not used, may be just[2]
        		even,
        		patternParameters);
		return grid_offset;
Andrey Filippov's avatar
Andrey Filippov committed
7545

7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569




/*
 *
  this.currentVector[0] - GXYZ[0]
  this.currentVector[1] - GXYZ[1]

 dcd.        public int [] suggestOffset (
        		int num_img,
        		double [] diff_xyz, // This XYZ minus reference XYZ  z is not used, may be just[2]
        		boolean even,
        		PatternParameters patternParameters) {

 */

    }



    public boolean LevenbergMarquardt(
    		boolean openDialog,
    		boolean dry_run){ // do not save results
Andrey Filippov's avatar
Andrey Filippov committed
7570 7571 7572 7573 7574
    	if (this.fittingStrategy==null) {
        		String msg="Fitting strategy does not exist, exiting";
        		IJ.showMessage("Error",msg);
        		throw new IllegalArgumentException (msg);
    	}
Andrey Filippov's avatar
Andrey Filippov committed
7575
//    	fittingStrategy.distortionCalibrationData.readAllGrids();
Andrey Filippov's avatar
Andrey Filippov committed
7576 7577 7578 7579 7580 7581 7582 7583 7584
    	if (openDialog && !selectLMAParameters()) return false;
    	this.startTime=System.nanoTime();
//    	while (this.seriesNumber<fittingStrategy.getNumSeries()){ // TODO: Add "stop" tag to series
    	this.firstRMS=-1; //undefined
    	this.fittingStrategy.invalidateSelectedImages(this.seriesNumber); // undo any filters, only user selection of the  images will be in effect
    	while (this.fittingStrategy.isSeriesValid(this.seriesNumber)){ // TODO: Add "stop" tag to series
    		this.currentVector=null; // invalidate for the new series
    		boolean wasLastSeries=false;
    		while (true) { // loop for the same series
Andrey Filippov's avatar
Andrey Filippov committed
7585

Andrey Filippov's avatar
Andrey Filippov committed
7586 7587 7588 7589 7590 7591 7592 7593 7594
    			boolean [] state=stepLevenbergMarquardtFirst(this.seriesNumber);
    			if (!this.fittingStrategy.isSeriesValid(this.seriesNumber)){
    				System.out.println("Series "+this.seriesNumber+" is invalid when weight function filters are applied (probably removed some images)");
    				return false;
    			}
    			if (state==null) {
    				String msg="Calculation aborted by user request";
    				IJ.showMessage(msg);
    				System.out.println(msg);
Andrey Filippov's avatar
Andrey Filippov committed
7595
    				return false;
Andrey Filippov's avatar
Andrey Filippov committed
7596
    			}
Andrey Filippov's avatar
Andrey Filippov committed
7597

Andrey Filippov's avatar
Andrey Filippov committed
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
    			if (this.debugLevel>1) System.out.println(this.seriesNumber+":"+this.iterationStepNumber+": stepLevenbergMarquardtFirst("+this.seriesNumber+")==>"+state[1]+":"+state[0]);
				boolean cont=true;
				// Make it success if this.currentRMS<this.firstRMS even if LMA failed to converge
				if (state[1] && !state[0] && (this.firstRMS>this.currentRMS)){
					if (this.debugLevel>1) System.out.println("LMA failed to converge, but RMS improved from the initial value ("+this.currentRMS+" < "+this.firstRMS+")");
					state[0]=true;
				}
    			if (
    					(this.stopRequested.get()>0) || // graceful stop requested
    					(this.stopEachStep) ||
    					(this.stopEachSeries && state[1]) ||
    					(this.stopOnFailure && state[1] && !state[0])){
Andrey Filippov's avatar
Andrey Filippov committed
7610

Andrey Filippov's avatar
Andrey Filippov committed
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
    				if (this.debugLevel>0){
    					if (this.stopRequested.get()>0) System.out.println("User requested stop");
    					System.out.println("LevenbergMarquardt(): series:step ="+this.seriesNumber+":"+this.iterationStepNumber+
    						", RMS="+IJ.d2s(this.currentRMS,8)+
    						" ("+IJ.d2s(this.firstRMS,8)+") "+
    						", RMSPure="+IJ.d2s(this.currentRMSPure,8)+
    						" ("+IJ.d2s(this.firstRMSPure,8)+
    						") at "+ IJ.d2s(0.000000001*(System.nanoTime()-this.startTime),3));
    				}
    				long startDialogTime=System.nanoTime();
    				cont=dialogLMAStep(state);
    				this.stopRequested.set(0); // Will not stop each run
    				this.startTime+=(System.nanoTime()-startDialogTime); // do not count time used by the User.
    				if (this.showThisImages) showDiff (this.currentfX, "fit-"+this.iterationStepNumber);
    				if (this.showNextImages) showDiff (this.nextfX,    "fit-"+(this.iterationStepNumber+1));
7626 7627
    			} else if (this.debugLevel>1){
					System.out.println("==> LevenbergMarquardt(): before action series:step ="+this.seriesNumber+":"+this.iterationStepNumber+
7628 7629 7630 7631 7632
    						", RMS="+IJ.d2s(this.currentRMS,8)+
    						" ("+IJ.d2s(this.firstRMS,8)+") "+
    						", RMSPure="+IJ.d2s(this.currentRMSPure,8)+
    						" ("+IJ.d2s(this.firstRMSPure,8)+
    						") at "+ IJ.d2s(0.000000001*(System.nanoTime()-this.startTime),3));
Andrey Filippov's avatar
Andrey Filippov committed
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
    			}
				stepLevenbergMarquardtAction(); // apply step - in any case?
				if (this.updateStatus){
   	   				IJ.showStatus(this.seriesNumber+": "+"Step #"+this.iterationStepNumber+
   	   						" RMS="+IJ.d2s(this.currentRMS,8)+
   	   						" ("+IJ.d2s(this.firstRMS,8)+")"+
   	   						" RMSPure="+IJ.d2s(this.currentRMSPure,8)+
   	   						" ("+IJ.d2s(this.firstRMSPure,8)+")"+
   	   						" ");
//   	   				showStatus(this.seriesNumber+": "+"Step #"+this.iterationStepNumber+" RMS="+IJ.d2s(this.currentRMS,8)+ " ("+IJ.d2s(this.firstRMS,8)+")",0);
				}
7644 7645 7646 7647 7648 7649 7650 7651
				if ((this.debugLevel>0) && ((this.debugLevel>1) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
					System.out.println("--> LevenbergMarquardt(): series:step ="+this.seriesNumber+":"+this.iterationStepNumber+
							", RMS="+IJ.d2s(this.currentRMS,8)+
							" ("+IJ.d2s(this.firstRMS,8)+") "+
							", RMSPure="+IJ.d2s(this.currentRMSPure,8)+
							" ("+IJ.d2s(this.firstRMSPure,8)+
							") at "+ IJ.d2s(0.000000001*(System.nanoTime()-this.startTime),3));
				}
Andrey Filippov's avatar
Andrey Filippov committed
7652
				if (!cont){
7653
					if (this.saveSeries && !dry_run) {
Andrey Filippov's avatar
Andrey Filippov committed
7654 7655 7656 7657
						saveFittingSeries(); // will save series even if it ended in failure, vector will be only updated
						updateCameraParametersFromCalculated(true); // update camera parameters from all (even disabled) images
						updateCameraParametersFromCalculated(false); // update camera parameters from enabled only images (may overwrite some of the above)
					}
Andrey Filippov's avatar
Andrey Filippov committed
7658
					// if RMS was decreased. this.saveSeries==false after dialogLMAStep(state) only if "cancel" was pressed
Andrey Filippov's avatar
Andrey Filippov committed
7659 7660
					return this.saveSeries; // TODO: Maybe change result?
				}
Andrey Filippov's avatar
Andrey Filippov committed
7661
//stepLevenbergMarquardtAction();
Andrey Filippov's avatar
Andrey Filippov committed
7662 7663
    			if (state[1]) {
    				if (!state[0]) return false; // sequence failed
7664 7665 7666 7667 7668 7669 7670 7671 7672
    				if (dry_run) {
    					wasLastSeries= true; // always just one series
    				} else {
    					saveFittingSeries();
    					updateCameraParametersFromCalculated(true); // update camera parameters from all (even disabled) images
    					updateCameraParametersFromCalculated(false); // update camera parameters from enabled only images (may overwrite some of the above)
    					wasLastSeries=this.fittingStrategy.isLastSeries(this.seriesNumber);
    					this.seriesNumber++;
    				}
Andrey Filippov's avatar
Andrey Filippov committed
7673 7674 7675 7676 7677
    				break; // while (true), proceed to the next series
    			}
    		}
//    		if (this.fittingStrategy.isLastSeries(this.seriesNumber)) break;
    		if (wasLastSeries) break;
Andrey Filippov's avatar
Andrey Filippov committed
7678
//    		this.seriesNumber++;
Andrey Filippov's avatar
Andrey Filippov committed
7679 7680 7681 7682 7683 7684 7685 7686
    	} // while (this.fittingStrategy.isSeriesValid(this.seriesNumber)){ // TODO: Add "stop" tag to series
		if (this.debugLevel>0) System.out.println("LevenbergMarquardt(): series="+this.seriesNumber+
				", RMS="+this.currentRMS+
				" ("+this.firstRMS+") "+
				", RMSPure="+this.currentRMSPure+
				" ("+this.firstRMSPure+
				") at "+ IJ.d2s(0.000000001*(System.nanoTime()-this.startTime),3));
    	return true; // all series done
Andrey Filippov's avatar
Andrey Filippov committed
7687

Andrey Filippov's avatar
Andrey Filippov committed
7688
    }
Andrey Filippov's avatar
Andrey Filippov committed
7689 7690


Andrey Filippov's avatar
Andrey Filippov committed
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711
    /**
     * Show debug image (see showDiff (int imgNumber, double [] fX, String title ) above)
     * for each image used in the current fitting series
     * @param fX - calculated data for all images (use with this.Y)
     * @param title - Image title
     */
    	public void showDiff (double [] fX, String title ){
    		boolean [] selectedImages=fittingStrategy.selectedImages();
    		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) {
    			showDiff (imgNum, fX, title+"-"+imgNum);
    		}
    	}

	/**
	 * Shows a 7-slice image for provided f(X) array (this.Y is also used):
	 * 1 - distance   - sqrt (dx^2+dy^2)
	 * 2 - difference for pixel-X
	 * 3 - difference for pixel-Y
	 * 4 - calculated pixel-X
	 * 5 - calculated pixel-Y
	 * 6 - measured   pixel-X
Andrey Filippov's avatar
Andrey Filippov committed
7712
	 * 7 - measured   pixel-Y
Andrey Filippov's avatar
Andrey Filippov committed
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
	 * @param imgNumber - number of image
	 * @param fX - calculated data for all images (use with this.Y)
	 * @param title - Image title
	 */

	public void showDiff (int imgNumber, double [] fX, String title ){
		String [] titles={"distance","diff-X","diff-Y","f(x)-X","f(x)-Y","y-X","y-Y"};
		double [] diff=calcYminusFx(fX);
// find data range for the selected image
		int index=0;
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		boolean [] selectedImages=fittingStrategy.selectedImages();
		for (int imgNum=0;(imgNum<imgNumber) && (imgNum<numImg) ;imgNum++) if (selectedImages[imgNum])
			index+=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;
		int width=getGridWidth();
		if (this.debugLevel>1) {
			System.out.println("showDiff("+imgNumber+",...): fX.length="+fX.length+" this image index="+index);
		}
		double [][] imgData=new double[7][getGridHeight() * width];
		for (int i=0;i<imgData.length;i++) for (int j=0;j<imgData[i].length;j++)imgData[i][j]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
7733

Andrey Filippov's avatar
Andrey Filippov committed
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
		for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV.length;i++){
			int u=fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV[i][0]+patternParameters.U0;
			int v=fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV[i][1]+patternParameters.V0;
			int vu=u+width*v;
			imgData[0][vu]=   Math.sqrt(diff[2*(index+i)]*diff[2*(index+i)] + diff[2*(index+i)+1]*diff[2*(index+i)+1]);
			imgData[1][vu]=   diff[2*(index+i)]; // out of bound 1410
			imgData[2][vu]=   diff[2*(index+i)+1];
			imgData[3][vu]=     fX[2*(index+i)];
			imgData[4][vu]=     fX[2*(index+i)+1];
			imgData[5][vu]= this.Y[2*(index+i)];
			imgData[6][vu]= this.Y[2*(index+i)+1];
		}
		this.SDFA_INSTANCE.showArrays(imgData, width, getGridHeight(),  true, title, titles);
	}
	/**
	 * Calculates corrections to X and Y coordinates of the grid nodes
	 * @param variationPenalty - cost of different Z for different stations
	 * @param fixXY - if true, do not adjust X,Y - only Z
	 * @param stationGroupsIn - consider some stations have the same pattern - assign them the same number. Negative - do not process the station
Andrey Filippov's avatar
Andrey Filippov committed
7753
	 * @param grid3DCorrection - if true - calculate 3d correction, false - slow 3d (2d perpendicular to view)
Andrey Filippov's avatar
Andrey Filippov committed
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
	 * @param maxZCorr - maximal allowed correction in Z-direction (if wants more, will fall back to 2-d correction (perpendicular to the view)
	 * @param showIndividual - show individual images
	 * @return  combination of 3 arrays: 1 (original) - first index - 0 - correction x (mm), 1 - correction y(mm), 2 - correction z(mm)  3 - weight (number of images used)
	 * 2 - gridZCorr3d - per station differential Z correction
	 * 3 - gridZCorr3dWeight - per station weight of Z-corrections
	 */

	public double [][][] calculateGridXYZCorr3D(
			double variationPenalty,
            boolean fixXY,
            int [] stationGroupsIn,
			boolean grid3DCorrection,
			boolean rotateCorrection,
			double maxZCorr,
			boolean noFallBack,
			boolean showIndividual,
			int threadsMax,
			boolean updateStatus
			){
		int debugThreshold=2;
		// Normalize stationGroups
		int numStations=fittingStrategy.distortionCalibrationData.getNumStations();
		int [] stationGroups=new int [numStations];
		int [] stationGroupsTmp=(stationGroupsIn==null)?(new int [0]):stationGroupsIn.clone();
		for (int i=0;i<numStations;i++) stationGroups[i]=-1;
		int numberOfZGroups=0;
		for (int i=0;i<stationGroupsTmp.length;i++) if (stationGroupsTmp[i]>=0){
			for (int j=i;j<stationGroupsTmp.length;j++) if (stationGroupsTmp[j]==stationGroupsTmp[i]){
				stationGroups[j]=numberOfZGroups;
				if (j>i) stationGroupsTmp[j]=-1;
			}
			numberOfZGroups++;
		}
		if (numberOfZGroups==0) {
			System.out.println ("calculateGridXYZCorr3D(), no groups defined - using a single group for all stations");
			numberOfZGroups=1;
			for (int i=0;i<numStations;i++) stationGroups[i]=0;
		}
		if (this.debugLevel>1) {
			System.out.println ("calculateGridXYZCorr3D(), groups: "+numberOfZGroups);
			for (int i=0;i<stationGroups.length;i++) if (stationGroups[i]>=0){
				System.out.println ("  station "+i+": group "+stationGroups[i]);
			}
		}

		int width=getGridWidth();
		int height=getGridHeight();
		boolean [] selectedImages=fittingStrategy.selectedImages();
		double [][] cameraXYZ=new double [selectedImages.length][];

		double [][][] gridCorr2d=calculateGridXYZCorr2D(
				width,
				height,
				stationGroups,
				selectedImages,
				cameraXYZ,
				this.lensDistortionParameters,
				showIndividual,
				threadsMax,
				updateStatus);
Andrey Filippov's avatar
Andrey Filippov committed
7814 7815


Andrey Filippov's avatar
Andrey Filippov committed
7816 7817
		IJ.showStatus("Calculating pattern 3d correction...");
// now using gridCorr2d[imgNum], cameraXYZ[imgNum] and patternParameters.gridGeometry[v][u] find the 3d correction     public double [][][] gridGeometry=null; // [v][u]{x,y,z,"alpha"} alpha=0 - no ghrid, 1 - grid
Andrey Filippov's avatar
Andrey Filippov committed
7818
		double [][] gridCorr3d=  new double [4][width*height];
Andrey Filippov's avatar
Andrey Filippov committed
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
		double [][] gridZCorr3d =new double [numStations][width*height];
		double [][] gridZCorr3dWeight =new double [numStations][width*height];
		for (int n=0;n<gridCorr3d.length;n++) for (int i=0;i<gridCorr3d[0].length;i++) gridCorr3d[n][i]=0.0;
		for (int n=0;n<gridZCorr3d.length;n++) for (int i=0;i<gridZCorr3d[0].length;i++){
			gridZCorr3d[n][i]=0.0;
			gridZCorr3dWeight[n][i]=0.0;
		}
		double Cx,Cy,Cz,Cxy,Cxz,Cyz;
		double [] V= new double[3];
		double [] V2= new double[3];
		int debugIndex=(height/2)*width+ (width/2);
		int debugIndex1=(height/2)*width+ (width/4);
		double [] alphaStation=new double [numStations];
		int zIndex=fixXY?0:2;
		int numVariables=numberOfZGroups+zIndex;
		double [][] aM=new double [numVariables][numVariables];
		double [][] aB=new double [numVariables][1];
		double []   zPerStation= new double [numStations];

		for (int v=0;v<height;v++) for (int u=0;u<width; u++){
			int index=u+v*width;
			boolean thisDebug=(this.debugLevel>debugThreshold) && ((index==debugIndex) || (index==debugIndex1));
			if (thisDebug) System.out.println("calculateGridXYZCorr3D() debug("+this.debugLevel+"): index="+index+" v="+v+" u="+u);
			for (int i=0;i<numVariables;i++){
				aB[i][0]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
7844
				for (int j=0;j<numVariables;j++) aM[i][j]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
			}
			for (int i=0;i<numStations;i++) alphaStation[i]=0.0;
			double alpha=0.0;
			boolean fallBack2D=true;
			if (grid3DCorrection) {
				for (int imgNum=0;imgNum<selectedImages.length;imgNum++) {
					int station=fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
					int zGroup=stationGroups[station];
					if ((gridCorr2d[imgNum]!=null)  && (gridCorr2d[imgNum][3][index]>0.0) && (zGroup>=0)) {
						zPerStation[station]=gridCorr2d[imgNum][2][index]; // should all be the same for the same station
						// calculate unity vector from the camera lens to the grid point
						double absV=0.0;
						for (int i=0;i<V.length;i++){
							V[i]=patternParameters.gridGeometry[v][u][i]+gridCorr2d[imgNum][i][index]-cameraXYZ[imgNum][i]; // corrected value, including zCorr
							absV+=V[i]*V[i];
						}
						absV=Math.sqrt(absV);
						if (absV>0) for (int i=0;i<V.length;i++) V[i]/=absV;
						for (int i=0;i<V.length;i++) V2[i]=V[i]*V[i];
						if (thisDebug) System.out.println(" imgNum="+imgNum+" V[0]="+IJ.d2s(V[0],4)+" V[1]="+IJ.d2s(V[1],4)+" V[2]="+IJ.d2s(V[2],4)+
								" V2[0]="+IJ.d2s(V2[0],4)+" V2[1]="+IJ.d2s(V2[1],4)+" V2[2]="+IJ.d2s(V2[2],4));
Andrey Filippov's avatar
Andrey Filippov committed
7866 7867
						// When performin 3-d correction (X,Y,Z) the result point has to have minimal weighted sum of squared distances to all rays
// when summing for different stations, multiply W by sign(image belongs to station)
Andrey Filippov's avatar
Andrey Filippov committed
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
/*
Px, Py - calculated correction for individual image
V={Vx,Vy,Vz} unity vector from the camera lens center to the {Px,Py,0}
A - vector from the {Px,Py,0} to {X,Y,Z} = {X-Px,Y-Py,Z}
Projection of A on V will have length of A(.)V, Vector B=V*(A(.)V)
Vector D=A-B = A - V*(A(.)V)
D2=D(.)D= A(.)A - 2* (A(.)V ) * (A(.)V ) + (A(.)V ) * (A(.)V ) = A(.)A -  (A(.)V ) * (A(.)V )
D2=A(.)A -  (A(.)V )^2

A(.)A=(X-Px)^2 + (Y-Py)^2 + Z^2 =X^2 -2*X*Px +Px^2 +Y^2 -2*Y*Py +Py^2 +Z^2
A(.)A=X^2 -2*X*Px +Px^2 +Y^2 -2*Y*Py +Py^2 +Z^2
A(.)V=      (X-Px)*Vx + (Y-Py)*Vy + Z*Vz
(A(.)V)^2= ((X-Px)*Vx + (Y-Py)*Vy + Z*Vz)^2 = ((X-Px)*Vx)^2 + ((Y-Py)*Vy)^2 + (Z*Vz)^2 + 2*((X-Px)*Vx)*((Y-Py)*Vy)+ 2*((X-Px)*Vx)*(Z*Vz)+2*((Y-Py)*Vy)*(Z*Vz)
(A(.)V)^2= X^2*Vx^2 +Px^2*Vx^2 - 2*X*Px*Vx^2 +Y^2*Vy^2+Py^2*Vy^2-2*Y*Py*Vy^2 +Z^2*Vz^2 +2*X*Y*Vx*Vy +2*Px*Py*Vx*Vy - 2*X*Py*Vx*Vy - 2*Y*Px*Vx*Vy +2*X*Z*Vx*Vz - 2*Z*Px*Vx*Vz +2*Y*Z*Vy*Vz -2*z*Py*Vy*Vz

D2=
  +X^2 - X^2*Vx^2
Andrey Filippov's avatar
Andrey Filippov committed
7885
  +Y^2 - Y^2*Vy^2
Andrey Filippov's avatar
Andrey Filippov committed
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
  +Z^2 - Z^2*Vz^2
-2*X*Y* Vx*Vy
-2*X*Z* Vx*Vz
-2*Y*Z* Vy*Vz
-2*X*Px +2*X*Px*Vx^2+ 2*X*Py*Vx*Vy
-2*Y*Py +2*Y*Py*Vy^2+ 2*Y*Px*Vx*Vy
+2*Z*Px*Vx*Vz   +2*Z*Py*Vy*Vz
+Px^2  +Py^2 -Px^2*Vx^2   -Py^2*Vy^2    -2*Px*Py*Vx*Vy

0= dD2/dX/2= X*(1-Vx^2) - Y* Vx*Vy - Z* Vx*Vz -Px + Px*Vx^2  + Py*Vx*Vy
0= dD2/dY/2= Y*(1-Vy^2) - X* Vx*Vy - Z* Vy*Vz -Py + Py*Vy^2  + Px*Vx*Vy
0= dD2/dZ/2= Z*(1-Vz^2) - X* Vx*Vz - Y* Vy*Vz     + Px*Vx*Vz + Py*Vy*Vz


 X*(Vx^2-1) + Y* (Vx*Vy)  + Z* (Vx*Vz)   =  Px * (Vx^2-1)  + Py* (Vx*Vy)
 X*(Vx*Vy)  + Y* (Vy^2-1) + Z* (Vy*Vz)   =  Px * (Vx*Vy)   + Py * (Vy^2-1)
 X*(Vx*Vz)  + Y* (Vy*Vz)  + Z* (Vz^2-1)  =  Px * (Vx*Vz)   + Py* (Vy*Vz)

Andrey Filippov's avatar
Andrey Filippov committed
7904

Andrey Filippov's avatar
Andrey Filippov committed
7905
 */
Andrey Filippov's avatar
Andrey Filippov committed
7906

Andrey Filippov's avatar
Andrey Filippov committed
7907 7908 7909
//   | sum(Wi*Cxi),  sum(Wi*Cxyi), sum(Wi*Cxzi) |
//M= | sum(Wi*Cxyi), sum(Wi*Cyi ), sum(Wi*Cyzi) |
//   | sum(Wi*Cxzi), sum(Wi*Cyzi), sum(Wi*Czi ) |
Andrey Filippov's avatar
Andrey Filippov committed
7910

Andrey Filippov's avatar
Andrey Filippov committed
7911 7912 7913
//   | sum(Wi*(P0xi*Cxi + P0yi*Cxyi + P0zi*Cxzi)) |
//B= | sum(Wi*(P0yi*Cyi + P0xi*Cyxi + P0zi*Cyzi)) |
//   | sum(Wi*(P0zi*Czi + P0yi*Czyi + P0xi*Czxi)) |
Andrey Filippov's avatar
Andrey Filippov committed
7914
/*
Andrey Filippov's avatar
Andrey Filippov committed
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
	X*(Vxi^2-1) + Y*(Vxi*Vyi) + Z*(Vxi*Vzi) = P0xi*(Vxi^2-1) +P0yi*(Vxi*Vyi) + P0zi*(Vxi*Vzi)
	X*(Vxi*Vyi) + Y*(Vyi^2-1) + Z*(Vyi*Vzi) = P0xi*(Vxi*Vyi) +P0yi*(Vyi^2-1) + P0zi*(Vyi*Vzi)
	X*(Vxi*Vzi) + Y*(Vxi*Vyi) + Z*(Vzi^2-1) = P0xi*(Vxi*Vzi) +P0yi*(Vxi*Vyi) + P0zi*(Vzi^2-1)

	X*Cx  + Y*Cxy + Z*Cxz = P0xi*Cx  +P0yi*Cxy + P0zi*Cxz
	X*Cxy + Y*Cy  + Z*Cyz = P0xi*Cxy +P0yi*Cy  + P0zi*Cyz
	X*Cxz + Y*Cyz + Z*Cz  = P0xi*Cxz +P0yi*Cyz + P0zi*Cz
	P0zi==0.0, so - now we'll use P0zi - difference from this station to average

	X*Cx  + Y*Cxy + Z*Cxz = P0xi*Cx  +P0yi*Cxy
	X*Cxy + Y*Cy  + Z*Cyz = P0xi*Cxy +P0yi*Cy
	X*Cxz + Y*Cyz + Z*Cz  = P0xi*Cxz +P0yi*Cyz

*/
						Cx=V2[0]-1.0;
						Cy=V2[1]-1.0;
						Cz=V2[2]-1.0;
						Cxy= V[0]*V[1];
						Cxz= V[0]*V[2];
						Cyz= V[1]*V[2];
						if (thisDebug) System.out.println(" Cx="+IJ.d2s(Cx,6)+" Cy="+IJ.d2s(Cy,6)+" Cz="+IJ.d2s(Cz,6)+
								" Cxy="+IJ.d2s(Cxy,6)+" Cxz="+IJ.d2s(Cxz,6)+" Cyz="+IJ.d2s(Cyz,6));


						double W=gridCorr2d[imgNum][3][index];
						double Px=gridCorr2d[imgNum][0][index];
						double Py=gridCorr2d[imgNum][1][index];
						double Pz=gridCorr2d[imgNum][2][index];
						alpha+=W;
						alphaStation[station]+=W;
						if (thisDebug) System.out.println(imgNum+": Px="+IJ.d2s(Px,6)+" Py="+IJ.d2s(Py,6)+" W="+IJ.d2s(W,6));
						if (zIndex>0){ // X,Y correction is enabled, not only Z
							aM[0][0]+=W*Cx;
							aM[0][1]+=W*Cxy;
							aM[1][1]+=W*Cy;
							aM[0][2+zGroup]+=W*Cxz;
							aM[1][2+zGroup]+=W*Cyz;
							aB[0][0]+=W*(Px*Cx  + Py*Cxy + Pz*Cxz);
							aB[1][0]+=W*(Px*Cxy + Py*Cy  + Pz*Cyz);
						}
						aM[zIndex+zGroup][zIndex+zGroup]+=W*(Cz-variationPenalty); // -1>>Cz<0
						aB[zIndex+zGroup][0]+=W*(Px*Cxz + Py*Cyz + Pz*Cz);
					}
				}
				if (zIndex>0){// X,Y correction is enabled, not only Z
					aM[1][0]+=aM[0][1]; // why "+=" - just "="
					for (int zGroup=0;zGroup<numberOfZGroups;zGroup++){
						aM[zIndex+zGroup][0]+=aM[0][zIndex+zGroup];
						aM[zIndex+zGroup][1]+=aM[1][zIndex+zGroup];
					}
				}
				Matrix M=new Matrix(aM);
				Matrix B=new Matrix(aB);
				if (thisDebug) {
					System.out.println(" M:");
					M.print(8, 6);
					System.out.println(" B:");
					B.print(8, 6);
				}

				//			boolean fallBack2D=true;
				if ((new LUDecomposition(M)).isNonsingular()){
					double [] dXYZ=M.solve(B).getRowPackedCopy();
//// Now save per station group (with weights)
					if (zIndex>0){// X,Y correction is enabled, not only Z
						for (int i=0;i<2;i++) gridCorr3d[i][index]=dXYZ[i];
					}
					double zAverage=0.0;
					double sumW=0;
					for (int station=0;station<numStations;station++){
						double w=alphaStation[station];
						sumW+=w;
						gridZCorr3dWeight[station][index]=w;
						int zGroup=stationGroups[station];
						zAverage+=w*dXYZ[zIndex+zGroup];
					}
					if (sumW>0.0) {
						zAverage/=sumW;
						gridCorr3d[2][index]=zAverage; // weighted average of grid Z correction (from current pattern Z)
						gridCorr3d[3][index]=alpha; // same as sumW?
Andrey Filippov's avatar
Andrey Filippov committed
7995
// second pass - calculate per-station Z corrections - referenced to existent current values
Andrey Filippov's avatar
Andrey Filippov committed
7996 7997 7998 7999 8000 8001 8002 8003
//zPerStation[station]
						for (int station=0;station<numStations;station++){
							int zGroup=stationGroups[station];
//							gridZCorr3d[station][index]=dXYZ[zIndex+zGroup]-zPerStation[station]; // differential from the current pattern geometry
							gridZCorr3d[station][index]=dXYZ[zIndex+zGroup]-zAverage; // differential from the current pattern geometry
						}
					}
					fallBack2D=false; //TODO:  make sure delta Z (Math.abs(gridCorr3d[2][index])) is not too big!!
Andrey Filippov's avatar
Andrey Filippov committed
8004

Andrey Filippov's avatar
Andrey Filippov committed
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
					if (Math.abs(gridCorr3d[2][index])>maxZCorr) {
						fallBack2D=true; // temporary limit
					}
					if (thisDebug) System.out.println(" dX="+IJ.d2s(gridCorr3d[0][index],6)+" dY="+IJ.d2s(gridCorr3d[1][index],6)+" dZ="+IJ.d2s(gridCorr3d[2][index],6));
				}
			}
			if(fallBack2D && !(grid3DCorrection && noFallBack)) { // make a 2d averaging of weighted dx, dy correction - separately for each station group
				double [] gridZcorrPerGroup=      new double [numberOfZGroups];
				double [] gridZcorrAddPerGroup=      new double [numberOfZGroups];
				double [] gridZcorrWeightPerGroup=new double [numberOfZGroups];
				for (int i=0;i<numberOfZGroups;i++){
					gridZcorrPerGroup[i]=0.0;
					gridZcorrWeightPerGroup[i]=0.0;
					gridZcorrAddPerGroup[i]=0.0;
				}
				for (int imgNum=0;imgNum<selectedImages.length;imgNum++) {
					int station=fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
					int zGroup=stationGroups[station];
					if ((gridCorr2d[imgNum]!=null)  && (gridCorr2d[imgNum][3][index]>0.0) && (zGroup>=0)) {
						double w=gridCorr2d[imgNum][3][index];
						double z=gridCorr2d[imgNum][2][index]; // difference from average Z
						gridZcorrPerGroup[zGroup]+=w*z;
						gridZcorrWeightPerGroup[zGroup]+=w;
					}
				}
				for (int i=0;i<numberOfZGroups;i++) if (gridZcorrWeightPerGroup[i]>0.0) gridZcorrPerGroup[i]/=gridZcorrWeightPerGroup[i];
				for (int i=0;i<gridCorr3d.length;i++) gridCorr3d[i][index]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
8032

Andrey Filippov's avatar
Andrey Filippov committed
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
				double s=0;
				for (int imgNum=0;imgNum<selectedImages.length;imgNum++) {
					int station=fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
					int zGroup=stationGroups[station];
					if ((gridCorr2d[imgNum]!=null)  && (gridCorr2d[imgNum][3][index]>0.0) && (zGroup>=0)) {
						double z=patternParameters.gridGeometry[v][u][2]+gridZcorrPerGroup[zGroup];
						double [] cv={
								patternParameters.gridGeometry[v][u][0]-cameraXYZ[imgNum][0],
								patternParameters.gridGeometry[v][u][1]-cameraXYZ[imgNum][1],
								z-cameraXYZ[imgNum][2]};
						double cv2=cv[0]*cv[0]+cv[1]*cv[1]+cv[2]*cv[2];
						double acv=Math.sqrt(cv2);
						for (int i=0;i<3;i++)cv[i]/=acv; // make unity vector;
						// intersection of the corrected view ray with the average taget plane
						double [] dXYplane0={-gridZcorrPerGroup[zGroup]/cv[2]*cv[0],-gridZcorrPerGroup[zGroup]/cv[2]*cv[1]};
						double [] modCorrXY={gridCorr2d[imgNum][0][index]+dXYplane0[0], gridCorr2d[imgNum][1][index]+dXYplane0[1]};
						double kv=(modCorrXY[0]*cv[0]+modCorrXY[1]*cv[1])/cv2;
						double w=gridCorr2d[imgNum][3][index];
						gridCorr3d[0][index]+=w*(gridCorr2d[imgNum][0][index]-cv[0]*kv);
						gridCorr3d[1][index]+=w*(gridCorr2d[imgNum][1][index]-cv[1]*kv);
						gridZcorrAddPerGroup[zGroup]+=w*(                            -cv[2]*kv);
Andrey Filippov's avatar
Andrey Filippov committed
8054
// not finished per station/per group 2d correction, will just use corerction average
Andrey Filippov's avatar
Andrey Filippov committed
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095
						gridCorr3d[2][index]+=w*(                            -cv[2]*kv);
						s+=w;
					}
				}
				for (int i=0;i<numberOfZGroups;i++) if (gridZcorrWeightPerGroup[i]>0.0) gridZcorrAddPerGroup[i]/=gridZcorrWeightPerGroup[i];
				for (int station=0;station<numStations;station++){
					int zGroup=stationGroups[station];
					gridZCorr3d[station][index]=gridZcorrAddPerGroup[zGroup]; // differential from the current pattern geometry
				}
				if (s>0){
					gridCorr3d[0][index]/=s;
					gridCorr3d[1][index]/=s;
					gridCorr3d[2][index]/=s;
				} else {
					gridCorr3d[0][index]=0.0;
					gridCorr3d[1][index]=0.0;
					gridCorr3d[2][index]=0.0;
				}
				gridCorr3d[3][index]=s;
				if (thisDebug) System.out.println(" Using 2d averaging: dX="+IJ.d2s(gridCorr3d[0][index],6)+
						" dY="+IJ.d2s(gridCorr3d[1][index],6)+" dZ="+IJ.d2s(gridCorr3d[2][index],6));
			}
		}
		// Make average correction zero is it needed?
		// create "reliable" mask for averaging/tilting - disregard the outmost grid pixels
		boolean [] reliable=new boolean [width*height];
		double wThreshold=0.0;
		for (int v=0;v<height;v++) for (int u=0;u<width;u++){
			int index=u+v*width;
			reliable[index]=false;
			if ((v>0) && (u>0) && (v<(height-1)) && (u<(width-1)) &&
					(gridCorr3d[3][index]>wThreshold) &&
					(gridCorr3d[3][index-1]>wThreshold) &&
					(gridCorr3d[3][index+1]>wThreshold) &&
					(gridCorr3d[3][index-width]>wThreshold) &&
					(gridCorr3d[3][index+width]>wThreshold) ){
				reliable[index]=true;
			}

		}
		double corrAverage;
Andrey Filippov's avatar
Andrey Filippov committed
8096
		for (int c=0;c<3;c++){
Andrey Filippov's avatar
Andrey Filippov committed
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
			corrAverage=0.0;
			double s=0.0;
			for (int i=0;i<gridCorr3d[0].length;i++) if (reliable[i]) {
				corrAverage+=gridCorr3d[c][i]*gridCorr3d[3][i];
				s+=gridCorr3d[3][i];
			}
			corrAverage/=s;
			//			System.out.println("zCorrAverage["+c+"="+corrAverage);
			for (int i=0;i<gridCorr3d[c].length;i++) gridCorr3d[c][i]-=corrAverage;
		}
		// for Z correction compensate for x/y tilts
		String [] titles={"X-correction(mm)","Y-correction(mm)","Z-correction","Weight"};
		if (rotateCorrection) {
			double SX=0.0,SX2=0.0,SZ=0.0,SXY=0.0,SXZ=0.0,S0=0.0,SY=0.0,SY2=0.0,SYZ=0.0;
			double [][] gridGeom=new double [3][gridCorr3d[0].length];
			for (int c=0;c<gridGeom.length;c++) for (int i=0;i<gridGeom[c].length;i++)gridGeom[c][i]=0.0;

			for (int v=0;v<height;v++) for (int u=0;u<width; u++){
				int index=u+v*width;
				double W=gridCorr3d[3][index];
				gridGeom[0][index]=patternParameters.gridGeometry[v][u][0];
				gridGeom[1][index]=patternParameters.gridGeometry[v][u][1];
				gridGeom[2][index]=W;
				if ((reliable[index]) && (W>0.0)){
					S0+=W;
					SX+=  W*patternParameters.gridGeometry[v][u][0];
					SX2+= W*patternParameters.gridGeometry[v][u][0]*patternParameters.gridGeometry[v][u][0];
					SY+=  W*patternParameters.gridGeometry[v][u][1];
					SY2+= W*patternParameters.gridGeometry[v][u][1]*patternParameters.gridGeometry[v][u][1];
					SXY+= W*patternParameters.gridGeometry[v][u][0]*patternParameters.gridGeometry[v][u][1];
					SZ+=  W*gridCorr3d[2][index];
					SXZ+= W*gridCorr3d[2][index]*patternParameters.gridGeometry[v][u][0];
					SYZ+= W*gridCorr3d[2][index]*patternParameters.gridGeometry[v][u][1];
				}
			}
			double [][] aM1= {
					{SX2, SXY, SX},
					{SXY, SY2, SY},
					{SX,  SY,  S0}};
			double [][] aB1= {{SXZ},{SYZ},{SZ}};
			Matrix M=new Matrix(aM1);
			Matrix B=new Matrix(aB1);
			if (this.debugLevel>2) {
				System.out.println(" M:");
				M.print(8, 6);
				System.out.println(" B:");
				B.print(8, 6);
				System.out.println(" Ax,Ay,B:");
				M.solve(B).print(8, 6);
			}
			double [] tilts=M.solve(B).getRowPackedCopy(); // singular ???
			if (this.debugLevel>2) {
				if (this.refineParameters.showThisCorrection) {
					this.SDFA_INSTANCE.showArrays(gridCorr3d, getGridWidth(), getGridHeight(),  true, "before tilt:", titles);
				}
			}
			for (int v=0;v<height;v++) for (int u=0;u<width; u++){
				int index=u+v*width;
				gridCorr3d[2][index]-=tilts[0]*patternParameters.gridGeometry[v][u][0]+tilts[1]*patternParameters.gridGeometry[v][u][1]+tilts[2];
			}
		}
    	if (this.debugLevel>2) {
    		if (this.refineParameters.showThisCorrection) {
    			double [][] gridCorr3dClone=new double [4][width*height];
    			for (int c=0;c<gridCorr3dClone.length;c++) for (int i=0;i<gridCorr3dClone[c].length;i++)
    				gridCorr3dClone[c][i]=reliable[i]? gridCorr3d[c][i]:0.0;
    			this.SDFA_INSTANCE.showArrays(gridCorr3dClone, getGridWidth(), getGridHeight(),  true, "after tilt:", titles);
    		}
    	}
    	IJ.showStatus("");
Andrey Filippov's avatar
Andrey Filippov committed
8167 8168 8169

// combine in a single array?

Andrey Filippov's avatar
Andrey Filippov committed
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
    	double [][][] result={gridCorr3d,gridZCorr3d,gridZCorr3dWeight};
		return  result;
	}
	public double [][][] calculateGridXYZCorr2D(
			final int width,
			final int height,
			final int [] stationGroups,
			final boolean [] selectedImages,
			final double [][] cameraXYZ,
			final LensDistortionParameters lensDistortionParametersProto,
			final boolean showIndividual,
			final int threadsMax,
			final boolean updateStatus
			){
8184 8185
//		final boolean isTripod=this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.is_tripod;
//		final boolean cartesian=this.fittingStrategy.distortionCalibrationData.eyesisCameraParameters.cartesian;
Andrey Filippov's avatar
Andrey Filippov committed
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
		final int [][] dirs=            {{0,0},{-1,0},{1,0},{0,-1},{0,1}}; // possible to make 8 directions
		final double [][][] derivatives={ // for of /du, /dv 3 variants, depending on which neighbors are available
				{
					{ 0.0,-0.5, 0.5, 0.0, 0.0},
					{ 1.0,-1.0, 0.0, 0.0, 0.0},
					{-1.0, 0.0, 1.0, 0.0, 0.0}
				},
				{
					{ 0.0, 0.0, 0.0,-0.5, 0.5},
					{ 1.0, 0.0, 0.0,-1.0, 0.0},
					{-1.0, 0.0, 0.0, 0.0, 1.0}}};
		final double [][][] gridCorr2d=new double [selectedImages.length][][]; // per-image grid {dx,dy,weight} corrections
		for (int i=0;i<gridCorr2d.length;i++) {
			gridCorr2d[i]=null;
			cameraXYZ[i]=null;
		}
		// Should it be just once - common for all images? (removed from the "for" loop)
		final double [] diff=calcYminusFx(this.currentfX);
		final int debugLevel=this.debugLevel;
		final int [] imageStartIndex=this.imageStartIndex;
		final double [] Y=this.Y;
		final double [] weightFunction= this.weightFunction;
   		final Thread[] threads = newThreadArray(threadsMax);
   		final AtomicInteger imageNumberAtomic = new AtomicInteger(0);
   		final AtomicInteger imageFinishedAtomic = new AtomicInteger(0);
   		final double [] progressValues=new double [selectedImages.length];
   		int numSelectedImages=0;
   		for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]) numSelectedImages++;
   		int selectedIndex=0;
   		for (int i=0;i<selectedImages.length;i++) {
   			progressValues[i]=(selectedIndex+1.0)/numSelectedImages;
   			if (selectedImages[i]) selectedIndex++;
   			if (selectedIndex>=numSelectedImages) selectedIndex--;
   		}
		IJ.showStatus("Calculating pattern geometry correction...");
		for (int ithread = 0; ithread < threads.length; ithread++) {
			threads[ithread] = new Thread() {
Andrey Filippov's avatar
Andrey Filippov committed
8223
				@Override
Andrey Filippov's avatar
Andrey Filippov committed
8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
				public void run() {
					LensDistortionParameters lensDistortionParameters=lensDistortionParametersProto.clone(); // see - if that is needed - maybe new is OK
					//   					LensDistortionParameters lensDistortionParameters= new LensDistortionParameters();
					for (int imgNum=imageNumberAtomic.getAndIncrement(); imgNum<selectedImages.length; imgNum=imageNumberAtomic.getAndIncrement()) if (selectedImages[imgNum]){
						//		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) {
						int station=fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
						if (stationGroups[station]<0) continue; // do not process images that do not belong to selected stations
						gridCorr2d[imgNum]=new double [4][width*height]; // dx, dy only - added zCorr per station
						for (int n=0;n<gridCorr2d[imgNum].length;n++) for (int i=0;i<gridCorr2d[imgNum][0].length;i++) gridCorr2d[imgNum][n][i]=0.0;
						//		int chnNum=fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
						cameraXYZ[imgNum]=new double[3];
						// The following method sets this.lensDistortionParameters and invokes this.lensDistortionParameters.recalcCommons();
Andrey Filippov's avatar
Andrey Filippov committed
8236
						lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
8237
								lensDistortionParameters,
8238 8239 8240 8241
								fittingStrategy.distortionCalibrationData.isTripod(),
								fittingStrategy.distortionCalibrationData.isCartesian(),
					    		fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
					    		fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
								null, //this.interParameterDerivatives, // [22][]
								fittingStrategy.distortionCalibrationData.getParameters(imgNum), // 22-long parameter vector for the image
								null); // if no derivatives, null is OK
						//				false); // calculate this.interParameterDerivatives -derivatives array (false - just this.values)
						cameraXYZ[imgNum]=lensDistortionParameters.getLensCenterCoordinates();
						if (debugLevel>2) {
							System.out.println("calculateGridXYZCorr(): imgNum="+imgNum+" lens coordinates (mm)={"+
									IJ.d2s(cameraXYZ[imgNum][0],3)+", "+IJ.d2s(cameraXYZ[imgNum][1],3)+", "+IJ.d2s(cameraXYZ[imgNum][2],3)+"}");
						}
						//		double [] diff=calcYminusFx(this.currentfX); // removed from the loop
						// find data range for the selected image
						int index=imageStartIndex[imgNum]; // set when fitting series is init
						double [][] imgData=new double[showIndividual?7:5][getGridHeight() * width]; // dPX, dPY, Px, Py, alpha
						for (int i=0;i<imgData.length;i++) for (int j=0;j<imgData[i].length;j++)imgData[i][j]=0.0;
						// first pass - prepare [v][u]arrays
						for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;i++){
							int u=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][0]+patternParameters.U0;
							int v=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][1]+patternParameters.V0;
							int vu=u+width*v;
							imgData[0][vu]= diff[2*(index+i)]; // out of bound 1410
							imgData[1][vu]= diff[2*(index+i)+1];
							imgData[2][vu]= Y[2*(index+i)];  // measured pixel x
							imgData[3][vu]= Y[2*(index+i)+1];// measured pixel y

							//				imgData[4][vu]= fittingStrategy.distortionCalibrationData.getMask(chnNum, imgData[2][vu], imgData[3][vu]);

							if (weightFunction!=null) {
								imgData[4][vu]= weightFunction[2*(index+i)];
							} else {
								imgData[4][vu]= 1.0;
							}
						}
						// second pass - calculate derivatives, and residuals in mm
						for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;i++){
							int u=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][0]+patternParameters.U0;
							int v=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][1]+patternParameters.V0;
							int vu=u+width*v;
							gridCorr2d[imgNum][0][vu]=0.0;
							gridCorr2d[imgNum][1][vu]=0.0;
							gridCorr2d[imgNum][2][vu]=patternParameters.getZCorr(vu,station); // per-station Z correction from average
							gridCorr2d[imgNum][3][vu]=0.0; // weight
							double [][] gXY =new double[dirs.length][3];
							//			double [][] gpXY=new double[dirs.length][2];
							double [][] gpXY=new double[dirs.length][3];
							boolean [] dirMask=new boolean [dirs.length];
							for (int dir=0;dir<dirs.length;dir++){
								int u1=u+dirs[dir][0];
								int v1=v+dirs[dir][1];
								int vu1=u1+width*v1;
								dirMask[dir] = (u1>=0) && (v1>=0) && (u1<width) && (v1<height) && (imgData[4][vu1]>0);
								if (dirMask[dir]){
									gXY[dir][0]= patternParameters.gridGeometry[v1][u1][0];
									gXY[dir][1]= patternParameters.gridGeometry[v1][u1][1];
									gXY[dir][2]= patternParameters.gridGeometry[v1][u1][2]; // Here - average Z
									gpXY[dir][0]=imgData[2][vu1];
									gpXY[dir][1]=imgData[3][vu1];
								} else {
									gXY[dir][0]= 0.0;
									gXY[dir][1]= 0.0;
									gXY[dir][2]= 0.0;
									gpXY[dir][0]=0.0;
									gpXY[dir][1]=0.0;

								}
							}
							int [] variants={-1,-1}; // {horizontal, vertical}
							boolean variantsExist=true;
							for (int duv=0;duv<2;duv++){ // 0 - horizontal, 1 - vertical
								for (int variant=0;variant<derivatives[duv].length;variant++) { // variants: 0 half of right/left, 1 left deriv, 2 - right deriv
									boolean fit=true;
									for (int dir=0;dir<dirs.length;dir++) if ((derivatives[duv][variant][dir]!=0) && !dirMask[dir]){
										fit=false;
										break;
									}
									if (fit) {
										variants[duv]=variant;
										break;
									}
								}
								if (variants[duv]<0) { // could not find any variant to calculate derivatives for this direction
									variantsExist=false;
Andrey Filippov's avatar
Andrey Filippov committed
8323
									break;
Andrey Filippov's avatar
Andrey Filippov committed
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
								}
							}
							if (!variantsExist){
								imgData[4][vu]=0.0;
								continue;
							}
							double [][] dXY_dUV= new double [2][2];
							double [][] dpXY_dUV=new double [2][2];
							for (int nom=0;nom<2;nom++) { // 0-x, 1 - y
								for (int denom=0;denom<2;denom++) { //0 - du, 1 - dv
									dXY_dUV [nom][denom]=0.0;
									dpXY_dUV[nom][denom]=0.0;
									for (int dir=0;dir<dirs.length;dir++){
										dXY_dUV [nom][denom]+=gXY [dir][nom]*derivatives[denom][variants[denom]][dir];
										dpXY_dUV[nom][denom]+=gpXY[dir][nom]*derivatives[denom][variants[denom]][dir];
									}
								}
							}
							double [] dpXY={imgData[0][vu],imgData[1][vu]};
							Matrix MdpXY=    new Matrix(dpXY,2); // 2 rows
							Matrix MdXY_dUV= new Matrix(dXY_dUV);
							Matrix MdpXY_dUV=new Matrix(dpXY_dUV);
							if ((new LUDecomposition(MdpXY_dUV)).isNonsingular()){
								/*
								 * MdpXY= MdpXY_dUV* MdUV
								 * MdXY=  MdXY_dUV * MdUV
Andrey Filippov's avatar
Andrey Filippov committed
8350
								 * MdUV=  MdpXY_dUV.solve(MdpXY);
Andrey Filippov's avatar
Andrey Filippov committed
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
								 * MdXY=  MdXY_dUV * MdpXY_dUV.solve(MdpXY);
								 */
								Matrix MdXY=MdXY_dUV.times(MdpXY_dUV.solve(MdpXY));
								double [] dXY=MdXY.getRowPackedCopy();
								gridCorr2d[imgNum][0][vu]=dXY[0];
								gridCorr2d[imgNum][1][vu]=dXY[1];
								gridCorr2d[imgNum][3][vu]=imgData[4][vu]; // weight
							}
						} // end scanning pixels
						if (showIndividual) {
							String [] titles={"diff-X","diff-Y","pX","pY","alpha","X-correction(mm)","Y-correction(mm)","Z-correction(mm)"};
8362
							(new ShowDoubleFloatArrays()).showArrays(imgData, width, height,  true, "Grid"+imgNum, titles);
Andrey Filippov's avatar
Andrey Filippov committed
8363 8364 8365 8366
						}
   						final int numFinished=imageFinishedAtomic.getAndIncrement();
//						IJ.showProgress(progressValues[numFinished]);
						SwingUtilities.invokeLater(new Runnable() {
Andrey Filippov's avatar
Andrey Filippov committed
8367
							@Override
Andrey Filippov's avatar
Andrey Filippov committed
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385
							public void run() {
								// Here, we can safely update the GUI
								// because we'll be called from the
								// event dispatch thread
								IJ.showProgress(progressValues[numFinished]);
							}
						});
					}
				}
			};
		}
		startAndJoin(threads);

		IJ.showProgress(1.0);
		return gridCorr2d;
	}


Andrey Filippov's avatar
Andrey Filippov committed
8386 8387 8388



Andrey Filippov's avatar
Andrey Filippov committed
8389 8390 8391
	/**
	 * Calculates corrections to X and Y coordinates of the grid nodes
	 * //@param distortionCalibrationData - used to receive sensor mask(s)
Andrey Filippov's avatar
Andrey Filippov committed
8392
	 * @param grid3DCorrection - if true - calculate 3d correction, false - slow 3d (2d perpendicular to view)
Andrey Filippov's avatar
Andrey Filippov committed
8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
	 * @param maxZCorr - maximal allowed correction in Z-direction (if wants more, will fall back to 2-d correction (perpendicular to the view)
	 * @param showIndividual - show individual images
	 * @return first index - 0 - correction x (mm), 1 - correction y(mm), 2 - correction z(mm)  3 - weight (number of images used)
	 */

	public double [][] calculateGridXYZCorr3D( // old version
//			DistortionCalibrationData distortionCalibrationData,
			boolean grid3DCorrection,
			boolean rotateCorrection,
			double maxZCorr,
			boolean showIndividual){
		int width=getGridWidth();
		int height=getGridHeight();
		int [][] dirs=            {{0,0},{-1,0},{1,0},{0,-1},{0,1}}; // possible to make 8 directions
		double [][][] derivatives={ // for of /du, /dv 3 variants, depending on which neighbors are available
				{
					{ 0.0,-0.5, 0.5, 0.0, 0.0},
					{ 1.0,-1.0, 0.0, 0.0, 0.0},
					{-1.0, 0.0, 1.0, 0.0, 0.0}
				},
				{
					{ 0.0, 0.0, 0.0,-0.5, 0.5},
					{ 1.0, 0.0, 0.0,-1.0, 0.0},
					{-1.0, 0.0, 0.0, 0.0, 1.0}}};
		boolean [] selectedImages=fittingStrategy.selectedImages();
		double [][][] gridCorr2d=new double [selectedImages.length][][]; // per-image grid {dx,dy,weight} corrections
Andrey Filippov's avatar
Andrey Filippov committed
8419

Andrey Filippov's avatar
Andrey Filippov committed
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
		double [][] cameraXYZ=new double [selectedImages.length][];
		for (int i=0;i<gridCorr2d.length;i++) {
			gridCorr2d[i]=null;
			cameraXYZ[i]=null;
		}
		int numSelected=0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) numSelected++;
		int numProcessed=0;
		IJ.showStatus("Calculating pattern geometry correction...");
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) {
			gridCorr2d[imgNum]=new double [3][width*height]; // dx, dy only
			for (int n=0;n<gridCorr2d[imgNum].length;n++) for (int i=0;i<gridCorr2d[imgNum][0].length;i++) gridCorr2d[imgNum][n][i]=0.0;
//			int chnNum=fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
			cameraXYZ[imgNum]=new double[3];
			// The following method sets this.lensDistortionParameters and invokes this.lensDistortionParameters.recalcCommons();
Andrey Filippov's avatar
Andrey Filippov committed
8435
			this.lensDistortionParameters.lensCalcInterParamers(
Andrey Filippov's avatar
Andrey Filippov committed
8436
					this.lensDistortionParameters,
8437 8438 8439 8440
					fittingStrategy.distortionCalibrationData.isTripod(),
					fittingStrategy.distortionCalibrationData.isCartesian(),
		    		fittingStrategy.distortionCalibrationData.getPixelSize(imgNum),
		    		fittingStrategy.distortionCalibrationData.getDistortionRadius(imgNum),
Andrey Filippov's avatar
Andrey Filippov committed
8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
					null, //this.interParameterDerivatives, // [22][]
//					fittingStrategy.distortionCalibrationData.pars[imgNum], // 22-long parameter vector for the image
					fittingStrategy.distortionCalibrationData.getParameters(imgNum), // 22-long parameter vector for the image
					null); // if no derivatives, null is OK
//					false); // calculate this.interParameterDerivatives -derivatives array (false - just this.values)
			cameraXYZ[imgNum]=lensDistortionParameters.getLensCenterCoordinates();
			if (this.debugLevel>2) {
				System.out.println("calculateGridXYZCorr(): imgNum="+imgNum+" lens coordinates (mm)={"+
						IJ.d2s(cameraXYZ[imgNum][0],3)+", "+IJ.d2s(cameraXYZ[imgNum][1],3)+", "+IJ.d2s(cameraXYZ[imgNum][2],3)+"}");
			}
			double [] diff=calcYminusFx(this.currentfX);
			// find data range for the selected image
			int index=this.imageStartIndex[imgNum]; // set when fitting series is init
/*
			int index=0;
			int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
Andrey Filippov's avatar
Andrey Filippov committed
8457

Andrey Filippov's avatar
Andrey Filippov committed
8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
			for (int iNum=0;(iNum<imgNum) && (iNum<numImg) ;iNum++) if (selectedImages[iNum]) //
				index+=fittingStrategy.distortionCalibrationData.gIP[iNum].pixelsUV.length;
			//System.out.println ("+++++++++++++imgNum="+imgNum+" index="+index);
*/
			if (this.debugLevel>2) {
				System.out.println("calculateGridXYZCorr(): fX.length="+this.currentfX.length+" this image index="+index);
			}
			double [][] imgData=new double[showIndividual?7:5][getGridHeight() * width]; // dPX, dPY, Px, Py, alpha
			for (int i=0;i<imgData.length;i++) for (int j=0;j<imgData[i].length;j++)imgData[i][j]=0.0;
			// first pass - prepare [v][u]arrays
			for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;i++){
				int u=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][0]+patternParameters.U0;
				int v=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][1]+patternParameters.V0;
				int vu=u+width*v;
				imgData[0][vu]=   diff[2*(index+i)]; // out of bound 1410
				imgData[1][vu]=   diff[2*(index+i)+1];
				imgData[2][vu]= this.Y[2*(index+i)];  // measured pixel x
				imgData[3][vu]= this.Y[2*(index+i)+1];// measured pixel y

				//				imgData[4][vu]= fittingStrategy.distortionCalibrationData.getMask(chnNum, imgData[2][vu], imgData[3][vu]);

				if (this.weightFunction!=null) {
					imgData[4][vu]= this.weightFunction[2*(index+i)];
				} else {
					imgData[4][vu]= 1.0;
				}
				//				if (imgNum==1) System.out.println ("---index="+index+" i="+i+" vu="+vu+ " v="+v+" u="+u+" x="+IJ.d2s(this.Y[2*(index+i)],1)+" y="+IJ.d2s(this.Y[2*(index+i)+1],1));
			}
			// second pass - calculate derivatives, and residuals in mm
			for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;i++){
				int u=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][0]+patternParameters.U0;
				int v=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][1]+patternParameters.V0;
				int vu=u+width*v;
				gridCorr2d[imgNum][0][vu]=0.0;
				gridCorr2d[imgNum][1][vu]=0.0;
				gridCorr2d[imgNum][2][vu]=0.0; // weight

				double [][] gXY =new double[dirs.length][3];
				double [][] gpXY=new double[dirs.length][2];
				boolean [] dirMask=new boolean [dirs.length];
				for (int dir=0;dir<dirs.length;dir++){
					int u1=u+dirs[dir][0];
					int v1=v+dirs[dir][1];
					int vu1=u1+width*v1;
					dirMask[dir] = (u1>=0) && (v1>=0) && (u1<width) && (v1<height) && (imgData[4][vu1]>0);
					gXY[dir][0]= dirMask[dir]?patternParameters.gridGeometry[v1][u1][0]:0.0;
					gXY[dir][1]= dirMask[dir]?patternParameters.gridGeometry[v1][u1][1]:0.0;
					gXY[dir][2]= dirMask[dir]?patternParameters.gridGeometry[v1][u1][2]:0.0; // Add per-station (optionally)
					gpXY[dir][0]=dirMask[dir]?imgData[2][vu1]:0.0;
					gpXY[dir][1]=dirMask[dir]?imgData[3][vu1]:0.0;
				}
				int [] variants={-1,-1}; // {horizontal, vertical}
				boolean variantsExist=true;
				for (int duv=0;duv<2;duv++){ // 0 - horizontal, 1 - vertical
					for (int variant=0;variant<derivatives[duv].length;variant++) { // variants: 0 half of right/left, 1 left deriv, 2 - right deriv
						boolean fit=true;
						for (int dir=0;dir<dirs.length;dir++) if ((derivatives[duv][variant][dir]!=0) && !dirMask[dir]){
							fit=false;
							break;
						}
						if (fit) {
							variants[duv]=variant;
							break;
						}
					}
					if (variants[duv]<0) { // could not find any variant to calculate derivatives for this direction
						variantsExist=false;
Andrey Filippov's avatar
Andrey Filippov committed
8525
						break;
Andrey Filippov's avatar
Andrey Filippov committed
8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
					}
				}
				if (!variantsExist){
					imgData[4][vu]=0.0;
					continue;
				}
				double [][] dXY_dUV= new double [2][2];
				double [][] dpXY_dUV=new double [2][2];
				for (int nom=0;nom<2;nom++) { // 0-x, 1 - y
					for (int denom=0;denom<2;denom++) { //0 - du, 1 - dv
						dXY_dUV [nom][denom]=0.0;
						dpXY_dUV[nom][denom]=0.0;
						for (int dir=0;dir<dirs.length;dir++){
							dXY_dUV [nom][denom]+=gXY [dir][nom]*derivatives[denom][variants[denom]][dir];
							dpXY_dUV[nom][denom]+=gpXY[dir][nom]*derivatives[denom][variants[denom]][dir];
						}
					}
Andrey Filippov's avatar
Andrey Filippov committed
8543

Andrey Filippov's avatar
Andrey Filippov committed
8544 8545 8546 8547 8548 8549 8550 8551 8552
				}
				double [] dpXY={imgData[0][vu],imgData[1][vu]};
				Matrix MdpXY=    new Matrix(dpXY,2); // 2 rows
				Matrix MdXY_dUV= new Matrix(dXY_dUV);
				Matrix MdpXY_dUV=new Matrix(dpXY_dUV);
				if ((new LUDecomposition(MdpXY_dUV)).isNonsingular()){
					/*
					 * MdpXY= MdpXY_dUV* MdUV
					 * MdXY=  MdXY_dUV * MdUV
Andrey Filippov's avatar
Andrey Filippov committed
8553
					 * MdUV=  MdpXY_dUV.solve(MdpXY);
Andrey Filippov's avatar
Andrey Filippov committed
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
					 * MdXY=  MdXY_dUV * MdpXY_dUV.solve(MdpXY);
					 */
					Matrix MdXY=MdXY_dUV.times(MdpXY_dUV.solve(MdpXY));
					double [] dXY=MdXY.getRowPackedCopy();
					gridCorr2d[imgNum][0][vu]=dXY[0];
					gridCorr2d[imgNum][1][vu]=dXY[1];
					gridCorr2d[imgNum][2][vu]=imgData[4][vu]; // weight
				}
			} // end scanning pixels
			if (showIndividual) {
		        String [] titles={"diff-X","diff-Y","pX","pY","alpha","X-correction(mm)","Y-correction(mm)","Z-correction(mm)"};
				this.SDFA_INSTANCE.showArrays(imgData, width, height,  true, "Grid"+imgNum, titles);
			}
			IJ.showProgress(++numProcessed,numSelected);
		}
		IJ.showProgress(1.0);
		IJ.showStatus("Calculating pattern 3d correction...");
// now using gridCorr2d[imgNum], cameraXYZ[imgNum] and patternParameters.gridGeometry[v][u] find the 3d correction     public double [][][] gridGeometry=null; // [v][u]{x,y,z,"alpha"} alpha=0 - no ghrid, 1 - grid
		double [][] gridCorr3d=new double [4][width*height];
		for (int n=0;n<gridCorr3d.length;n++) for (int i=0;i<gridCorr3d[0].length;i++) gridCorr3d[n][i]=0.0;
		double Cx,Cy,Cz,Cxy,Cxz,Cyz;
		double [] V= new double[3];
		double [] V2= new double[3];
		int debugIndex=(height/2)*width+ (width/2);
		int debugIndex1=(height/2)*width+ (width/4);
		for (int v=0;v<height;v++) for (int u=0;u<width; u++){
			int index=u+v*width;
			boolean thisDebug=(this.debugLevel>1) && ((index==debugIndex) || (index==debugIndex1));
			if (thisDebug) System.out.println("calculateGridXYZCorr3D() debug("+this.debugLevel+"): index="+index+" v="+v+" u="+u);
			double [][] aM={{0.0,0.0,0.0},{0.0,0.0,0.0},{0.0,0.0,0.0}};
			double [][] aB ={{0.0},{0.0},{0.0}};
			double alpha=0.0;
			boolean fallBack2D=true;
			if (grid3DCorrection) {
				for (int imgNum=0;imgNum<selectedImages.length;imgNum++)
					if ((gridCorr2d[imgNum]!=null)  && (gridCorr2d[imgNum][2][index]>0.0)) {
						// calculate unity vector from the camera lens to the grid point
						double absV=0.0;
						for (int i=0;i<V.length;i++){
							V[i]=patternParameters.gridGeometry[v][u][i]-cameraXYZ[imgNum][i];
							absV+=V[i]*V[i];
						}
						absV=Math.sqrt(absV);
						if (absV>0) for (int i=0;i<V.length;i++) V[i]/=absV;
						for (int i=0;i<V.length;i++) V2[i]=V[i]*V[i];
						if (thisDebug) System.out.println(" imgNum="+imgNum+" V[0]="+IJ.d2s(V[0],4)+" V[1]="+IJ.d2s(V[1],4)+" V[2]="+IJ.d2s(V[2],4)+
								" V2[0]="+IJ.d2s(V2[0],4)+" V2[1]="+IJ.d2s(V2[1],4)+" V2[2]="+IJ.d2s(V2[2],4));
Andrey Filippov's avatar
Andrey Filippov committed
8601 8602
						// When performin 3-d correction (X,Y,Z) the result point has to have minimal weighted sum of squared distances to all rays
// when summing for different stations, multiply W by sign(image belongs to station)
Andrey Filippov's avatar
Andrey Filippov committed
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
/*
Px, Py - calculated correction for individual image
V={Vx,Vy,Vz} unity vector from the camera lens center to the {Px,Py,0}
A - vector from the {Px,Py,0} to {X,Y,Z} = {X-Px,Y-Py,Z}
Projection of A on V will have length of A(.)V, Vector B=V*(A(.)V)
Vector D=A-B = A - V*(A(.)V)
D2=D(.)D= A(.)A - 2* (A(.)V ) * (A(.)V ) + (A(.)V ) * (A(.)V ) = A(.)A -  (A(.)V ) * (A(.)V )
D2=A(.)A -  (A(.)V )^2

A(.)A=(X-Px)^2 + (Y-Py)^2 + Z^2 =X^2 -2*X*Px +Px^2 +Y^2 -2*Y*Py +Py^2 +Z^2
A(.)A=X^2 -2*X*Px +Px^2 +Y^2 -2*Y*Py +Py^2 +Z^2
A(.)V=      (X-Px)*Vx + (Y-Py)*Vy + Z*Vz
(A(.)V)^2= ((X-Px)*Vx + (Y-Py)*Vy + Z*Vz)^2 = ((X-Px)*Vx)^2 + ((Y-Py)*Vy)^2 + (Z*Vz)^2 + 2*((X-Px)*Vx)*((Y-Py)*Vy)+ 2*((X-Px)*Vx)*(Z*Vz)+2*((Y-Py)*Vy)*(Z*Vz)
(A(.)V)^2= X^2*Vx^2 +Px^2*Vx^2 - 2*X*Px*Vx^2 +Y^2*Vy^2+Py^2*Vy^2-2*Y*Py*Vy^2 +Z^2*Vz^2 +2*X*Y*Vx*Vy +2*Px*Py*Vx*Vy - 2*X*Py*Vx*Vy - 2*Y*Px*Vx*Vy +2*X*Z*Vx*Vz - 2*Z*Px*Vx*Vz +2*Y*Z*Vy*Vz -2*z*Py*Vy*Vz

D2=
  +X^2 - X^2*Vx^2
Andrey Filippov's avatar
Andrey Filippov committed
8620
  +Y^2 - Y^2*Vy^2
Andrey Filippov's avatar
Andrey Filippov committed
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
  +Z^2 - Z^2*Vz^2
-2*X*Y* Vx*Vy
-2*X*Z* Vx*Vz
-2*Y*Z* Vy*Vz
-2*X*Px +2*X*Px*Vx^2+ 2*X*Py*Vx*Vy
-2*Y*Py +2*Y*Py*Vy^2+ 2*Y*Px*Vx*Vy
+2*Z*Px*Vx*Vz   +2*Z*Py*Vy*Vz
+Px^2  +Py^2 -Px^2*Vx^2   -Py^2*Vy^2    -2*Px*Py*Vx*Vy

0= dD2/dX/2= X*(1-Vx^2) - Y* Vx*Vy - Z* Vx*Vz -Px + Px*Vx^2  + Py*Vx*Vy
0= dD2/dY/2= Y*(1-Vy^2) - X* Vx*Vy - Z* Vy*Vz -Py + Py*Vy^2  + Px*Vx*Vy
0= dD2/dZ/2= Z*(1-Vz^2) - X* Vx*Vz - Y* Vy*Vz     + Px*Vx*Vz + Py*Vy*Vz


 X*(Vx^2-1) + Y* (Vx*Vy)  + Z* (Vx*Vz)   =  Px * (Vx^2-1)  + Py* (Vx*Vy)
 X*(Vx*Vy)  + Y* (Vy^2-1) + Z* (Vy*Vz)   =  Px * (Vx*Vy)   + Py * (Vy^2-1)
 X*(Vx*Vz)  + Y* (Vy*Vz)  + Z* (Vz^2-1)  =  Px * (Vx*Vz)   + Py* (Vy*Vz)

Andrey Filippov's avatar
Andrey Filippov committed
8639

Andrey Filippov's avatar
Andrey Filippov committed
8640
 */
Andrey Filippov's avatar
Andrey Filippov committed
8641

Andrey Filippov's avatar
Andrey Filippov committed
8642 8643 8644
//   | sum(Wi*Cxi),  sum(Wi*Cxyi), sum(Wi*Cxzi) |
//M= | sum(Wi*Cxyi), sum(Wi*Cyi ), sum(Wi*Cyzi) |
//   | sum(Wi*Cxzi), sum(Wi*Cyzi), sum(Wi*Czi ) |
Andrey Filippov's avatar
Andrey Filippov committed
8645

Andrey Filippov's avatar
Andrey Filippov committed
8646 8647 8648
//   | sum(Wi*(P0xi*Cxi + P0yi*Cxyi + P0zi*Cxzi)) |
//B= | sum(Wi*(P0yi*Cyi + P0xi*Cyxi + P0zi*Cyzi)) |
//   | sum(Wi*(P0zi*Czi + P0yi*Czyi + P0xi*Czxi)) |
Andrey Filippov's avatar
Andrey Filippov committed
8649
/*
Andrey Filippov's avatar
Andrey Filippov committed
8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
	X*(Vxi^2-1) + Y*(Vxi*Vyi) + Z*(Vxi*Vzi) = P0xi*(Vxi^2-1) +P0yi*(Vxi*Vyi) + P0zi*(Vxi*Vzi)
	X*(Vxi*Vyi) + Y*(Vyi^2-1) + Z*(Vyi*Vzi) = P0xi*(Vxi*Vyi) +P0yi*(Vyi^2-1) + P0zi*(Vyi*Vzi)
	X*(Vxi*Vzi) + Y*(Vxi*Vyi) + Z*(Vzi^2-1) = P0xi*(Vxi*Vzi) +P0yi*(Vxi*Vyi) + P0zi*(Vzi^2-1)

	X*Cx  + Y*Cxy + Z*Cxz = P0xi*Cx  +P0yi*Cxy + P0zi*Cxz
	X*Cxy + Y*Cy  + Z*Cyz = P0xi*Cxy +P0yi*Cy  + P0zi*Cyz
	X*Cxz + Y*Cyz + Z*Cz  = P0xi*Cxz +P0yi*Cyz + P0zi*Cz
	P0zi==0.0, so - now we'll use P0zi - difference from this station to average

	X*Cx  + Y*Cxy + Z*Cxz = P0xi*Cx  +P0yi*Cxy
	X*Cxy + Y*Cy  + Z*Cyz = P0xi*Cxy +P0yi*Cy
	X*Cxz + Y*Cyz + Z*Cz  = P0xi*Cxz +P0yi*Cyz

*/
						Cx=V2[0]-1.0;
						Cy=V2[1]-1.0;
						Cz=V2[2]-1.0;
						Cxy= V[0]*V[1];
						Cxz= V[0]*V[2];
						Cyz= V[1]*V[2];
						if (thisDebug) System.out.println(" Cx="+IJ.d2s(Cx,6)+" Cy="+IJ.d2s(Cy,6)+" Cz="+IJ.d2s(Cz,6)+
								" Cxy="+IJ.d2s(Cxy,6)+" Cxz="+IJ.d2s(Cxz,6)+" Cyz="+IJ.d2s(Cyz,6));


						double W=gridCorr2d[imgNum][2][index];
						double Px=gridCorr2d[imgNum][0][index];
						double Py=gridCorr2d[imgNum][1][index];
						alpha+=W;
						if (thisDebug) System.out.println(imgNum+": Px="+IJ.d2s(Px,6)+" Py="+IJ.d2s(Py,6)+" W="+IJ.d2s(W,6));
						aM[0][0]+=W*Cx;
						aM[0][1]+=W*Cxy;
						aM[0][2]+=W*Cxz;
						aM[1][1]+=W*Cy;
						aM[1][2]+=W*Cyz;
						aM[2][2]+=W*Cz;
						aB[0][0]+=W*(Px*Cx  + Py*Cxy);// Pz==0.0
						aB[1][0]+=W*(Px*Cxy + Py*Cy);// Pz==0.0
						aB[2][0]+=W*(Px*Cxz + Py*Cyz);// Pz==0.0
Andrey Filippov's avatar
Andrey Filippov committed
8688
					}
Andrey Filippov's avatar
Andrey Filippov committed
8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
				aM[1][0]+=aM[0][1];
				aM[2][0]+=aM[0][2];
				aM[2][1]+=aM[1][2];
				Matrix M=new Matrix(aM);
				Matrix B=new Matrix(aB);
				if (thisDebug) {
					System.out.println(" M:");
					M.print(8, 6);
					System.out.println(" B:");
					B.print(8, 6);
				}

				//			boolean fallBack2D=true;
				if ((new LUDecomposition(M)).isNonsingular()){
					double [] dXYZ=M.solve(B).getRowPackedCopy();
					for (int i=0;i<3;i++) gridCorr3d[i][index]=dXYZ[i];
					gridCorr3d[3][index]=alpha;
					fallBack2D=false; //TODO:  make sure delta Z (Math.abs(gridCorr3d[2][index])) is not too big!!
					if (Math.abs(gridCorr3d[2][index])>maxZCorr) {

						fallBack2D=true; // temporary limit
					}
					if (thisDebug) System.out.println(" dX="+IJ.d2s(gridCorr3d[0][index],6)+" dY="+IJ.d2s(gridCorr3d[1][index],6)+" dZ="+IJ.d2s(gridCorr3d[2][index],6));
				}
			}
			if(fallBack2D) { // make a 2d averaging of weighted dx, dy correction
				for (int i=0;i<gridCorr3d.length;i++) gridCorr3d[i][index]=0.0;
				double s=0;
				for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if ((gridCorr2d[imgNum]!=null) &&(gridCorr2d[imgNum][2][index]>0.0)) {
					double W=gridCorr2d[imgNum][2][index];
					//			V[i]=patternParameters.gridGeometry[v][u][i]-cameraXYZ[imgNum][i];

					double [] cv={
							patternParameters.gridGeometry[v][u][0]-cameraXYZ[imgNum][0],
							patternParameters.gridGeometry[v][u][1]-cameraXYZ[imgNum][1],
							patternParameters.gridGeometry[v][u][2]-cameraXYZ[imgNum][2]};
					double cv2=cv[0]*cv[0]+cv[1]*cv[1]+cv[2]*cv[2];
					double kv=(gridCorr2d[imgNum][0][index]*cv[0]+gridCorr2d[imgNum][1][index]*cv[1])/cv2;
					gridCorr3d[0][index]+=W*(gridCorr2d[imgNum][0][index]-cv[0]*kv);
					gridCorr3d[1][index]+=W*(gridCorr2d[imgNum][1][index]-cv[1]*kv);
					gridCorr3d[2][index]+=W*(                            -cv[2]*kv);
					s+=W;
				}
				if (s>0){
					gridCorr3d[0][index]/=s;
					gridCorr3d[1][index]/=s;
					gridCorr3d[2][index]/=s;
				} else {
					gridCorr3d[0][index]=0.0;
					gridCorr3d[1][index]=0.0;
					gridCorr3d[2][index]=0.0;
				}
				gridCorr3d[3][index]=s;
				if (thisDebug) System.out.println(" Using 2d averaging: dX="+IJ.d2s(gridCorr3d[0][index],6)+
						" dY="+IJ.d2s(gridCorr3d[1][index],6)+" dZ="+IJ.d2s(gridCorr3d[2][index],6));
			}
		}
		// Make average correction zero is it needed?
		// create "reliable" mask for averaging/tilting - disregard the outmost grid pixels
		boolean [] reliable=new boolean [width*height];
		double wThreshold=0.0;
		for (int v=0;v<height;v++) for (int u=0;u<width;u++){
			int index=u+v*width;
			reliable[index]=false;
			if ((v>0) && (u>0) && (v<(height-1)) && (u<(width-1)) &&
					(gridCorr3d[3][index]>wThreshold) &&
					(gridCorr3d[3][index-1]>wThreshold) &&
					(gridCorr3d[3][index+1]>wThreshold) &&
					(gridCorr3d[3][index-width]>wThreshold) &&
					(gridCorr3d[3][index+width]>wThreshold) ){
				reliable[index]=true;
			}
Andrey Filippov's avatar
Andrey Filippov committed
8761

Andrey Filippov's avatar
Andrey Filippov committed
8762 8763
		}
		double corrAverage;
Andrey Filippov's avatar
Andrey Filippov committed
8764
		for (int c=0;c<3;c++){
Andrey Filippov's avatar
Andrey Filippov committed
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837
			corrAverage=0.0;
			double s=0.0;
			for (int i=0;i<gridCorr3d[0].length;i++) if (reliable[i]) {
				corrAverage+=gridCorr3d[c][i]*gridCorr3d[3][i];
				s+=gridCorr3d[3][i];
			}
			corrAverage/=s;
//			System.out.println("zCorrAverage["+c+"="+corrAverage);
			for (int i=0;i<gridCorr3d[c].length;i++) gridCorr3d[c][i]-=corrAverage;
		}
// for Z correction compensate for x/y tilts
		String [] titles={"X-correction(mm)","Y-correction(mm)","Z-correction","Weight"};
		if (rotateCorrection) {
			double SX=0.0,SX2=0.0,SZ=0.0,SXY=0.0,SXZ=0.0,S0=0.0,SY=0.0,SY2=0.0,SYZ=0.0;
			double [][] gridGeom=new double [3][gridCorr3d[0].length];
			for (int c=0;c<gridGeom.length;c++) for (int i=0;i<gridGeom[c].length;i++)gridGeom[c][i]=0.0;

			for (int v=0;v<height;v++) for (int u=0;u<width; u++){
				int index=u+v*width;
				double W=gridCorr3d[3][index];
				gridGeom[0][index]=patternParameters.gridGeometry[v][u][0];
				gridGeom[1][index]=patternParameters.gridGeometry[v][u][1];
				gridGeom[2][index]=W;
				if ((reliable[index]) && (W>0.0)){
					S0+=W;
					SX+=  W*patternParameters.gridGeometry[v][u][0];
					SX2+= W*patternParameters.gridGeometry[v][u][0]*patternParameters.gridGeometry[v][u][0];
					SY+=  W*patternParameters.gridGeometry[v][u][1];
					SY2+= W*patternParameters.gridGeometry[v][u][1]*patternParameters.gridGeometry[v][u][1];
					SXY+= W*patternParameters.gridGeometry[v][u][0]*patternParameters.gridGeometry[v][u][1];
					SZ+=  W*gridCorr3d[2][index];
					SXZ+= W*gridCorr3d[2][index]*patternParameters.gridGeometry[v][u][0];
					SYZ+= W*gridCorr3d[2][index]*patternParameters.gridGeometry[v][u][1];
				}
			}
			double [][] aM= {
					{SX2, SXY, SX},
					{SXY, SY2, SY},
					{SX,  SY,  S0}};
			double [][] aB= {{SXZ},{SYZ},{SZ}};
			Matrix M=new Matrix(aM);
			Matrix B=new Matrix(aB);
			if (this.debugLevel>2) {
				System.out.println(" M:");
				M.print(8, 6);
				System.out.println(" B:");
				B.print(8, 6);
				System.out.println(" Ax,Ay,B:");
				M.solve(B).print(8, 6);
			}
			double [] tilts=M.solve(B).getRowPackedCopy();
			if (this.debugLevel>2) {
				if (this.refineParameters.showThisCorrection) {
					this.SDFA_INSTANCE.showArrays(gridCorr3d, getGridWidth(), getGridHeight(),  true, "before tilt:", titles);
				}
			}
			for (int v=0;v<height;v++) for (int u=0;u<width; u++){
				int index=u+v*width;
				gridCorr3d[2][index]-=tilts[0]*patternParameters.gridGeometry[v][u][0]+tilts[1]*patternParameters.gridGeometry[v][u][1]+tilts[2];
			}
		}
    	if (this.debugLevel>2) {
    		if (this.refineParameters.showThisCorrection) {
    			double [][] gridCorr3dClone=new double [4][width*height];
    			for (int c=0;c<gridCorr3dClone.length;c++) for (int i=0;i<gridCorr3dClone[c].length;i++)
    				gridCorr3dClone[c][i]=reliable[i]? gridCorr3d[c][i]:0.0;
    			this.SDFA_INSTANCE.showArrays(gridCorr3dClone, getGridWidth(), getGridHeight(),  true, "after tilt:", titles);
    		}
    	}
    	IJ.showStatus("");
		return  gridCorr3d;
	}
/**
Andrey Filippov's avatar
Andrey Filippov committed
8838
 *
Andrey Filippov's avatar
Andrey Filippov committed
8839 8840 8841 8842 8843
 * @param gridCorr3D Array of grid corrections (1-st index: dx, dy, dz, mask (>0 - valid point)
 * @param gridZCorr Optional per-station z-correction (or null)
 * @param width // width of the grid array
 * @param preShrink // shrink input array by this number of pixels (hor/vert) befere extrapolating (remove bad border nodes)
 * @param expand    // expand/extrapolate this number of steps after shrinking (or until no pixels left
Andrey Filippov's avatar
Andrey Filippov committed
8844
 * @param sigma     // effective radius for fitting the extrapolation plane, in nodes
Andrey Filippov's avatar
Andrey Filippov committed
8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
 * @param ksigma    // size if square to consider (measured in ksigma-s). 2.0 means square is 4*sigma by 4*sigma
 * @return true if OK, false if error
 */
	public boolean shrinkExtrapolateGridCorrection(
			double [][] gridCorr3D, // dx,dy,dz, mask >0
			double [][] gridZCorr, // per-station additional Z-correction (or null)
			int width,
			int preShrink,
			int expand,
			double sigma,
			double ksigma){
		int length=gridCorr3D[0].length;
        int height=	length/width;
//		int decimate=fittingStrategy.distortionCalibrationData.eyesisCameraParameters.decimateMasks;
//		int sWidth= (fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorWidth-1)/decimate+1;
//		int sHeight=(fittingStrategy.distortionCalibrationData.eyesisCameraParameters.sensorHeight-1)/decimate+1;
//		double sigma=nsigma/decimate;
		boolean [] fMask=new boolean[length];
		for (int i=0;i<fMask.length;i++)
			fMask[i]=gridCorr3D[3][i]>0;
		int len= (int) Math.ceil(sigma*ksigma);
		double [] gaussian=new double[len+1];
		double k=0.5/sigma/sigma;
		for (int i=0;i<=len;i++) gaussian[i]=Math.exp(-i*i*k);
		int [][] dirs={{-1,0},{1,0},{0,-1},{0,1}};
		List <Integer> extList=new ArrayList<Integer>(1000);
		Integer Index,Index2;
		extList.clear();
		// create initial wave
		int debugThreshold=2;
		if (this.debugLevel>debugThreshold) System.out.println("shrinkExtrapolateGridCorrection width="+width+" height="+height);
Andrey Filippov's avatar
Andrey Filippov committed
8876

Andrey Filippov's avatar
Andrey Filippov committed
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
		for (int iy=0;iy<height;iy++) for (int ix=0;ix<width;ix++) {
			Index=iy*width+ix;
			if (fMask[Index]) {
				int numNew=0;
				for (int dir=0;dir<dirs.length;dir++){
					int ix1=ix+dirs[dir][0];
					int iy1=iy+dirs[dir][1];
					// Will not shrink from the array border!
					if ((ix1>=0) && (iy1>=0) && (ix1<width) && (iy1<height)) {
						if (!fMask[iy1*width+ix1]) numNew++;
					}
					if (numNew>0) extList.add(Index); // neighbor will have non-singular matrix
				}
			}
		}
		if (this.debugLevel>debugThreshold) System.out.println("Initial wave length="+extList.size());
Andrey Filippov's avatar
Andrey Filippov committed
8893
		// now shrink
Andrey Filippov's avatar
Andrey Filippov committed
8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
		// unmask current wave
		for (int i=extList.size()-1; i>=0;i--) fMask[extList.get(i)]=false;
		if (extList.size()==0) return false; // no points
		for (int nShrink=0;nShrink<preShrink;nShrink++){
			int size=extList.size();
			if (this.debugLevel>debugThreshold) System.out.println("shrinking, size="+size);
			if (size==0) return false; // no points
			// wave step, unmasking
			for (int i=0; i<size;i++) {
				Index=extList.get(0);
				extList.remove(0);
				int iy=Index/width;
				int ix=Index%width;
				for (int dir=0;dir<dirs.length;dir++){
					int ix1=ix+dirs[dir][0];
					int iy1=iy+dirs[dir][1];
Andrey Filippov's avatar
Andrey Filippov committed
8910
					if ((ix1>=0) && (iy1>=0) && (ix1<width) && (iy1<height)){
Andrey Filippov's avatar
Andrey Filippov committed
8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921
						Index=iy1*width+ix1;
						if (fMask[Index]){
							extList.add(Index);
							fMask[Index]=false; // restore later?
						}
					}
				}
			}
		}
		// restore mask on the front
		for (int i=extList.size()-1; i>=0;i--) fMask[extList.get(i)]=true;
Andrey Filippov's avatar
Andrey Filippov committed
8922

Andrey Filippov's avatar
Andrey Filippov committed
8923 8924 8925 8926 8927 8928
		   // repeat with the wave until there is place to move, but not more than "expand" steps
		   int [] dirs2=new int [2];
		   for (int n=0; (n<expand) && (extList.size()>0); n++ ){
			   if (this.updateStatus) IJ.showStatus("Expanding, step="+(n+1)+" (of "+expand+"), extList.size()="+extList.size());
//			   if (this.updateStatus) showStatus("Expanding, step="+(n+1)+" (of "+expand+"), extList.size()="+extList.size(),0);
			   if (this.debugLevel>debugThreshold) System.out.println("Expanding, step="+n+", extList.size()="+extList.size());
Andrey Filippov's avatar
Andrey Filippov committed
8929
			   // move wave front 1 pixel hor/vert
Andrey Filippov's avatar
Andrey Filippov committed
8930 8931 8932 8933 8934 8935 8936 8937
			   for (int i=extList.size();i>0;i--){ // repeat current size times
				   Index=extList.get(0);
				   extList.remove(0);
				   int iy=Index/width;
				   int ix=Index%width;
				   for (int dir=0;dir<dirs.length;dir++){
					   int ix1=ix+dirs[dir][0];
					   int iy1=iy+dirs[dir][1];
Andrey Filippov's avatar
Andrey Filippov committed
8938
					   if ((ix1>=0) && (iy1>=0) && (ix1<width) && (iy1<height)){
Andrey Filippov's avatar
Andrey Filippov committed
8939 8940 8941 8942 8943 8944 8945 8946
						   Index=iy1*width+ix1;
						   if (!fMask[Index]){
							   // verify it has neighbors in the perpendicular direction to dir
							   dirs2[0]=(dir+2) & 3;
							   dirs2[1]=dirs2[0] ^ 1;
							   for (int dir2=0;dir2<dirs2.length;dir2++){
								   int ix2=ix+dirs[dirs2[dir2]][0]; // from the old, not the new point!
								   int iy2=iy+dirs[dirs2[dir2]][1];
Andrey Filippov's avatar
Andrey Filippov committed
8947
								   if ((ix2>=0) && (iy2>=0) && (ix2<width) && (iy2<height)){
Andrey Filippov's avatar
Andrey Filippov committed
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
									   Index2=iy2*width+ix2;
									   if (fMask[Index2]){ // has orthogonal neighbor, OK to add
										   extList.add(Index);
										   fMask[Index]=true; // remove later
										   break;
									   }
								   }
							   }
						   }
					   }
				   }
			   }
			   // now un-mask the pixels in new list new
			   for (int i =0;i<extList.size();i++){
				   Index=extList.get(i);
				   fMask[Index]=false; // now mask is only set for known pixels
			   }
	// Calculate values (extrapolate) for the pixels in the list
			/*
Err = sum (W(x,y)*(f(x,y)-F0-Ax*(x-X0)-Ay*(y-Y0))^2)=
sum (Wxy*(Fxy^2+F0^2+Ax^2*(x-X0)^2+Ay^2*(y-Y0)^2
-2*Fxy*F0 -2*Fxy*Ax*(x-X0) - 2*Fxy*Ay*(y-Y0)
Andrey Filippov's avatar
Andrey Filippov committed
8970
+2*F0*Ax*(x-X0) + 2*F0*Ay*(y-Y0)
Andrey Filippov's avatar
Andrey Filippov committed
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003
+2*Ax*(x-X0)*Ay*(y-Y0))
(1)0=dErr/dF0= 2*sum (Wxy*(F0-Fxy+Ax*(x-X0)+Ay(y-Y0)))
(2)0=dErr/dAx= 2*sum (Wxy*(Ax*(x-X0)^2-Fxy*(x-X0) +F0*(x-X0)+Ay*(x-x0)*(y-Y0)))
(3)0=dErr/dAy= 2*sum (Wxy*(Ay*(y-y0)^2-Fxy*(y-Y0) +F0*(y-Y0)+Ax*(x-x0)*(y-Y0)))

S0 = sum(Wxy)
SF=  sum(Wxy*Fxy)
SX=  sum(Wxy*(x-X0)
SY=  sum(Wxy*(y-Y0)
SFX= sum(Wxy*Fxy*(x-X0)
SFY= sum(Wxy*Fxy*(y-Y0)
SX2= sum(Wxy*(x-X0)^2
SY2= sum(Wxy*(y-Y0)^2
SXY= sum(Wxy*(x-X0)*(y-Y0)

(1) F0*S0 - SF + Ax*SX +Ay*Sy = 0
(2) Ax*SX2-SFX+F0*SX+Ay*SXY = 0
(3) Ay*Sy2 -SFY + F0*SY +Ax*SXY = 0

(1) F0*S0  + Ax*SX +Ay*SY = SF
(2) Ax*SX2+F0*SX+Ay*SXY = SFX
(3) Ay*Sy2  + F0*SY +Ax*SXY = SFY


   | F0 |
V= | Ax |
   | Ay |

     | SF  |
B =  | SFX |
     | SFY |

     | S0  SX   SY  |
Andrey Filippov's avatar
Andrey Filippov committed
9004
M =  | SX  SX2  SXY |
Andrey Filippov's avatar
Andrey Filippov committed
9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
     | SY  SXY  SY2 |

M * V = B
			 */
			   int numOriginalComponents=3;
			   boolean useExtra=gridZCorr!=null;
			for (int i =0;i<extList.size();i++){
        		Index=extList.get(i);
        		int iy=Index/width;
        		int ix=Index%width;
        		double [] S0=new double [3+(useExtra?gridZCorr.length:0)];
        		for (int ii=0;ii<S0.length;ii++) S0[ii]=0.0;
//        		double [] S0= {0.0,0.0,0.0};
        		double [] SF= S0.clone();
        		double [] SX= S0.clone();
        		double [] SY= S0.clone();
        		double [] SFX=S0.clone();
        		double [] SFY=S0.clone();
        		double [] SX2=S0.clone();
        		double [] SY2=S0.clone();
        		double [] SXY=S0.clone();
        		int iYmin=iy-len; if (iYmin<0) iYmin=0;
        		int iYmax=iy+len; if (iYmax>=height) iYmax=height-1;
        		int iXmin=ix-len; if (iXmin<0) iXmin=0;
        		int iXmax=ix+len; if (iXmax>=width) iXmax=width-1;
        		for (int iy1=iYmin;iy1<=iYmax;iy1++) for (int ix1=iXmin;ix1<=iXmax;ix1++) {
        			int ind=ix1+iy1*width;
        			if (fMask[ind]){
        				double w=gaussian[(iy1>=iy)?(iy1-iy):(iy-iy1)]*gaussian[(ix1>=ix)?(ix1-ix):(ix-ix1)];
        				for (int m=0;m<S0.length;m++){
        					double d=(m<numOriginalComponents)?gridCorr3D[m][ind]:gridZCorr[m-numOriginalComponents][ind];
        					S0[m]+= w;
        					SF[m]+= w*d;
        					SX[m]+= w*(ix1-ix);
        					SY[m]+= w*(iy1-iy);
        					SFX[m]+=w*d*(ix1-ix);
        					SFY[m]+=w*d*(iy1-iy);
        					SX2[m]+=w*(ix1-ix)*(ix1-ix);
        					SY2[m]+=w*(iy1-iy)*(iy1-iy);
        					SXY[m]+=w*(ix1-ix)*(iy1-iy);
        				}
        			}
Andrey Filippov's avatar
Andrey Filippov committed
9047

Andrey Filippov's avatar
Andrey Filippov committed
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064
        		}
        		for (int m=0;m<S0.length;m++){
        			double [][] aB={{SF[m]},{SFX[m]},{SFY[m]}};
        			double [][] aM={
        					{S0[m],SX[m], SY[m]},
        					{SX[m],SX2[m],SXY[m]},
        					{SY[m],SXY[m],SY2[m]}
        			};
        			Matrix B=new Matrix(aB);
        			Matrix M=new Matrix(aM);
        			Matrix V=M.solve(B);
        			if (m<numOriginalComponents) gridCorr3D[m][Index]=V.get(0,0);
        			else gridZCorr[m-numOriginalComponents][Index]=V.get(0,0);
        		}
    			if (this.debugLevel>debugThreshold) System.out.println("updated v="+(Index/width)+" u="+(Index%width)+" {"+
    					IJ.d2s(gridCorr3D[0][Index],2)+","+IJ.d2s(gridCorr3D[1][Index],2)+","+IJ.d2s(gridCorr3D[2][Index],2)+"}");
			}
Andrey Filippov's avatar
Andrey Filippov committed
9065 9066

// set mask again for the new calculated layer of pixels
Andrey Filippov's avatar
Andrey Filippov committed
9067 9068 9069 9070 9071
			for (int i =0;i<extList.size();i++){
        		Index=extList.get(i);
				fMask[Index]=true;
			}
        }
Andrey Filippov's avatar
Andrey Filippov committed
9072
	   return true;
Andrey Filippov's avatar
Andrey Filippov committed
9073
	}
Andrey Filippov's avatar
Andrey Filippov committed
9074

Andrey Filippov's avatar
Andrey Filippov committed
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
	public void logScale(
			double [] data,
			double fatZero){
		for (int i=0;i<data.length;i++){
			double d=((data[i]>=0)?data[i]:0.0);
			data[i]=(fatZero>0)?(Math.log(fatZero+d)):d;
		}
	}
	public void unLogScale(
			double [] data,
			double fatZero){
		for (int i=0;i<data.length;i++){
			if (fatZero>0.0) data[i]=Math.exp(data[i])-fatZero;
			if (data[i]<0.0) data[i]=0.0;
		}
	}
Andrey Filippov's avatar
Andrey Filippov committed
9091

Andrey Filippov's avatar
Andrey Filippov committed
9092
	/**
Andrey Filippov's avatar
Andrey Filippov committed
9093
	 * Extrapolates sensor correction beyond known data (in-place)
Andrey Filippov's avatar
Andrey Filippov committed
9094
	 * @param fieldXY [2][nPixels] vector field to extrapolate
Andrey Filippov's avatar
Andrey Filippov committed
9095 9096
	 * @param sMask [nPixels] alpha (0.0 .. 1.0) "reliability" mask to apply to vector field
	 * @param alphaThreshold start with pixels with alpha above this value (disregard border unreliable pixels)
Andrey Filippov's avatar
Andrey Filippov committed
9097 9098 9099 9100 9101 9102
	 * @param nsigma when fitting plane through new point use Gaussian weight function for the neighbors
	 *  (normalized to non-decimated points)
	 * @param ksigma Process pixels in a square with the side 2*sigma*ksigma
	 * @return false if nothing to extrapolate (too small mask)?
	 */
	public boolean extrapolateSensorCorrection(
9103
			int    numChn,
Andrey Filippov's avatar
Andrey Filippov committed
9104 9105 9106 9107 9108 9109
			boolean [] whichExtrapolate,
			double [][] fieldXY,
			double []sMask,
			double alphaThreshold,
			double nsigma,
			double ksigma){
Andrey Filippov's avatar
Andrey Filippov committed
9110

9111 9112 9113
		int decimate = getDecimateMasks(numChn);
		int sWidth =   (getSensorWidth(numChn)-1)/decimate+1;
		int sHeight =  (getSensorHeight(numChn)-1)/decimate+1;
Andrey Filippov's avatar
Andrey Filippov committed
9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146
		double sigma=nsigma/decimate;
		boolean [] fMask=new boolean[fieldXY[0].length];
		for (int i=0;i<fMask.length;i++)
			fMask[i]=sMask[i]>=alphaThreshold;
		int len= (int) Math.ceil(sigma*ksigma);
		double [] gaussian=new double[len+1];
		double k=0.5/sigma/sigma;
		for (int i=0;i<=len;i++) gaussian[i]=Math.exp(-i*i*k);
		int [][] dirs={{-1,0},{1,0},{0,-1},{0,1}};
		List <Integer> extList=new ArrayList<Integer>(1000);
		Integer Index;
		extList.clear();
		// create initial wave
		if (this.debugLevel>2) System.out.println("extrapolateSensorCorrection() decimate="+decimate+", sWidth="+sWidth+" sHeight="+sHeight);
		for (int iy=0;iy<sHeight;iy++) for (int ix=0;ix<sWidth;ix++) {
			Index=iy*sWidth+ix;
			if (fMask[Index]) {
				int numOld=0;
				int numNew=0;
				for (int dir=0;dir<dirs.length;dir++){
					int ix1=ix+dirs[dir][0];
					int iy1=iy+dirs[dir][1];
					if ((ix1>=0) && (iy1>=0) && (ix1<sWidth) && (iy1<sHeight)) {
						if (fMask[iy1*sWidth+ix1]) numOld++;
						else numNew++;
					}
					if ((numNew>0) && (numOld>1)) extList.add(Index); // neighbor will have non-singular matrix
				}
			}
		}
		if (extList.size()==0) return false;
        while (extList.size()>0){
    		if (this.debugLevel>2) System.out.println("extList.size()="+extList.size());
Andrey Filippov's avatar
Andrey Filippov committed
9147 9148

        	// move wave front 1 pixel hor/vert
Andrey Filippov's avatar
Andrey Filippov committed
9149 9150 9151 9152 9153 9154 9155 9156
        	for (int i=extList.size();i>0;i--){ // repeat current size times
        		Index=extList.get(0);
        		extList.remove(0);
        		int iy=Index/sWidth;
        		int ix=Index%sWidth;
				for (int dir=0;dir<dirs.length;dir++){
					int ix1=ix+dirs[dir][0];
					int iy1=iy+dirs[dir][1];
Andrey Filippov's avatar
Andrey Filippov committed
9157
					if ((ix1>=0) && (iy1>=0) && (ix1<sWidth) && (iy1<sHeight)){
Andrey Filippov's avatar
Andrey Filippov committed
9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
						Index=iy1*sWidth+ix1;
						if (!fMask[Index]){
							extList.add(Index);
							fMask[Index]=true; // remove later
						}
					}
				}
        	}
			// now un-mask the pixels in new list new
			for (int i =0;i<extList.size();i++){
        		Index=extList.get(i);
				fMask[Index]=false; // now mask is only set for known pixels
			}
// Calculate values (extrapolate) for the pixels in the list
			/*
Err = sum (W(x,y)*(f(x,y)-F0-Ax*(x-X0)-Ay*(y-Y0))^2)=
sum (Wxy*(Fxy^2+F0^2+Ax^2*(x-X0)^2+Ay^2*(y-Y0)^2
-2*Fxy*F0 -2*Fxy*Ax*(x-X0) - 2*Fxy*Ay*(y-Y0)
Andrey Filippov's avatar
Andrey Filippov committed
9176
+2*F0*Ax*(x-X0) + 2*F0*Ay*(y-Y0)
Andrey Filippov's avatar
Andrey Filippov committed
9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209
+2*Ax*(x-X0)*Ay*(y-Y0))
(1)0=dErr/dF0= 2*sum (Wxy*(F0-Fxy+Ax*(x-X0)+Ay(y-Y0)))
(2)0=dErr/dAx= 2*sum (Wxy*(Ax*(x-X0)^2-Fxy*(x-X0) +F0*(x-X0)+Ay*(x-x0)*(y-Y0)))
(3)0=dErr/dAy= 2*sum (Wxy*(Ay*(y-y0)^2-Fxy*(y-Y0) +F0*(y-Y0)+Ax*(x-x0)*(y-Y0)))

S0 = sum(Wxy)
SF=  sum(Wxy*Fxy)
SX=  sum(Wxy*(x-X0)
SY=  sum(Wxy*(y-Y0)
SFX= sum(Wxy*Fxy*(x-X0)
SFY= sum(Wxy*Fxy*(y-Y0)
SX2= sum(Wxy*(x-X0)^2
SY2= sum(Wxy*(y-Y0)^2
SXY= sum(Wxy*(x-X0)*(y-Y0)

(1) F0*S0 - SF + Ax*SX +Ay*Sy = 0
(2) Ax*SX2-SFX+F0*SX+Ay*SXY = 0
(3) Ay*Sy2 -SFY + F0*SY +Ax*SXY = 0

(1) F0*S0  + Ax*SX +Ay*SY = SF
(2) Ax*SX2+F0*SX+Ay*SXY = SFX
(3) Ay*Sy2  + F0*SY +Ax*SXY = SFY


   | F0 |
V= | Ax |
   | Ay |

     | SF  |
B =  | SFX |
     | SFY |

     | S0  SX   SY  |
Andrey Filippov's avatar
Andrey Filippov committed
9210
M =  | SX  SX2  SXY |
Andrey Filippov's avatar
Andrey Filippov committed
9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249
     | SY  SXY  SY2 |

M * V = B
			 */
			double [] zeros= new double[whichExtrapolate.length];
			for (int i=0;i<zeros.length;i++)zeros[i]=0.0;
			for (int i =0;i<extList.size();i++){
        		Index=extList.get(i);
        		int iy=Index/sWidth;
        		int ix=Index%sWidth;
        		double [] S0= zeros.clone();
        		double [] SF= zeros.clone();
        		double [] SX= zeros.clone();
        		double [] SY= zeros.clone();
        		double [] SFX=zeros.clone();
        		double [] SFY=zeros.clone();
        		double [] SX2=zeros.clone();
        		double [] SY2=zeros.clone();
        		double [] SXY=zeros.clone();
        		int iYmin=iy-len; if (iYmin<0) iYmin=0;
        		int iYmax=iy+len; if (iYmax>=sHeight) iYmax=sHeight-1;
        		int iXmin=ix-len; if (iXmin<0) iXmin=0;
        		int iXmax=ix+len; if (iXmax>=sWidth) iXmax=sWidth-1;
        		for (int iy1=iYmin;iy1<=iYmax;iy1++) for (int ix1=iXmin;ix1<=iXmax;ix1++) {
        			int ind=ix1+iy1*sWidth;
        			if (fMask[ind]){
        				double w=gaussian[(iy1>=iy)?(iy1-iy):(iy-iy1)]*gaussian[(ix1>=ix)?(ix1-ix):(ix-ix1)];
        				for (int m=0;m<whichExtrapolate.length;m++) if(whichExtrapolate[m]){
        					S0[m]+= w;
        					SF[m]+= w*fieldXY[m][ind];
        					SX[m]+= w*(ix1-ix);
        					SY[m]+= w*(iy1-iy);
        					SFX[m]+=w*fieldXY[m][ind]*(ix1-ix);
        					SFY[m]+=w*fieldXY[m][ind]*(iy1-iy);
        					SX2[m]+=w*(ix1-ix)*(ix1-ix);
        					SY2[m]+=w*(iy1-iy)*(iy1-iy);
        					SXY[m]+=w*(ix1-ix)*(iy1-iy);
        				}
        			}
Andrey Filippov's avatar
Andrey Filippov committed
9250

Andrey Filippov's avatar
Andrey Filippov committed
9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
        		}
        		for (int m=0;m<whichExtrapolate.length;m++) if(whichExtrapolate[m]){
        			double [][] aB={{SF[m]},{SFX[m]},{SFY[m]}};
        			double [][] aM={
        					{S0[m],SX[m], SY[m]},
        					{SX[m],SX2[m],SXY[m]},
        					{SY[m],SXY[m],SY2[m]}
        			};
        			Matrix B=new Matrix(aB);
        			Matrix M=new Matrix(aM);
        			Matrix V=M.solve(B);
        			fieldXY[m][Index]=V.get(0,0);
        		}

			}
Andrey Filippov's avatar
Andrey Filippov committed
9266 9267

// set mask again for the new calculated layer of pixels
Andrey Filippov's avatar
Andrey Filippov committed
9268 9269 9270 9271 9272 9273
			for (int i =0;i<extList.size();i++){
        		Index=extList.get(i);
				fMask[Index]=true;
			}
        }
		return true;
Andrey Filippov's avatar
Andrey Filippov committed
9274

Andrey Filippov's avatar
Andrey Filippov committed
9275
	}
Andrey Filippov's avatar
Andrey Filippov committed
9276 9277


Andrey Filippov's avatar
Andrey Filippov committed
9278 9279 9280 9281 9282
	/**
	 * Calculates residual correction from  the measured sensor pX, pY to the calculated {pixel X, pixel Y}
	 * @param distortionCalibrationData
	 * @param showIndividual - show individual images
	 * @param showIndividualNumber - which image to show (-1 - all)
Andrey Filippov's avatar
Andrey Filippov committed
9283
	 * @return
Andrey Filippov's avatar
Andrey Filippov committed
9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
	 */
	public double [][][] calculateSensorXYCorr(
			DistortionCalibrationData distortionCalibrationData,
			boolean showIndividual,
			int showIndividualNumber, // which image to show (-1 - all)
			boolean useGridAlpha // use grid alpha, false - use old calculations
			){
		int numChannels=distortionCalibrationData.getNumChannels(); // number of used channels
		int width=getGridWidth();
		int height=getGridHeight();
    	int imgRGBIndex=   3;
Andrey Filippov's avatar
Andrey Filippov committed
9295

Andrey Filippov's avatar
Andrey Filippov committed
9296 9297 9298 9299 9300 9301 9302
		int [] uvInc={0,1,width,width+1}; // four corners as vu index
		int [][] cycles={ // counter-clockwise corners bounding the area  (only orthogonal sides?)
				{1,0,2},
				{2,3,1},
				{0,2,3},
				{3,1,0}};
		double [][][] gridPCorr=new double [numChannels][][];
Andrey Filippov's avatar
Andrey Filippov committed
9303
		for (int chnNum=0;chnNum<gridPCorr.length;chnNum++) gridPCorr[chnNum]=null;
Andrey Filippov's avatar
Andrey Filippov committed
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313
		boolean [] selectedImages=fittingStrategy.selectedImages();
		boolean debugExit=false;
		int debugCntr=2;
		int numSelected=0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) numSelected++;
		int numProcessed=0;
		IJ.showStatus("Calculating sensor corrections...");
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) {
			if (debugExit) break;
			int chnNum=fittingStrategy.distortionCalibrationData.gIP[imgNum].channel; // number of sub-camera
9314 9315 9316 9317 9318

			int decimate=getDecimateMasks(chnNum);
			int sWidth= (getSensorWidth(chnNum)-1)/decimate+1;
			int sHeight=(getSensorHeight(chnNum)-1)/decimate+1;

Andrey Filippov's avatar
Andrey Filippov committed
9319 9320
			int station=fittingStrategy.distortionCalibrationData.gIP[imgNum].getStationNumber(); // number of sub-camera
			double [][] photometrics=patternParameters.getPhotometricBySensor(station,chnNum); // head/bottom grid intensity/alpha
Andrey Filippov's avatar
Andrey Filippov committed
9321

Andrey Filippov's avatar
Andrey Filippov committed
9322 9323 9324 9325 9326
			if (showIndividual && ((showIndividualNumber<0) || (showIndividualNumber==chnNum))) {
				String [] titles={"R","G","B","A"};
				this.SDFA_INSTANCE.showArrays(photometrics, width, height,  true, "Photometrics"+chnNum+"-"+imgNum, titles);
			}

Andrey Filippov's avatar
Andrey Filippov committed
9327

Andrey Filippov's avatar
Andrey Filippov committed
9328 9329 9330 9331 9332 9333
			// initialize this array if it is needed, leave unused null
			if (gridPCorr[chnNum]==null){
				 gridPCorr[chnNum]=new double [7][sWidth*sHeight];
				for (int n=0;n<gridPCorr[chnNum].length;n++) for (int i=0;i<gridPCorr[chnNum][0].length;i++) gridPCorr[chnNum][n][i]=0.0;
			}
			double [][] thisPCorr=null;
Andrey Filippov's avatar
Andrey Filippov committed
9334

Andrey Filippov's avatar
Andrey Filippov committed
9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347
			thisPCorr=new double [7][sWidth*sHeight]; // calculate for a single (this) image, accumulate in the end
			for (int n=0;n<thisPCorr.length;n++) for (int i=0;i<thisPCorr[0].length;i++) thisPCorr[n][i]=0.0;
			double [] diff=calcYminusFx(this.currentfX);
			// find data range for the selected image
			int index=0;
			int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
			for (int iNum=0;(iNum<imgNum) && (iNum<numImg) ;iNum++) if (selectedImages[iNum])
				index+=fittingStrategy.distortionCalibrationData.gIP[iNum].pixelsUV.length;
			if (this.debugLevel>2) {
				System.out.println("calculateGridXYCorr(): fX.length="+this.currentfX.length+" this image index="+index);
			}
			double [][] imgData=new double[8][height * width]; // dPX, dPY, Px, Py, alpha,R,G,B
			for (int i=0;i<imgData.length;i++) for (int j=0;j<imgData[i].length;j++)imgData[i][j]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
9348

Andrey Filippov's avatar
Andrey Filippov committed
9349 9350 9351 9352 9353 9354 9355 9356 9357
			for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;i++){
				int u=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][0]+patternParameters.U0; // starting from 0
				int v=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV[i][1]+patternParameters.V0; // starting from 0
				int vu=u+width*v;
				imgData[0][vu]=   diff[2*(index+i)];
				imgData[1][vu]=   diff[2*(index+i)+1];
				imgData[2][vu]= this.Y[2*(index+i)];  // measured pixel x
				imgData[3][vu]= this.Y[2*(index+i)+1];// measured pixel y
				imgData[4][vu]= this.weightFunction[2*(index+i)];
Andrey Filippov's avatar
Andrey Filippov committed
9358

Andrey Filippov's avatar
Andrey Filippov committed
9359 9360 9361 9362 9363 9364 9365 9366 9367
				for (int c=0;c<3;c++){
//					double g=gridGeometry[v][u][gridRGBIndex+c];
					double g=photometrics[c][vu];
					imgData[5+c][vu]=(g>0)?(fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsXY[i][imgRGBIndex+c]/g):g;
				}
			}
			if (showIndividual && ((showIndividualNumber<0) || (showIndividualNumber==chnNum))) {
				String [] titles={"dPx","dPy","Px","Py","A","R","G","B"};// dPX, dPY, Px, Py, alpha,R,G,B - rgb - full, not incremental
				this.SDFA_INSTANCE.showArrays(imgData, width, height,  true, "imgData"+imgNum, titles);
Andrey Filippov's avatar
Andrey Filippov committed
9368

Andrey Filippov's avatar
Andrey Filippov committed
9369 9370 9371 9372 9373 9374 9375 9376
			}

			// now use imgData array to fill thisPCorr by linear interpolation
			for (int v=0;v<(height-1); v++) for (int u=0; u<(width-1);u++){
				if (debugExit) break;
				int vu=u+width*v;
                double [][] cornerXY =new double[4][];
                for (int i=0;i<uvInc.length;i++){
Andrey Filippov's avatar
Andrey Filippov committed
9377
                	int vu1=vu+uvInc[i];
Andrey Filippov's avatar
Andrey Filippov committed
9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430
                	if (imgData[4][vu1]>0.0){
                		cornerXY[i]=new double[2];
                		cornerXY[i][0]=imgData[2][vu1];
                		cornerXY[i][1]=imgData[3][vu1];
                	} else cornerXY[i]=null;
                }
                boolean [] cycleFits=new boolean[cycles.length];
                boolean anyFits=false;
                for (int i=0;i<cycles.length;i++){
                	cycleFits[i]=true;
                	for (int j=0;j<cycles[i].length;j++) if (cornerXY[cycles[i][j]]==null) {
                		cycleFits[i]=false;
                		break;
                	}
                	anyFits |=cycleFits[i];
                }
                if (!anyFits) continue; // not a single cycle
				if ((this.debugLevel>3) && !debugExit) {
					String debugString="cycleFits ";
					for (int i =0;i<cycleFits.length; i++) debugString+=" "+cycleFits[i];
					System.out.println(debugString);
				}
                if (cycleFits[0]&&cycleFits[1]){ // remove overlaps
                	cycleFits[2]=false;
                	cycleFits[3]=false;
                }
                boolean minMaxUndefined=true;
				double minX=0,maxX=0,minY=0,maxY=0;
				// find bounding rectangle;
				for (int nCycle=0;nCycle<cycles.length;nCycle++) if (cycleFits[nCycle]){
					int [] cycle=cycles[nCycle];
					for (int corner=0; corner<cycle.length;corner++){
						if (minMaxUndefined || (minX>cornerXY[cycle[corner]][0])) minX=cornerXY[cycle[corner]][0];
						if (minMaxUndefined || (maxX<cornerXY[cycle[corner]][0])) maxX=cornerXY[cycle[corner]][0];
						if (minMaxUndefined || (minY>cornerXY[cycle[corner]][1])) minY=cornerXY[cycle[corner]][1];
						if (minMaxUndefined || (maxY<cornerXY[cycle[corner]][1])) maxY=cornerXY[cycle[corner]][1];
						minMaxUndefined=false;
					}
				}
				int iMinX=(int) Math.floor(minX/decimate);
				int iMinY=(int) Math.floor(minY/decimate);
				int iMaxX=(int) Math.ceil(maxX/decimate);
				int iMaxY=(int) Math.ceil(maxY/decimate);
				// not sure if these checks are needed, got out of bounds wheriDy was =484=sHeight
				if (iMinX<0) iMinX=0;
				if (iMaxX>=sWidth) iMaxX=sWidth-1;
				if (iMinY<0) iMinY=0;
				if (iMaxY>=sHeight) iMaxY=sHeight-1;
				double [] originXY=new double [2];
				double [] endXY=new double [2];
				boolean debugHadPixels=false;
//TODO: scan X,Y in this rectangle, for points in defined squares/triangles find if the point is inside (accurate not to loose any).
				for (int idY=iMinY; idY<=iMaxY;idY++){
Andrey Filippov's avatar
Andrey Filippov committed
9431

Andrey Filippov's avatar
Andrey Filippov committed
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452
					double pY=idY*decimate; // in sensor pixels
					for (int idX=iMinX; idX<=iMaxX;idX++){
						double pX=idX*decimate; // in sensor pixels
						// scan allowed triangles, usually 2
						for (int nCycle=0;nCycle<cycles.length;nCycle++) if (cycleFits[nCycle]){
							int [] cycle=cycles[nCycle];
							// is this point inside?
							if (debugExit) {
								for (int nEdge=0;nEdge<cycle.length;nEdge++){
									int nextNEdge=(nEdge==(cycle.length-1))?0:(nEdge+1);
									System.out.println("nEdge="+nEdge+" nextNEdge"+nextNEdge);

									originXY[0]=imgData[2][vu+uvInc[cycle[nEdge]]];
									originXY[1]=imgData[3][vu+uvInc[cycle[nEdge]]];
									endXY[0]=   imgData[2][vu+uvInc[cycle[nextNEdge]]];
									endXY[1]=   imgData[3][vu+uvInc[cycle[nextNEdge]]];
									System.out.println("--- pX="+IJ.d2s(pX,1)+" originXY[0]="+IJ.d2s(originXY[0],1)+
											" endXY[1]="+IJ.d2s(endXY[1],1)+" originXY[1]="+IJ.d2s(originXY[1],1));
									System.out.println("--- pY="+IJ.d2s(pY,1)+" originXY[1]="+IJ.d2s(originXY[1],1)+
											" endXY[0]="+IJ.d2s(endXY[0],1)+" originXY[0]="+IJ.d2s(originXY[0],1));
									System.out.println("Cross-product="+IJ.d2s(((pX-originXY[0])*(endXY[1]-originXY[1]) - (pY-originXY[1])*(endXY[0]-originXY[0])),1));
Andrey Filippov's avatar
Andrey Filippov committed
9453

Andrey Filippov's avatar
Andrey Filippov committed
9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478
								}
							}

							boolean inside=true;
							for (int nEdge=0;nEdge<cycle.length;nEdge++){
								int nextNEdge=(nEdge==(cycle.length-1))?0:(nEdge+1);

								originXY[0]=imgData[2][vu+uvInc[cycle[nEdge]]];
								originXY[1]=imgData[3][vu+uvInc[cycle[nEdge]]];
								endXY[0]=   imgData[2][vu+uvInc[cycle[nextNEdge]]];
								endXY[1]=   imgData[3][vu+uvInc[cycle[nextNEdge]]];
								if (((pX-originXY[0])*(endXY[1]-originXY[1]) - (pY-originXY[1])*(endXY[0]-originXY[0]))<0.0){
									inside=false;
									break;
								}
							}
							if (!inside) continue; // point is outside of the interpolation area, try next triangle (if any)
//							if ((this.debugLevel>3) && !debugExit) {
							if (this.debugLevel>3) {
								System.out.println("idX="+idX+" idY="+idY+" nCycle="+nCycle);
								String debugString1="cycle:";
								for (int i =0;i<cycle.length; i++) debugString1+=" "+cycle[i];
								System.out.println(debugString1);
							}

Andrey Filippov's avatar
Andrey Filippov committed
9479
							/* interpolate:
Andrey Filippov's avatar
Andrey Filippov committed
9480 9481 9482
							1. taking cycles[0] as origin and two (non co-linear) edge vectors - V1:from 0 to 1 and V2 from 1 to 2
							    find a1 and a2  so that vector V  (from 0  to pXY) = a1*V1+ a2*V2
							2. if F0 is the value of the interpolated function at cycles[0], F1 and F2 - at cycles[1] and cycles2
Andrey Filippov's avatar
Andrey Filippov committed
9483
							   then F=F0+(F1-F0)*a1 +(F2-F1)*a2
Andrey Filippov's avatar
Andrey Filippov committed
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521
							 */
							double [] XY0={imgData[2][vu+uvInc[cycle[0]]],imgData[3][vu+uvInc[cycle[0]]]};
							double [] XY1={imgData[2][vu+uvInc[cycle[1]]],imgData[3][vu+uvInc[cycle[1]]]};
							double [] XY2={imgData[2][vu+uvInc[cycle[2]]],imgData[3][vu+uvInc[cycle[2]]]};
							double [] V= {pX-XY0[0],pY-XY0[1]};
							double [][] M={
									{XY1[0]-XY0[0],XY2[0]-XY1[0]},
									{XY1[1]-XY0[1],XY2[1]-XY1[1]}};
							double det=M[0][0]*M[1][1]-M[1][0]*M[0][1];
							double [][] MInverse={
									{ M[1][1]/det,-M[0][1]/det},
									{-M[1][0]/det, M[0][0]/det}};
							double [] a12={
									MInverse[0][0]*V[0]+MInverse[0][1]*V[1],
									MInverse[1][0]*V[0]+MInverse[1][1]*V[1]};
							int pCorrIndex=idY*sWidth+idX;
// some points may be accumulated multiple times - thisPCorr[3] will take care of this
							if (this.debugLevel>3) {
								System.out.println("XY0="+IJ.d2s(XY0[0],3)+":"+IJ.d2s(XY0[1],3));
								System.out.println("XY1="+IJ.d2s(XY1[0],3)+":"+IJ.d2s(XY1[1],3));
								System.out.println("XY2="+IJ.d2s(XY2[0],3)+":"+IJ.d2s(XY2[1],3));
								System.out.println("M00="+IJ.d2s(M[0][0],3)+" M01="+IJ.d2s(M[0][1],3));
								System.out.println("M10="+IJ.d2s(M[1][0],3)+" M11="+IJ.d2s(M[1][1],3));
								System.out.println("MInverse00="+IJ.d2s(MInverse[0][0],5)+" MInverse01="+IJ.d2s(MInverse[0][1],5));
								System.out.println("MInverse10="+IJ.d2s(MInverse[1][0],5)+" MInverse11="+IJ.d2s(MInverse[1][1],5));
								System.out.println("a12="+IJ.d2s(a12[0],3)+":"+IJ.d2s(a12[1],3));
								System.out.println("imgData[0][vu+uvInc[cycle[0]]]="+IJ.d2s(imgData[0][vu+uvInc[cycle[0]]],3)+
										"imgData[1][vu+uvInc[cycle[0]]]="+IJ.d2s(imgData[1][vu+uvInc[cycle[0]]],3));
								System.out.println("imgData[0][vu+uvInc[cycle[1]]]="+IJ.d2s(imgData[0][vu+uvInc[cycle[1]]],3)+
										"imgData[1][vu+uvInc[cycle[1]]]="+IJ.d2s(imgData[1][vu+uvInc[cycle[1]]],3));
								System.out.println("imgData[0][vu+uvInc[cycle[2]]]="+IJ.d2s(imgData[0][vu+uvInc[cycle[2]]],3)+
										"imgData[1][vu+uvInc[cycle[2]]]="+IJ.d2s(imgData[1][vu+uvInc[cycle[2]]],3));
							}

							double [] corr={
									 imgData[0][vu+uvInc[cycle[0]]]+ // dPx
									(imgData[0][vu+uvInc[cycle[1]]]-imgData[0][vu+uvInc[cycle[0]]])*a12[0]+
									(imgData[0][vu+uvInc[cycle[2]]]-imgData[0][vu+uvInc[cycle[1]]])*a12[1],
Andrey Filippov's avatar
Andrey Filippov committed
9522

Andrey Filippov's avatar
Andrey Filippov committed
9523 9524 9525
									 imgData[1][vu+uvInc[cycle[0]]]+ // dPy
									(imgData[1][vu+uvInc[cycle[1]]]-imgData[1][vu+uvInc[cycle[0]]])*a12[0]+
									(imgData[1][vu+uvInc[cycle[2]]]-imgData[1][vu+uvInc[cycle[1]]])*a12[1],
Andrey Filippov's avatar
Andrey Filippov committed
9526

Andrey Filippov's avatar
Andrey Filippov committed
9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546
									 imgData[4][vu+uvInc[cycle[0]]]+ // alpha
									(imgData[4][vu+uvInc[cycle[1]]]-imgData[4][vu+uvInc[cycle[0]]])*a12[0]+
									(imgData[4][vu+uvInc[cycle[2]]]-imgData[4][vu+uvInc[cycle[1]]])*a12[1],
									 imgData[5][vu+uvInc[cycle[0]]]+ // Red measured/pattern
									(imgData[5][vu+uvInc[cycle[1]]]-imgData[5][vu+uvInc[cycle[0]]])*a12[0]+
									(imgData[5][vu+uvInc[cycle[2]]]-imgData[5][vu+uvInc[cycle[1]]])*a12[1],
									 imgData[6][vu+uvInc[cycle[0]]]+ // Green measured/pattern
									(imgData[6][vu+uvInc[cycle[1]]]-imgData[6][vu+uvInc[cycle[0]]])*a12[0]+
									(imgData[6][vu+uvInc[cycle[2]]]-imgData[6][vu+uvInc[cycle[1]]])*a12[1],
									 imgData[7][vu+uvInc[cycle[0]]]+ // Blue  measured/pattern
									(imgData[7][vu+uvInc[cycle[1]]]-imgData[7][vu+uvInc[cycle[0]]])*a12[0]+
									(imgData[7][vu+uvInc[cycle[2]]]-imgData[7][vu+uvInc[cycle[1]]])*a12[1]
									};
							if (this.debugLevel>3) {
								System.out.println("corr="+IJ.d2s(corr[0],3)+" "+IJ.d2s(corr[1],3)+" "+IJ.d2s(corr[2],3));
							}
 if (pCorrIndex>thisPCorr[0].length) {
	 System.out.println("imgNum=" + imgNum+": "+	fittingStrategy.distortionCalibrationData.gIP[imgNum].path);
	 System.out.println("thisPCorr[0].length="+thisPCorr[0].length+" pCorrIndex="+pCorrIndex+" sWidth="+sWidth+" idY="+idY+" idX="+idX);
 }
Andrey Filippov's avatar
Andrey Filippov committed
9547
							thisPCorr[0][pCorrIndex]+= corr[0];// dPx
Andrey Filippov's avatar
Andrey Filippov committed
9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582
							thisPCorr[1][pCorrIndex]+= corr[1];// dPy
							thisPCorr[2][pCorrIndex]+= corr[2];// alpha
							thisPCorr[3][pCorrIndex]+= 1.0;    // number of times accumulated
							thisPCorr[4][pCorrIndex]+= corr[3];// red
							thisPCorr[5][pCorrIndex]+= corr[4];// green
							thisPCorr[6][pCorrIndex]+= corr[5];// blue

							if (this.debugLevel>3) {
								debugHadPixels=true;
//								if (!debugExit) debugCntr--;
//								if (debugCntr==0) debugExit=true; // exit after first non-empty tile
							}

//gridPCorr[chnNum]
						}
					} // idX
					// use same order in calculations, make sure no gaps
				} // idY
				if ((this.debugLevel>3) && (debugHadPixels)){
					if (!debugExit) {
						System.out.println(
								" minX="+IJ.d2s(minX,1)+
								" maxX="+IJ.d2s(maxX,1));
						System.out.println(
								" minY="+IJ.d2s(minY,1)+
								" maxY="+IJ.d2s(maxY,1));
						System.out.println(
								" iMinX="+iMinX+
								" iMaxX="+iMaxX);
						System.out.println(
								" iMinY="+iMinY+
								" iMaxY="+iMaxY);
					}
					if (!debugExit) debugCntr--;
					if (debugCntr==0) debugExit=true; // exit after first non-empty tile
Andrey Filippov's avatar
Andrey Filippov committed
9583

Andrey Filippov's avatar
Andrey Filippov committed
9584 9585
				}
			} // finished image
Andrey Filippov's avatar
Andrey Filippov committed
9586 9587


Andrey Filippov's avatar
Andrey Filippov committed
9588 9589 9590 9591
/*			if (showIndividual) {
				String [] titles={"dPx","dPy","alpha","Multiple","Red","Green","Blue"};
				this.SDFA_INSTANCE.showArrays(thisPCorr, sWidth, sHeight,  true, "thisPCorr_pre"+imgNum, titles);
			}
Andrey Filippov's avatar
Andrey Filippov committed
9592 9593
*/
			// some points may be calculated multiple times
Andrey Filippov's avatar
Andrey Filippov committed
9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618
			for (int i=0;i<gridPCorr[chnNum][0].length;i++) if (thisPCorr[3][i]>=1.0){
				thisPCorr[0][i]/=thisPCorr[3][i]; // dPx
				thisPCorr[1][i]/=thisPCorr[3][i]; // dPy
				thisPCorr[2][i]/=thisPCorr[3][i]; // alpha
				thisPCorr[4][i]/=thisPCorr[3][i]; // r
				thisPCorr[5][i]/=thisPCorr[3][i]; // g
				thisPCorr[6][i]/=thisPCorr[3][i]; // b
			}

			if (showIndividual && ((showIndividualNumber<0) || (showIndividualNumber==chnNum))) {
				String [] titles={"dPx","dPy","alpha","Multiple","Red","Green","Blue"};
				this.SDFA_INSTANCE.showArrays(thisPCorr, sWidth, sHeight,  true, "thisPCorr"+imgNum, titles);
			}
			for (int i=0;i<gridPCorr[chnNum][0].length;i++) if (thisPCorr[2][i]>0){
				gridPCorr[chnNum][0][i]+=thisPCorr[0][i]*thisPCorr[2][i];
				gridPCorr[chnNum][1][i]+=thisPCorr[1][i]*thisPCorr[2][i];
				/**TODO: not used anyway - just for debugging? see if just the sensor mask should go here? Or when saving?*/
				if (gridPCorr[chnNum][2][i]<thisPCorr[2][i]) gridPCorr[chnNum][2][i]=thisPCorr[2][i]; // best alpha
				gridPCorr[chnNum][3][i]+=                thisPCorr[2][i]; // sum of weights from all images
				gridPCorr[chnNum][4][i]+=thisPCorr[4][i]*thisPCorr[2][i];
				gridPCorr[chnNum][5][i]+=thisPCorr[5][i]*thisPCorr[2][i];
				gridPCorr[chnNum][6][i]+=thisPCorr[6][i]*thisPCorr[2][i];
			}
			IJ.showProgress(++numProcessed, numSelected);
		}
Andrey Filippov's avatar
Andrey Filippov committed
9619
/*
Andrey Filippov's avatar
Andrey Filippov committed
9620 9621 9622 9623
		if (showIndividual) {
			String [] titles={"dPx","dPy","alpha","Multiple","Red","Green","Blue"};
			for (int chnNum=0;chnNum<gridPCorr.length;chnNum++) if (gridPCorr[chnNum]!=null) this.SDFA_INSTANCE.showArrays(gridPCorr[chnNum], sWidth, sHeight,  true, "gridPCorr1"+chnNum, titles);
		}
Andrey Filippov's avatar
Andrey Filippov committed
9624
*/
Andrey Filippov's avatar
Andrey Filippov committed
9625 9626 9627 9628 9629 9630 9631 9632 9633
		for (int chnNum=0;chnNum<gridPCorr.length;chnNum++) if (gridPCorr[chnNum]!=null){
			for (int i=0;i<gridPCorr[chnNum][0].length;i++) if (gridPCorr[chnNum][2][i]>0){ //null pointer
				gridPCorr[chnNum][0][i]/=gridPCorr[chnNum][3][i];
				gridPCorr[chnNum][1][i]/=gridPCorr[chnNum][3][i];
				gridPCorr[chnNum][4][i]/=gridPCorr[chnNum][3][i];
				gridPCorr[chnNum][5][i]/=gridPCorr[chnNum][3][i];
				gridPCorr[chnNum][6][i]/=gridPCorr[chnNum][3][i];
			}
		}
Andrey Filippov's avatar
Andrey Filippov committed
9634
/*
Andrey Filippov's avatar
Andrey Filippov committed
9635 9636 9637 9638
		if (showIndividual) {
			String [] titles={"dPx","dPy","alpha","Multiple","Red","Green","Blue"};
			for (int chnNum=0;chnNum<gridPCorr.length;chnNum++) if (gridPCorr[chnNum]!=null) this.SDFA_INSTANCE.showArrays(gridPCorr[chnNum], sWidth, sHeight,  true, "gridPCorr2"+chnNum, titles);
		}
Andrey Filippov's avatar
Andrey Filippov committed
9639
*/
Andrey Filippov's avatar
Andrey Filippov committed
9640 9641
		return gridPCorr;
	}
Andrey Filippov's avatar
Andrey Filippov committed
9642

Andrey Filippov's avatar
Andrey Filippov committed
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670
/**
 * Calculate partial derivative analytically (as the Jacobian calculation) and by difference divided by delta and compare
 * Done to debug derivatives calculation
 */
	public void compareDerivatives(){
		if (fittingStrategy==null) {
			String msg="Fitting strategy does not exist, exiting";
			IJ.showMessage("Error",msg);
			throw new IllegalArgumentException (msg);
		}
    	int numSeries=fittingStrategy.getNumSeries();
	    GenericDialog gd = new GenericDialog("Debug: verifying partial derivatives calculation, select series number");
		gd.addNumericField("Series number to show (0.."+(numSeries-1), this.seriesNumber, 0);
		gd.addCheckbox("Show actual parameters (false: X0,Y0,distance, angles)", true);
		gd.addCheckbox("Apply sensor mask (fade near edges)", true);
		gd.addCheckbox("Debug derivatives (show analytic/difference match)",true);
	    gd.showDialog();
	    if (gd.wasCanceled()) return;
	    this.seriesNumber=     (int) gd.getNextNumber();
	    boolean useActualParameters=gd.getNextBoolean();
	    boolean applySensorMask=gd.getNextBoolean();
	    boolean debugDerivatives=gd.getNextBoolean();
	    // currently not possible to debug "internal" parameters, so
//	    debugDerivatives&=useActualParameters; //*******************
		initFittingSeries(false,filterForAll,this.seriesNumber);
		int numPars=this.currentVector.length;
    	String [] parameterNames;
    	String [] parameterUnits;
Andrey Filippov's avatar
Andrey Filippov committed
9671

Andrey Filippov's avatar
Andrey Filippov committed
9672
    	if (useActualParameters) {
9673 9674
    		parameterNames=new String[fittingStrategy.distortionCalibrationData.getNumDescriptions()];
    		parameterUnits=new String[fittingStrategy.distortionCalibrationData.getNumDescriptions()];
Andrey Filippov's avatar
Andrey Filippov committed
9675 9676
    		for (int i=0;i<parameterNames.length;i++){
    			// TODO: move to DdistortionCalibrationData methods()
9677 9678
    			parameterNames[i]=fittingStrategy.distortionCalibrationData.descrField(i,0);
    			parameterUnits[i]=fittingStrategy.distortionCalibrationData.descrField(i,2);
Andrey Filippov's avatar
Andrey Filippov committed
9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699
    		}
    	} else {
    		parameterNames=lensDistortionParameters.getAllNames();
    		parameterUnits=lensDistortionParameters.getAllUnits();
    	}
	    gd = new GenericDialog((debugDerivatives?"Debug: verifying partial derivatives calculation,":"Showing partial derivatives,") +" select parameter number");
	    if (useActualParameters) {
	    	for (int i=0;i<this.currentVector.length;i++){
	    		int parNum=fittingStrategy.parameterMap[i][1];
	    		int imgNum=fittingStrategy.parameterMap[i][0];
	    		gd.addMessage(i+": "+parameterNames[parNum]+
	    				"["+imgNum+"]("+parameterUnits[parNum]+") "+IJ.d2s(this.currentVector[i],3));
	    	}
			gd.addNumericField("Select parameter number (0.."+(numPars-1)+") from above", 0, 0);
	    } else {
	    	for (int i=0;i<parameterNames.length;i++){
	    		gd.addMessage(i+": "+parameterNames[i]+"("+parameterUnits[i]+") ");
	    	}
			gd.addNumericField("Select parameter number (0.."+(parameterNames.length-1)+") from above", 0, 0);

	    }
9700
		if (debugDerivatives) gd.addNumericField("Select delta to increment selected parameter", .001, 5);
Andrey Filippov's avatar
Andrey Filippov committed
9701
		if (debugDerivatives) gd.addCheckbox("Show inter-parameter derivatives matrix", true);
9702
		WindowTools.addScrollBars(gd);
Andrey Filippov's avatar
Andrey Filippov committed
9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715
	    gd.showDialog();
	    if (gd.wasCanceled()) return;
	    int selectedParameter=     (int) gd.getNextNumber();
	    double delta=0;
	    if (debugDerivatives) delta=     gd.getNextNumber();
	    boolean showInterparameterDerivatives=false;
	    if (debugDerivatives) showInterparameterDerivatives=gd.getNextBoolean();
		double [] this_currentfX=null;
	    double [] d_derivative;
	    double [] d_delta=null;
	    String title;
	    if (useActualParameters) {
	    	this_currentfX=calculateFxAndJacobian(this.currentVector, true); // is it always true here (this.jacobian==null)
9716
	    	d_derivative=this.jacobian[selectedParameter].clone(); //  wrong?
Andrey Filippov's avatar
Andrey Filippov committed
9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753
	    	if (debugDerivatives) {
	    		double[] modVector=this.currentVector.clone();
	    		modVector[selectedParameter]+=delta;
	    		d_delta=calculateFxAndJacobian(modVector, true);
	    		if (this.debugLevel>3) {
	    			for (int i=0;i<d_delta.length;i++) {
	    				System.out.println(i+": "+IJ.d2s(d_delta[i],3)+" - "+IJ.d2s(this_currentfX[i],3)+" = "
	    						+ IJ.d2s(d_delta[i]-this_currentfX[i],3));
	    			}

	    		}
	    		for (int i=0;i<d_delta.length;i++) d_delta[i]= (d_delta[i]-this_currentfX[i])/delta;
	    	}
		    int parNum=fittingStrategy.parameterMap[selectedParameter][1];
			int imgNum=fittingStrategy.parameterMap[selectedParameter][0];
			title=parameterNames[parNum]+"_derivatives:"+imgNum;
	    } else {
	    	d_derivative=calculateJacobian16(this.currentVector, -1,0.0)[selectedParameter].clone();
	    	if (debugDerivatives) d_delta=     calculateJacobian16(this.currentVector, -1,delta)[selectedParameter].clone();
			title=parameterNames[selectedParameter]+"_derivatives";
	    }
	    if (this.debugLevel>3) {
		    for (int i=0;i<d_delta.length;i++) {
		    	System.out.println(i+":: "+IJ.d2s(d_delta[i],3)+" - "+IJ.d2s(d_derivative[i],3));
		    }
	    }
	    double [] sumWeight=showCompareDerivatives (d_derivative, d_delta, applySensorMask, !useActualParameters,  title ); // d_delta==null - no debug
	    if (showInterparameterDerivatives && (delta>0)) {
	    debugCompareInterparameterDerivatives(
	    		this.currentVector.clone(),
	    		-1, //int imgNum,
	    		delta);
	    }
	    for (int i=0;i<sumWeight.length; i++) if (sumWeight[i]>0.0){
	    	System.out.println("Image "+i+", "+title+"derivative RMS="+sumWeight[i]);
	    }
	}
Andrey Filippov's avatar
Andrey Filippov committed
9754 9755


Andrey Filippov's avatar
Andrey Filippov committed
9756 9757
	/**
	 * Show comparison of the calculated partial derivatives in Jacobian and approximated by difference
Andrey Filippov's avatar
Andrey Filippov committed
9758
	 * for incremented parameters
Andrey Filippov's avatar
Andrey Filippov committed
9759 9760 9761 9762
	 * @param imgNumber - number of image in series to show
	 * @param d_derivative vector array of "true" derivatives (from Jacobian)
	 * @param d_delta approximated derivatives from varying parameter
	 * @param title image title
Andrey Filippov's avatar
Andrey Filippov committed
9763
	 * @return rms
Andrey Filippov's avatar
Andrey Filippov committed
9764 9765
	 */
	public double showCompareDerivatives(int imgNumber, double [] d_derivative, double [] d_delta, boolean applySensorMask, String title ){
9766
		String [] titlesDebug={"dX-derivative","dY-derivative","abs-derivative","diff-X (should be 0)","diff-Y (should be 0)","dX-delta/delta","dY-delta/delta","dX-delta","dY-delta"};
Andrey Filippov's avatar
Andrey Filippov committed
9767 9768 9769
		String [] titlesNoDebug={"dX-derivative","dY-derivative","abs-derivative"};
		String [] titles= (d_delta==null)? titlesNoDebug:titlesDebug;
		double [] d_diff=new double [d_derivative.length];
9770
		double [] r_diff=new double [d_derivative.length];
Andrey Filippov's avatar
Andrey Filippov committed
9771
		double [] aDeriv=new double [d_derivative.length/2];
Andrey Filippov's avatar
Andrey Filippov committed
9772

9773 9774 9775 9776
		if (d_delta!=null) for (int i=0;i<d_diff.length;i++){
			d_diff[i]=d_derivative[i]-d_delta[i];
			r_diff[i]=d_diff[i]/d_delta[i];
		}
Andrey Filippov's avatar
Andrey Filippov committed
9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
// find data range for the selected image
		int index=0;
		int numImg=fittingStrategy.distortionCalibrationData.getNumImages();
		boolean [] selectedImages=fittingStrategy.selectedImages();
		for (int imgNum=0;(imgNum<imgNumber) && (imgNum<numImg) ;imgNum++) if (selectedImages[imgNum])
			index+=fittingStrategy.distortionCalibrationData.gIP[imgNum].pixelsUV.length;
		double sumWeights=0.0;
		double sumDerivatives2=0.0;
		double w,sqrtW;
		for (int i=2*index;i<2*(2*index+fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV.length);i++){
			w=applySensorMask?this.weightFunction[i]:1.0;
			if (w<0.0) w=0.0;
			sumWeights+=w;
			sumDerivatives2+=d_derivative[i]*d_derivative[i]*w;
			sqrtW=Math.sqrt(w);
			d_derivative[i]*=sqrtW; // for display
			if (d_delta!=null) d_delta[i]*=sqrtW;
			if ((i&1)==0) aDeriv[i>>1]=Math.sqrt(d_derivative[i]*d_derivative[i]+d_derivative[i+1]*d_derivative[i+1]);
Andrey Filippov's avatar
Andrey Filippov committed
9795
		}
Andrey Filippov's avatar
Andrey Filippov committed
9796 9797 9798 9799 9800
		sumDerivatives2=Math.sqrt(sumDerivatives2/sumWeights*2.0); // 2.0 because x,y pair should not be averaged, just added
		titles[2]+=":rms="+sumDerivatives2;
		int width=getGridWidth();
		double [][] imgData=new double[titles.length][getGridHeight() * width];
		for (int i=0;i<imgData.length;i++) for (int j=0;j<imgData[i].length;j++)imgData[i][j]=0.0;
Andrey Filippov's avatar
Andrey Filippov committed
9801

Andrey Filippov's avatar
Andrey Filippov committed
9802 9803 9804 9805 9806 9807 9808 9809 9810 9811
		for (int i=0;i<fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV.length;i++){
			int u=fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV[index+i][0]+patternParameters.U0;
			int v=fittingStrategy.distortionCalibrationData.gIP[imgNumber].pixelsUV[index+i][1]+patternParameters.V0;
			int vu=u+width*v;
			imgData[0][vu]=   d_derivative[2*(index+i)];
			imgData[1][vu]=   d_derivative[2*(index+i)+1];
			imgData[2][vu]=   aDeriv[index+i];
			if (d_delta!=null) {
				imgData[3][vu]=   d_diff[2*(index+i)];
				imgData[4][vu]=   d_diff[2*(index+i)+1];
9812 9813 9814 9815
				imgData[5][vu]=   r_diff[2*(index+i)];
				imgData[6][vu]=   r_diff[2*(index+i)+1];
				imgData[7][vu]=   d_delta[2*(index+i)];
				imgData[8][vu]=   d_delta[2*(index+i)+1];
Andrey Filippov's avatar
Andrey Filippov committed
9816 9817 9818 9819 9820 9821 9822
			}
		}
		this.SDFA_INSTANCE.showArrays(imgData, width, getGridHeight(),  true, title, titles);
		return sumDerivatives2;
	}
	/**
	 * Show comparison of the calculated partial derivatives in Jacobian and approximated by difference
Andrey Filippov's avatar
Andrey Filippov committed
9823
	 * for incremented parameters (for all selected images in the series)
Andrey Filippov's avatar
Andrey Filippov committed
9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843
	 * @param d_derivative vector array of "true" derivatives (from Jacobian)
	 * @param d_delta approximated derivatives form varying parameter
	 * @param applySensorMask Multiply by sensor mask (fade near edges)
	 * @param single calculate just the first selected image
	 * @param title image title
	 * @return array of rms
	 */

	public double[] showCompareDerivatives (double [] d_derivative, double [] d_delta, boolean applySensorMask, boolean single, String title ){
		boolean [] selectedImages=fittingStrategy.selectedImages();
		double [] diffs= new double [selectedImages.length];
		for (int imgNum=0;imgNum<diffs.length;imgNum++) diffs[imgNum]=0.0;
		for (int imgNum=0;imgNum<selectedImages.length;imgNum++) if (selectedImages[imgNum]) {
			diffs[imgNum] =showCompareDerivatives(imgNum, d_derivative, d_delta, applySensorMask, title+"-"+imgNum);
			if (single) break;
		}
		return diffs;
	}

	/**
Andrey Filippov's avatar
Andrey Filippov committed
9844
	 *
Andrey Filippov's avatar
Andrey Filippov committed
9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873
	 * @param delta if 0 - actual derivatives, >0 - approximate derivatives by deltas
	 * @return for each v,u - values and derivatives
	 */
	public double [][][][] calcGridOnSensor( double delta) {
    	int gridHeight=patternParameters.gridGeometry.length;
    	int gridWidth=patternParameters.gridGeometry[0].length;
    	this.gridOnSensor=new double[gridHeight][gridWidth][2][15];
    	double [][] node;
 //   	double [][][] nodes=new double [15][][];
    	boolean dMode=delta>0;
        if (this.debugLevel>2){
        	System.out.println("calcGridOnSensor()");
        	System.out.println("this.lensDistortionParameters.distance="+IJ.d2s(this.lensDistortionParameters.distance, 3));
        	System.out.println("this.lensDistortionParameters.x0="+      IJ.d2s(this.lensDistortionParameters.x0, 3));
        	System.out.println("this.lensDistortionParameters.y0="+      IJ.d2s(this.lensDistortionParameters.y0, 3));
        	System.out.println("this.lensDistortionParameters.z0="+      IJ.d2s(this.lensDistortionParameters.z0, 3));
        	System.out.println("this.lensDistortionParameters.pitch="+   IJ.d2s(this.lensDistortionParameters.pitch, 3));
        	System.out.println("this.lensDistortionParameters.yaw="+IJ.d2s(this.lensDistortionParameters.yaw, 3));
        	System.out.println("this.lensDistortionParameters.roll="+IJ.d2s(this.lensDistortionParameters.roll, 3));
        	System.out.println("this.lensDistortionParameters.focalLength="+IJ.d2s(this.lensDistortionParameters.focalLength, 3));
        	System.out.println("this.lensDistortionParameters.px0="+IJ.d2s(this.lensDistortionParameters.px0, 3));
        	System.out.println("this.lensDistortionParameters.py0="+IJ.d2s(this.lensDistortionParameters.py0, 3));
        	System.out.println("this.lensDistortionParameters.distortionA8="+IJ.d2s(this.lensDistortionParameters.distortionA8, 5));
        	System.out.println("this.lensDistortionParameters.distortionA7="+IJ.d2s(this.lensDistortionParameters.distortionA7, 5));
        	System.out.println("this.lensDistortionParameters.distortionA6="+IJ.d2s(this.lensDistortionParameters.distortionA6, 5));
        	System.out.println("this.lensDistortionParameters.distortionA5="+IJ.d2s(this.lensDistortionParameters.distortionA5, 5));
        	System.out.println("this.lensDistortionParameters.distortionA="+IJ.d2s(this.lensDistortionParameters.distortionA, 5));
        	System.out.println("this.lensDistortionParameters.distortionB="+IJ.d2s(this.lensDistortionParameters.distortionB, 5));
        	System.out.println("this.lensDistortionParameters.distortionC="+IJ.d2s(this.lensDistortionParameters.distortionC, 5));
9874
        	System.out.println("this.lensDistortionParameters.lensDistortionModel="+this.lensDistortionParameters.lensDistortionModel);
9875 9876 9877 9878 9879 9880 9881 9882
        	for (int i=0;i<this.lensDistortionParameters.r_xy.length;i++){
            	System.out.println("this.lensDistortionParameters.r_xy["+i+"][0]="+IJ.d2s(this.lensDistortionParameters.r_xy[i][0], 5));
            	System.out.println("this.lensDistortionParameters.r_xy["+i+"][1]="+IJ.d2s(this.lensDistortionParameters.r_xy[i][1], 5));
        	}
        	for (int i=0;i<this.lensDistortionParameters.r_od.length;i++){
            	System.out.println("this.lensDistortionParameters.r_od["+i+"][0]="+IJ.d2s(this.lensDistortionParameters.r_od[i][0], 5));
            	System.out.println("this.lensDistortionParameters.r_od["+i+"][1]="+IJ.d2s(this.lensDistortionParameters.r_od[i][1], 5));
        	}
Andrey Filippov's avatar
Andrey Filippov committed
9883 9884
        }
        LensDistortionParameters ldp=this.lensDistortionParameters.clone();
9885 9886
        // 06/2019 - need to update distortionRadius, pixelSize)

Andrey Filippov's avatar
Andrey Filippov committed
9887
//		public void setLensDistortionParameters(LensDistortionParameters ldp
Andrey Filippov's avatar
Andrey Filippov committed
9888

Andrey Filippov's avatar
Andrey Filippov committed
9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903
        for (int v=0; v<gridHeight; v++) for (int u=0; u<gridWidth; u++) if (patternParameters.gridGeometry[v][u][3]>0) {
        	this.lensDistortionParameters.setLensDistortionParameters(ldp); // restore
        	node=this.lensDistortionParameters.calcPartialDerivatives(
        			patternParameters.gridGeometry[v][u][0],//double xp, // target point horizontal, positive - right,  mm
        			patternParameters.gridGeometry[v][u][1],//double yp, // target point vertical,   positive - down,  mm
        			patternParameters.gridGeometry[v][u][2],//double zp, // target point horizontal, positive - away from camera,  mm
        			!dMode);//boolean calculateAll){ // calculate derivatives, false - values only
        	if (this.debugLevel>3) {
        		System.out.println("calcPartialDerivatives("+
        				IJ.d2s(patternParameters.gridGeometry[v][u][0],2)+","+
        				IJ.d2s(patternParameters.gridGeometry[v][u][1],2)+","+
        				IJ.d2s(patternParameters.gridGeometry[v][u][2],2)+" ("+true+") -> "+
        				IJ.d2s(node[0][0],2)+"/"+IJ.d2s(node[0][1],2));
        	}
        	if (dMode) {
Andrey Filippov's avatar
Andrey Filippov committed
9904 9905
//        		double []pXY=node[0]; // px,py values
        		this.gridOnSensor[v][u][0][0]=node[0][0];
Andrey Filippov's avatar
Andrey Filippov committed
9906 9907 9908 9909 9910 9911 9912 9913
        		this.gridOnSensor[v][u][1][0]=node[0][1];
        		for (int j=1;j<15;j++) {  // was 14
        			this.lensDistortionParameters.setLensDistortionParameters(ldp, j, delta); // set one of the parameters (j) with added delta to ldp
                	node=this.lensDistortionParameters.calcPartialDerivatives(
                			patternParameters.gridGeometry[v][u][0],//double xp, // target point horizontal, positive - right,  mm
                			patternParameters.gridGeometry[v][u][1],//double yp, // target point vertical,   positive - down,  mm
                			patternParameters.gridGeometry[v][u][2],//double zp, // target point horizontal, positive - away from camera,  mm
                			false);
Andrey Filippov's avatar
Andrey Filippov committed
9914
            		this.gridOnSensor[v][u][0][j]=(node[0][0]-this.gridOnSensor[v][u][0][0])/delta;
Andrey Filippov's avatar
Andrey Filippov committed
9915 9916 9917 9918
            		this.gridOnSensor[v][u][1][j]=(node[0][1]-this.gridOnSensor[v][u][1][0])/delta;
        		}

        	} else for (int i=0;i<2;i++) for (int j=0;j<15;j++){ // was 14
Andrey Filippov's avatar
Andrey Filippov committed
9919
        		this.gridOnSensor[v][u][i][j]=node[j][i];
Andrey Filippov's avatar
Andrey Filippov committed
9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932
        	}

        } else {
        	this.gridOnSensor[v][u]=null;
        }
        return this.gridOnSensor;
    }
    public int getGridWidth() {
    	return patternParameters.gridGeometry[0].length;
    }
    public int getGridHeight() {
    	return patternParameters.gridGeometry.length;
    }
Andrey Filippov's avatar
Andrey Filippov committed
9933

Andrey Filippov's avatar
Andrey Filippov committed
9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009
    public double [][] prepareDisplayGrid(){
    	int gridHeight=this.patternParameters.gridGeometry.length;
    	int gridWidth=this.patternParameters.gridGeometry[0].length;
    	double [][] dgrid=new double[3][gridHeight*gridWidth];
    	double average;
    	int num,index;
    	for (int i=0;i<dgrid.length;i++){
    		average=0.0;
    		num=0;
    		for (int v=0; v<gridHeight; v++) for (int u=0; u<gridWidth; u++) if (this.patternParameters.gridGeometry[v][u][3]>0) {
    			average+=this.patternParameters.gridGeometry[v][u][i];
    			num++;
    		}
    		average/=num;
    		index=0;
    		for (int v=0; v<gridHeight; v++) for (int u=0; u<gridWidth; u++) if (this.patternParameters.gridGeometry[v][u][3]>0) {
    			dgrid[i][index++]=this.patternParameters.gridGeometry[v][u][i];
    		} else {
    			dgrid[i][index++]=average;
    		}
    	}
    	return dgrid;
    }
    public String [] displayGridTitles() {
    	String [] titles={"Grid-X","Grid-Y","Grid-Z"};
    	return titles;
    }
    public String [] displayGridOnSensorTitles() {
    	String [] titles={
    			"PX","PY",
    			"dPX/dphi","dPY/dphi",
    			"dPX/dtheta","dPY/dtheta",
    			"dPX/dpsi","dPY/dpsi",
    			"dPX/dX0","dPY/dX0",
    			"dPX/dY0","dPY/dY0",
    			"dPX/dZ0","dPY/dZ0",
    			"dPX/df","dPY/df",
    			"dPX/ddist","dPY/dist",
    			"dPX/dDa","dPY/dDa",
    			"dPX/dDb","dPY/dDb",
    			"dPX/dDc","dPY/dDc",
    			"dPX/dPX0","dPY/dPX0",
    			"dPX/dPY0","dPY/dPY0"
    	};
    	return titles;
    }
    public double [][] prepareDisplayGridOnSensor(boolean showAll){
    	int gridHeight=this.patternParameters.gridGeometry.length;
    	int gridWidth=this.patternParameters.gridGeometry[0].length;
//    	double [][] dgrid=new double[showAll?28:2][gridHeight*gridWidth];
    	double [][] dgrid=new double[showAll?(2*15):2][gridHeight*gridWidth];
    	double average;
    	int num,index;
    	for (int i=0;i<dgrid.length/2;i++) for (int j=0;j<2;j++){
    		int ii=i*2+j;
    		average=0.0;
    		num=0;
    		for (int v=0; v<gridHeight; v++) for (int u=0; u<gridWidth; u++) if (this.patternParameters.gridGeometry[v][u][3]>0) {
    			average+=this.gridOnSensor[v][u][j][i];
    			num++;
    		}
    		average/=num;
    		index=0;
    		for (int v=0; v<gridHeight; v++) for (int u=0; u<gridWidth; u++) if (this.patternParameters.gridGeometry[v][u][3]>0) {
    			dgrid[ii][index++]=this.gridOnSensor[v][u][j][i];
    		} else {
    			dgrid[ii][index++]=average;
    		}
    	}
    	return dgrid;
    }
    /**
     * initialize image data with camera defaults
     * @param distortionCalibrationData grid distortionCalibrationData
     * @param eyesisCameraParameters deafault camera parameters
     */
Andrey Filippov's avatar
Andrey Filippov committed
10010

Andrey Filippov's avatar
Andrey Filippov committed
10011 10012
    // Used in Aberration_Calibration
    public void initImageSet(
10013
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10014
    		EyesisCameraParameters eyesisCameraParameters) {
10015
//    	DistortionCalibrationData distortionCalibrationData= new DistortionCalibrationData(filenames);
Andrey Filippov's avatar
Andrey Filippov committed
10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027
    	for (int i=0;i<distortionCalibrationData.getNumImages();i++){
    		int stationNumber=distortionCalibrationData.getImageStation(i);
    		int subCam=distortionCalibrationData.getImageSubcamera(i);
    		distortionCalibrationData.setParameters(eyesisCameraParameters.getParametersVector(stationNumber,subCam), i);
    		this.lensDistortionParameters.pixelSize=eyesisCameraParameters.getPixelSize(subCam);
    		this.lensDistortionParameters.distortionRadius=eyesisCameraParameters.getDistortionRadius(subCam);
    	}
    }
    public void copySensorConstants(EyesisCameraParameters eyesisCameraParameters) { // copy from the first channel
    		this.lensDistortionParameters.pixelSize=eyesisCameraParameters.getPixelSize(0);
    		this.lensDistortionParameters.distortionRadius=eyesisCameraParameters.getDistortionRadius(0);
    }
Andrey Filippov's avatar
Andrey Filippov committed
10028

Andrey Filippov's avatar
Andrey Filippov committed
10029 10030 10031 10032 10033 10034 10035
    /**
     * Update per-image parameters from those of the camera and those that have the same timestamp. Usually needed after adding or
     * enabling new images.
     * @param distortionCalibrationData grid distortionCalibrationData
     * @param eyesisCameraParameters - camera parameters (common and per sub-camera)
     * @return true if dialog was not canceled and programs ran
     */
Andrey Filippov's avatar
Andrey Filippov committed
10036

Andrey Filippov's avatar
Andrey Filippov committed
10037
    public boolean interactiveUpdateImageSet(
10038
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10039 10040
    		EyesisCameraParameters eyesisCameraParameters
    ){
10041
    	boolean resetParametersToZero=false;
Andrey Filippov's avatar
Andrey Filippov committed
10042 10043 10044 10045 10046 10047 10048
    	boolean [] parameterMask= new boolean[distortionCalibrationData.getNumParameters()];
    	boolean [] channelMask=   new boolean[distortionCalibrationData.getNumSubCameras()];
    	boolean [] stationMask=   new boolean[distortionCalibrationData.getNumStations()];
    	for (int i=0;i<parameterMask.length;i++) parameterMask[i]=false;
    	for (int i=0;i<channelMask.length;i++)   channelMask[i]=  true;
    	for (int i=0;i<stationMask.length;i++)   stationMask[i]=  true;
    	GenericDialog gd=new GenericDialog("Update (new) image settings from known data");
10049 10050 10051
    	//
    	gd.addCheckbox("Reset selected parameters to zero (false - update from camera parameters)", resetParametersToZero);
    	gd.addMessage("Select which individual image parameters to be updated from the camera parameters (or reset to 0)");
Andrey Filippov's avatar
Andrey Filippov committed
10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063
    	for (int i=0;i<parameterMask.length;i++) gd.addCheckbox(i+": "+distortionCalibrationData.getParameterName(i), parameterMask[i]);
    	gd.addMessage("----------");
    	gd.addMessage("Select which channels (sub-cameras) to update");
    	for (int i=0;i<channelMask.length;i++) gd.addCheckbox("Subcamera "+i, channelMask[i]);
    	if (stationMask.length>1) {
        	gd.addMessage("----------");
        	gd.addMessage("Select which stations (camera/goniometer locations) to update");
        	for (int i=0;i<stationMask.length;i++) gd.addCheckbox("Station "+i, stationMask[i]);
    	}
    	gd.addMessage("----------");
    	gd.addCheckbox("Applying known extrinsic parameters to the same timestamp images", true);
    	gd.addCheckbox("Use closest (by motor steps) image if none for the same timestamp is enabled", true);
10064 10065
    	gd.addMessage("==== Note: The following correction will be applied to all subcameras, use selection above to specify which heights should be averaged" );
    	gd.addCheckbox("Vertically center the camera head by calculateing center above horizontal", false);
Andrey Filippov's avatar
Andrey Filippov committed
10066 10067 10068 10069
//    	gd.addCheckbox("Update currently disabled images", true);
	    WindowTools.addScrollBars(gd);
    	gd.showDialog();
    	if (gd.wasCanceled()) return false;
10070
    	resetParametersToZero=gd.getNextBoolean();
Andrey Filippov's avatar
Andrey Filippov committed
10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081
    	for (int i=0;i<parameterMask.length;i++) parameterMask[i]= gd.getNextBoolean();
    	for (int i=0;i<channelMask.length;i++)   channelMask[i]=   gd.getNextBoolean();
    	if (stationMask.length>1) {
    		for (int i=0;i<stationMask.length;i++) stationMask[i]= gd.getNextBoolean();
    	}
    	boolean updateFromTimestamps= gd.getNextBoolean();
    	boolean allowClosest=         gd.getNextBoolean();
    	boolean reCenterVertically=   gd.getNextBoolean();
    	if (reCenterVertically){
    		eyesisCameraParameters.recenterVertically(channelMask, stationMask);
    		for (int i=0;i<channelMask.length;i++) channelMask[i]= true;
10082
    		parameterMask[distortionCalibrationData.getParameterIndexByName("subcamHeight")] = true;
Andrey Filippov's avatar
Andrey Filippov committed
10083 10084
    	}

Andrey Filippov's avatar
Andrey Filippov committed
10085

Andrey Filippov's avatar
Andrey Filippov committed
10086 10087
//		boolean updateDisabled=       gd.getNextBoolean();
    	updateImageSetFromCamera(
10088
    			resetParametersToZero,
Andrey Filippov's avatar
Andrey Filippov committed
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101
    			distortionCalibrationData,
    			eyesisCameraParameters,
    			parameterMask, //boolean [] parameterMask,
    			channelMask, // copy X,Y,Z (usually true)
    			stationMask // copy 2 goniometer angles (usually false)
    	);
    	if (updateFromTimestamps) {
    		updateImageSetFromSameTimestamps(
    				distortionCalibrationData,
    				eyesisCameraParameters,
    				null, // boolean [] selectedImages,
    				null, //boolean [] parameterMask,
    				allowClosest
Andrey Filippov's avatar
Andrey Filippov committed
10102
    				//,updateDisabled
Andrey Filippov's avatar
Andrey Filippov committed
10103 10104 10105 10106 10107
    		);
    		distortionCalibrationData.updateSetOrientation(null); // update orientation of image sets
    	}
    	return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
10108

Andrey Filippov's avatar
Andrey Filippov committed
10109 10110 10111 10112
    public boolean setSetFromClosestAndEstimateOrientation(
    		int numSet,
    		boolean [] selectedImages,
    		boolean [] parameterMask,
10113
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140
    		EyesisCameraParameters eyesisCameraParameters){
    	if (selectedImages==null) {
    		selectedImages= new boolean[distortionCalibrationData.getNumImages()];
    		for (int i=0;i<selectedImages.length;i++) selectedImages[i]=distortionCalibrationData.gIP[i].enabled;
    	}
    	if (parameterMask==null) {
    		parameterMask= new boolean[distortionCalibrationData.getNumParameters()];
    		for (int i=0;i<parameterMask.length;i++) parameterMask[i]=true;
    	}
    	for (int i=0;i<parameterMask.length;i++) {
    		if (distortionCalibrationData.isSubcameraParameter(i))    	parameterMask[i]=false;
    	}

    	int enabledImage=getClosestImage( // {numEnabledSet,enabledChannel,enabledImage};
	    		distortionCalibrationData,
	    		selectedImages,
	    		numSet);
    	if (enabledImage<0) return false; // failed to find closest
		updateSetFromClosest(
				numSet,
				enabledImage,
				parameterMask,
				distortionCalibrationData);
		// invalidate current angles
		distortionCalibrationData.gIS[numSet].goniometerAxial=Double.NaN;
		distortionCalibrationData.gIS[numSet].goniometerTilt= Double.NaN;
		// re-estimate orientation
10141
		double [] ta=distortionCalibrationData.getImagesetTiltAxial(distortionCalibrationData.gIS[numSet].timeStamp); // updates tilt/axial (now interAxis too!)
Andrey Filippov's avatar
Andrey Filippov committed
10142 10143 10144
	    if ((ta==null) || Double.isNaN(ta[0]) || Double.isNaN(ta[1])) return false;
	    return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
10145

Andrey Filippov's avatar
Andrey Filippov committed
10146 10147

    public boolean interactiveUpdateImageSetOld(
10148
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167
    		EyesisCameraParameters eyesisCameraParameters
    ){
    	GenericDialog gd=new GenericDialog("Update (new) image settings from known data");
    	gd.addCheckbox("Update per-image parameters from those of the camera", true);
    	gd.addCheckbox("Copy location of the camera (X,Y,Z)", true);
    	gd.addCheckbox("Copy orientation of the camera (tilt and axial)", false);
    	gd.addMessage("");
    	gd.addCheckbox("Update per-image parameters from those with the same timestamp", true);
    	gd.addCheckbox("Use closest (by motor steps) image if none for the same timestamp is enabled", true);
//    	gd.addCheckbox("Update currently disabled images", true);

    	gd.showDialog();
    	if (gd.wasCanceled()) return false;
    	boolean updateFromCamera=     gd.getNextBoolean();
    	boolean copyLocation=         gd.getNextBoolean();
    	boolean copyOrientation=      gd.getNextBoolean();
    	boolean updateFromTimestamps= gd.getNextBoolean();
    	boolean allowClosest=         gd.getNextBoolean();
//		boolean updateDisabled=       gd.getNextBoolean();
Andrey Filippov's avatar
Andrey Filippov committed
10168

Andrey Filippov's avatar
Andrey Filippov committed
10169 10170 10171 10172 10173 10174
    	boolean [] parameterMask= new boolean[distortionCalibrationData.getNumParameters()];
    	for (int i=0;i<parameterMask.length;i++) {
    		parameterMask[i]=true;
    		if (distortionCalibrationData.isLocationParameter(i)    && !copyLocation)    	parameterMask[i]=false;
    		if (distortionCalibrationData.isOrientationParameter(i) && !copyOrientation)	parameterMask[i]=false;
    	}
Andrey Filippov's avatar
Andrey Filippov committed
10175

Andrey Filippov's avatar
Andrey Filippov committed
10176
    	if (updateFromCamera) updateImageSetFromCamera(
10177
    			false, //resetParametersToZero
Andrey Filippov's avatar
Andrey Filippov committed
10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196
    			distortionCalibrationData,
    			eyesisCameraParameters,
    			parameterMask, //boolean [] parameterMask,
    			null,
    			null
    	);
    	if (updateFromTimestamps) {
    		updateImageSetFromSameTimestamps(
    				distortionCalibrationData,
    				eyesisCameraParameters,
    				null, // boolean [] selectedImages,
    				null, //boolean [] parameterMask,
    				allowClosest
//    				,updateDisabled
    		);
    		distortionCalibrationData.updateSetOrientation(null); // update orientation of image sets
    	}
    	return true;
    }
Andrey Filippov's avatar
Andrey Filippov committed
10197 10198


Andrey Filippov's avatar
Andrey Filippov committed
10199 10200 10201 10202 10203 10204 10205 10206 10207
    /**
     * Copies selected parameters from the camera parameters to per-image parameters (i.e. for new/previously disabled images)
     * @param distortionCalibrationData grid distortionCalibrationData
     * @param eyesisCameraParameters - camera parameters (common and per sub-camera)
     * @param parameterMask when element is true - copy parameters, false - keep current value. Null - selects all (filtered by the next parameters)
     * @param copyLocation copy location (x,Y,Z) of the camera , normally should be true
     * @param copyOrientation copy 2 goniometer angles, normally should be false
     */
    public void updateImageSetFromCamera(
10208
    		boolean resetParametersToZero, // reset to 0 instead of camera parameters
10209
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10210 10211 10212 10213
    		EyesisCameraParameters eyesisCameraParameters,
    		boolean [] parameterMask,
    		boolean [] channelMask,
    		boolean [] stationMask
Andrey Filippov's avatar
Andrey Filippov committed
10214
    		) {
10215
//    	DistortionCalibrationData distortionCalibrationData= new DistortionCalibrationData(filenames);
Andrey Filippov's avatar
Andrey Filippov committed
10216 10217 10218 10219 10220 10221 10222
    	for (int i=0;i<distortionCalibrationData.getNumImages();i++){
    		int stationNumber=distortionCalibrationData.getImageStation(i);
    		int subCam=distortionCalibrationData.getImageSubcamera(i);
    		if ((channelMask!=null) && !channelMask[subCam])        continue;
    		if ((stationMask!=null) && !stationMask[stationNumber]) continue;
    		double [] oldVector=distortionCalibrationData.getParameters(i);
    		double [] newVector=eyesisCameraParameters.getParametersVector(stationNumber,subCam);
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233
    		for (int j=0;j<oldVector.length;j++) if (parameterMask[j]){
    			if (resetParametersToZero) newVector[j]=0.0;
    			oldVector[j]=newVector[j];
    		}
    		if (resetParametersToZero){
    			eyesisCameraParameters.setParametersVector(
    					newVector,
    					parameterMask,
    					stationNumber,
    					subCam);
    		}
Andrey Filippov's avatar
Andrey Filippov committed
10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248
    		distortionCalibrationData.setParameters(oldVector, i);
    		this.lensDistortionParameters.pixelSize=eyesisCameraParameters.getPixelSize(subCam);
    		this.lensDistortionParameters.distortionRadius=eyesisCameraParameters.getDistortionRadius(subCam);
    	}
    }
    /**
     * Copies selected (normally all) parameters from the selected images with the same timestamp (i.e. for new/previously disabled images)
     * @param distortionCalibrationData grid distortionCalibrationData
     * @param eyesisCameraParameters - camera parameters (common and per sub-camera)
     * @param selectedImages Use only selected images (null - all enabled)
     * @param parameterMask when element is true - copy parameters, false - keep current value. Null - selects all (and should be normally null)
     * @param allowClosest If there is no enabled image for the current timestamp, find the closest selected using motor coordinates
     * @param updateDisabled update disable images also
     */
    public void updateImageSetFromSameTimestamps(
10249
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271
    		EyesisCameraParameters eyesisCameraParameters,
    		boolean [] selectedImages,
    		boolean [] parameterMask,
    		boolean allowClosest
    		){
		System.out.println("updateImageSetFromSameTimestamps(), allowClosest="+allowClosest); //+" updateDisabled="+updateDisabled);
    	if (selectedImages==null) {
    		selectedImages= new boolean[distortionCalibrationData.getNumImages()];
    		for (int i=0;i<selectedImages.length;i++) selectedImages[i]=distortionCalibrationData.gIP[i].enabled;
//    		for (int i=0;i<selectedImages.length;i++) selectedImages[i]=distortionCalibrationData.gIP[i].enabled || updateDisabled;
    	}
    	if (parameterMask==null) {
    		parameterMask= new boolean[distortionCalibrationData.getNumParameters()];
    		for (int i=0;i<parameterMask.length;i++) parameterMask[i]=true;
    	}
    	for (int i=0;i<parameterMask.length;i++) {
    		if (distortionCalibrationData.isSubcameraParameter(i))    	parameterMask[i]=false;
    	}
    	for (int numSet=0; numSet<distortionCalibrationData.gIS.length;numSet++){
// find enabled image for this set
    		int enabledImage=-1;
    		// look for enabled image in the same imageSet
Andrey Filippov's avatar
Andrey Filippov committed
10272

Andrey Filippov's avatar
Andrey Filippov committed
10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296
    		for (int nChn=0;nChn<distortionCalibrationData.gIS[numSet].imageSet.length;nChn++) if (distortionCalibrationData.gIS[numSet].imageSet[nChn]!=null){
    			int img=distortionCalibrationData.gIS[numSet].imageSet[nChn].imgNumber;
    			if (selectedImages[img]){
        			enabledImage=img;
    				break;
    			}
    		}
    		// look for closest in the other imageSet
    		if ((enabledImage<0) && (allowClosest)){
    			enabledImage=getClosestImage( // {numEnabledSet,enabledChannel,enabledImage};
    			    		distortionCalibrationData,
    			    		selectedImages,
    			    		numSet);
    		}
    		if (enabledImage>=0){
    			updateSetFromClosest(
    					numSet,
    					enabledImage,
    					parameterMask,
    					distortionCalibrationData);
    		}
    	}

    }
Andrey Filippov's avatar
Andrey Filippov committed
10297

Andrey Filippov's avatar
Andrey Filippov committed
10298
    public int getClosestImage(
10299
    		DistortionCalibrationData distortionCalibrationData,
Andrey Filippov's avatar
Andrey Filippov committed
10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313
    		boolean [] selectedImages,
    		int numSet
    ){
    	int enabledChannel=-1;
    	int enabledImage=-1;
    	if (distortionCalibrationData.gIS[numSet].motors==null ){
    		if (this.debugLevel>0) System.out.println("getClosestSetChannelImage(): No motor data for timestamp "+distortionCalibrationData.gIS[numSet].timeStamp);
    		return -1;
    	}
    	double d2Min=-1;
    	for (int numOtherSet=0;numOtherSet<distortionCalibrationData.gIS.length;numOtherSet++)
    		if ((numOtherSet!=numSet) &&
    				(distortionCalibrationData.gIS[numOtherSet].stationNumber==distortionCalibrationData.gIS[numSet].stationNumber) &&
    				(distortionCalibrationData.gIS[numOtherSet].motors!=null) &&
Andrey Filippov's avatar
Andrey Filippov committed
10314
    				(distortionCalibrationData.gIS[numOtherSet].imageSet!=null)
Andrey Filippov's avatar
Andrey Filippov committed
10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344
    		) {
    			enabledChannel=-1;
    			int otherImage=-1;
    			for (int nChn=0;nChn<distortionCalibrationData.gIS[numOtherSet].imageSet.length;nChn++)
    				if (distortionCalibrationData.gIS[numOtherSet].imageSet[nChn]!=null){
    					otherImage=distortionCalibrationData.gIS[numOtherSet].imageSet[nChn].imgNumber;
    					if (selectedImages[otherImage]){
    						enabledChannel=nChn;
    						break;
    					}
    				}
    			if (enabledChannel>=0){
    				double d2=0;
    				for (int k=0;k<distortionCalibrationData.gIS[numOtherSet].motors.length;k++){
    					d2+=1.0*(distortionCalibrationData.gIS[numOtherSet].motors[k]-distortionCalibrationData.gIS[numSet].motors[k])*
    					(distortionCalibrationData.gIS[numOtherSet].motors[k]-distortionCalibrationData.gIS[numSet].motors[k]);
    				}
    				if ((d2Min<0) || (d2Min>d2)) {
    					d2Min=d2;
    					enabledImage=otherImage;
    				}
    			}
    		}
    	return enabledImage;
    }

    public void updateSetFromClosest(
    		int numSet,
    		int enabledImage,
    		boolean [] parameterMask,
10345
    		DistortionCalibrationData distortionCalibrationData
Andrey Filippov's avatar
Andrey Filippov committed
10346
    		){
10347
		int numEnabledSet=distortionCalibrationData.gIP[enabledImage].getSetNumber();
Andrey Filippov's avatar
Andrey Filippov committed
10348 10349
		distortionCalibrationData.gIS[numSet].setSetVector(distortionCalibrationData.gIS[numEnabledSet].getSetVector());
		System.out.println("getClosestSetChannelImage(): imageSet "+numSet+" set orientationEstimated=true, updated from imageSet "+numEnabledSet);
Andrey Filippov's avatar
Andrey Filippov committed
10350
		distortionCalibrationData.gIS[numSet].orientationEstimated=(numSet!=numEnabledSet);
Andrey Filippov's avatar
Andrey Filippov committed
10351 10352 10353 10354 10355 10356 10357 10358 10359
		double [] newVector=distortionCalibrationData.getParameters(enabledImage);
		for (int nChn=0;nChn<distortionCalibrationData.gIS[numSet].imageSet.length;nChn++)
			if (distortionCalibrationData.gIS[numSet].imageSet[nChn]!=null){ // will copy back to itself, OK
				int targetImage=distortionCalibrationData.gIS[numSet].imageSet[nChn].imgNumber;
				double [] oldVector=distortionCalibrationData.getParameters(targetImage);
				for (int j=0;j<oldVector.length;j++) if (parameterMask[j]) oldVector[j]=newVector[j];
				distortionCalibrationData.setParameters(oldVector, targetImage);
			}
    }
Andrey Filippov's avatar
Andrey Filippov committed
10360

Andrey Filippov's avatar
Andrey Filippov committed
10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374
    // TODO: Add updating to all Stations depending on type of adjustment. Initially only teh same station as image will be updated
    // Not needed - for "super" unselected images are also updated
    /**
     * Update camera/subcamera parameters from the currently selected set of images
     * several images may have different values for the same parameter, in that case
     * these parameters will have the value of the last image
     */
    public void updateCameraParametersFromCalculated(
    		boolean allImages ){
    	int numSeries=allImages?(-1):this.fittingStrategy.currentSeriesNumber;
		boolean [] selectedImages=fittingStrategy.selectedImages(numSeries); // all enabled
		boolean [] selectedImagesDebug=null;
		boolean debugThis=false;
		int maxDebugImages=10;
10375
		if (this.debugLevel>0) System.out.println("updateCameraParametersFromCalculated("+allImages+")");
Andrey Filippov's avatar
Andrey Filippov committed
10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393
		if (this.debugLevel>2){
			int numSel=0;
			for (int i=0;i<selectedImages.length;i++) if (selectedImages[i]) numSel++;
			if (numSel<=maxDebugImages) debugThis=true;
			else {
				System.out.println ("Too many images ("+numSel+">"+ maxDebugImages +") to debug, skipping console println.");
				selectedImagesDebug=fittingStrategy.selectedImages(this.fittingStrategy.currentSeriesNumber); // all enabled

			}
		}
		for (int numImg=0;numImg<selectedImages.length; numImg++) if (selectedImages[numImg]){ // here only adjusted images should participate
			int subCam=fittingStrategy.distortionCalibrationData.getImageSubcamera(numImg);
//			double [] par=fittingStrategy.distortionCalibrationData.pars[numImg];
			double [] par=fittingStrategy.distortionCalibrationData.getParameters(numImg);
    		boolean [] update=new boolean[par.length];
    		for (int i=0;i<update.length;i++) update[i]=true;
    		int stationNumber=fittingStrategy.distortionCalibrationData.getImageStation(numImg);
    		// TODO: maybe determine - which parameters to be updated, not all - i.e. "super-common", or having the same value, etc.
Andrey Filippov's avatar
Andrey Filippov committed
10394
    		// but all those intrinsic are required to match calibration files saved
Andrey Filippov's avatar
Andrey Filippov committed
10395 10396 10397
			fittingStrategy.distortionCalibrationData.eyesisCameraParameters.setParametersVector(par, update, stationNumber, subCam);
			if (debugThis || ((selectedImagesDebug!=null) && selectedImagesDebug[numImg])){
				System.out.println ("Updating from image #"+numImg+" (subCam="+subCam+" stationNumber="+stationNumber+"):");
Andrey Filippov's avatar
Andrey Filippov committed
10398
//getParameterName
Andrey Filippov's avatar
Andrey Filippov committed
10399 10400 10401 10402 10403 10404 10405 10406 10407
				for (int i=0;i<par.length;i++){
					System.out.println(i+": "+fittingStrategy.distortionCalibrationData.getParameterName(i)+" = "+par[i]);
				}
			}
		}
		if (this.debugLevel>1) System.out.println("updateCameraParametersFromCalculated("+allImages+") for series="+numSeries);
		// Next line is not needed anymore (will harm as will set orientationEstimated for all unselected sets)
//		if (!allImages) fittingStrategy.distortionCalibrationData.updateSetOrientation(selectedImages); // only for selected images (not all enabled), OK
    }
Andrey Filippov's avatar
Andrey Filippov committed
10408
	/* Create a Thread[] array as large as the number of processors available.
Andrey Filippov's avatar
Andrey Filippov committed
10409 10410 10411 10412 10413 10414 10415 10416
	 * From Stephan Preibisch's Multithreading.java class. See:
	 * http://repo.or.cz/w/trakem2.git?a=blob;f=mpi/fruitfly/general/MultiThreading.java;hb=HEAD
	 */
	private Thread[] newThreadArray(int maxCPUs) {
		int n_cpus = Runtime.getRuntime().availableProcessors();
		if (n_cpus>maxCPUs)n_cpus=maxCPUs;
		return new Thread[n_cpus];
	}
Andrey Filippov's avatar
Andrey Filippov committed
10417
/* Start all given threads and wait on each of them until all are done.
Andrey Filippov's avatar
Andrey Filippov committed
10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429
	 * From Stephan Preibisch's Multithreading.java class. See:
	 * http://repo.or.cz/w/trakem2.git?a=blob;f=mpi/fruitfly/general/MultiThreading.java;hb=HEAD
	 */
	private static void startAndJoin(Thread[] threads)
	{
		for (int ithread = 0; ithread < threads.length; ++ithread)
		{
			threads[ithread].setPriority(Thread.NORM_PRIORITY);
			threads[ithread].start();
		}

		try
Andrey Filippov's avatar
Andrey Filippov committed
10430
		{
Andrey Filippov's avatar
Andrey Filippov committed
10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444
			for (int ithread = 0; ithread < threads.length; ++ithread)
				threads[ithread].join();
		} catch (InterruptedException ie)
		{
			throw new RuntimeException(ie);
		}
	}

    public static class RefineParameters{
    	  public boolean extrapolate=true;   // extrapolate sensor distortion correction
     	  public double alphaThreshold =0.8; // ignore sensor correction pixels with mask value below this
     	  public double fatZero=0.01;        // when extrapolatging color transfer coefficients (flat field) use this for logariphm
     	  public double extrapolationSigma=30.0; // sigmna for Gaussian weight function when fittinga plane to known pixels
     	                                         // calculated for non-decimated pixels
Andrey Filippov's avatar
Andrey Filippov committed
10445
     	  public double extrapolationKSigma=2.0; // consider pixels in 2*extrapolationSigma*extrapolationKSigma square when fitting
Andrey Filippov's avatar
Andrey Filippov committed
10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459
     	  public boolean smoothCorrection=true;  // apply Gaussian blur to calculated pixel correction field
     	  public double smoothSigma=50.0; // sigma for Gaussian weight function when fittinga plane to known pixels
     	  public double correctionScale=1.0; // scale correction when accumulating;
     	  public boolean showCumulativeCorrection=false; // show correction afther this one is applied
     	  public boolean showUnfilteredCorrection=true; // show this (additional) correction before extrapolation and/or smoothing
     	  public boolean showExtrapolationCorrection=false; // show Extrapolation
     	  public boolean showThisCorrection=false; // show this (additional) correction separately
     	  public boolean showPerImage=false;     // show residuals for each individual image
     	  public int     showIndividualNumber=0; // which image to show (-1 - all)
     	  public boolean applyCorrection=true;   // apply calculated corerction
     	  public boolean applyFlatField=true;   // apply calculated flat-field
     	  public boolean grid3DCorrection=true; // Correct patetrn grid node locations in 3d (false - in 2d only)
     	  public boolean rotateCorrection=true; // old value - did not yet understand why is it needed
     	  public double  grid3DMaximalZCorr=20.0; // Maximal Z-axis correc tion (if more will fall back to 2d correction algorithm)
Andrey Filippov's avatar
Andrey Filippov committed
10460

Andrey Filippov's avatar
Andrey Filippov committed
10461 10462 10463 10464 10465
     	  public boolean  useVariations=  false; // allow different Z for different stations (for not a wall/stable pattern)
     	  public double  variationPenalty=0.001; // "stiffness" of individual (per-station) Z-values of the target pattern
     	  public boolean  fixXY=          false; // adjust only Z of the target pattern, keep X and Y
     	  public boolean  resetVariations=false;
     	  public boolean  noFallBack=     true; // may have bugs - not tested yet
Andrey Filippov's avatar
Andrey Filippov committed
10466 10467 10468 10469


     	  public boolean usePatternAlpha= true;  // use pattern grid alpha data, false - old calculation

Andrey Filippov's avatar
Andrey Filippov committed
10470 10471 10472 10473 10474
// New individual parameters for modify pattern grid
     	 public boolean  targetShowPerImage=false;
     	 public boolean  targetShowThisCorrection=false;
     	 public boolean  targetApplyCorrection=true;
    	 public double   targetCorrectionScale=1.0; // scale correction when accumulating;
10475
// New parameters for new sensor correction
Andrey Filippov's avatar
Andrey Filippov committed
10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491
    	 public boolean sensorExtrapolateDiff =      false; // true - extrapolate correction, false - composite
    	 public double sensorShrinkBlurComboSigma =  50.0;
    	 public double sensorShrinkBlurComboLevel =  0.25;
    	 public double sensorAlphaThreshold =        0.1;
    	 public double sensorStep =                  5;
    	 public double sensorInterpolationSigma=     100;
    	 public double sensorTangentialRadius=       0.5;
    	 public int    sensorScanDistance=           200;
    	 public int    sensorResultDistance=         500;
    	 public int    sensorInterpolationDegree=    2;
//New parameters for Flat field correction
    	 public int flatFieldSerNumber=             -1;
    	 public int flatFieldReferenceStation=       0;
    	 public double flatFieldShrink=              100.0;
    	 public double flatFieldNonVignettedRadius = 1000.0;
    	 public double flatFieldMinimalAlpha =       0.01; // use %
Andrey Filippov's avatar
Andrey Filippov committed
10492
    	 public double flatFieldMinimalContrast=     0.1;
Andrey Filippov's avatar
Andrey Filippov committed
10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513
    	 public double flatFieldMinimalAccumulate =  0.01; // use %
    	 public double flatFieldShrinkForMatching =  2.0;
    	 public double flatFieldMaxRelDiff =         0.1;  // use %
    	 public int    flatFieldShrinkMask=          2;
    	 public double flatFieldFadeBorder =         2.0;
    	 //			gd.addMessage("Update pattern white balance (if the illumination is yellowish, increase red and green here)");
    	 //    		LENS_DISTORTIONS.patternParameters.averageRGB[0]=gd.getNextNumber();
    	 //    		LENS_DISTORTIONS.patternParameters.averageRGB[1]=gd.getNextNumber();
    	 //   		LENS_DISTORTIONS.patternParameters.averageRGB[2]=gd.getNextNumber();
    	 public boolean flatFieldResetMask=      true;
    	 public boolean flatFieldShowSensorMasks=false;
    	 public boolean flatFieldShowIndividual= false;
    	 public boolean flatFieldShowResult=     true;
    	 public boolean flatFieldApplyResult=    true;
    	 public boolean flatFieldUseInterpolate= true;
    	 public double  flatFieldMaskThresholdOcclusion=0.15; // use %
    	 public int     flatFieldShrinkOcclusion= 2;
    	 public double  flatFieldFadeOcclusion=   2.0;

    	 public boolean flatFieldIgnoreSensorFlatField= false;
//    	 public boolean flatFieldUseSelectedChannels= false;
Andrey Filippov's avatar
Andrey Filippov committed
10514
// Other
Andrey Filippov's avatar
Andrey Filippov committed
10515
    	 public int    repeatFlatFieldSensor=10; // TODO: add stop !
Andrey Filippov's avatar
Andrey Filippov committed
10516

Andrey Filippov's avatar
Andrey Filippov committed
10517 10518 10519 10520 10521 10522 10523 10524
    	 public double  specularHighPassSigma=            10.0;
    	 public double  specularLowPassSigma=              2.0;
    	 public double  specularDiffFromAverageThreshold= 0.01;
    	 public int     specularNumIter=                  5;
    	 public boolean specularApplyNewWeights=          true;
    	 public boolean specularPositiveDiffOnly=         true;
    	 public int     specularShowDebug=                1; // 0 - do not show, 1 - show on last iteration only, 2 - show always

Andrey Filippov's avatar
Andrey Filippov committed
10525

Andrey Filippov's avatar
Andrey Filippov committed
10526 10527 10528 10529 10530 10531
     	  public RefineParameters(){}
     	  public RefineParameters(
     			  boolean extrapolate,
     			  double alphaThreshold,
     	     	  double fatZero,
     			  double extrapolationSigma,
Andrey Filippov's avatar
Andrey Filippov committed
10532
     			  double extrapolationKSigma,
Andrey Filippov's avatar
Andrey Filippov committed
10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599
     			  boolean smoothCorrection,
     			  double smoothSigma,
     	     	  double correctionScale,
     	     	  boolean showCumulativeCorrection,
     	     	  boolean showUnfilteredCorrection,
     	     	  boolean showExtrapolationCorrection,
     	     	  boolean showThisCorrection,
     	     	  boolean showPerImage,
     	     	  int     showIndividualNumber, // which image to show (-1 - all)
     	     	  boolean applyCorrection,
     	     	  boolean applyFlatField,   // apply calculated flat-field
     	    	  boolean grid3DCorrection, // Correct patetrn grid node locations in 3d (false - in 2d only)
     	    	  boolean rotateCorrection, // not clear
     	     	  double  grid3DMaximalZCorr, // Maximal Z-axis correc tion (if more will fall back to 2d correction algorithm)
     	     	  boolean useVariations,
     	     	  double  variationPenalty, // "stiffness" of individual (per-station) Z-values of the target pattern
     	     	  boolean  fixXY,
     	     	  boolean  resetVariations,
     	     	  boolean  noFallBack, // may have bugs - not tested yet
     	     	  boolean usePatternAlpha,
     	     	  boolean  targetShowPerImage,
     	     	  boolean  targetShowThisCorrection,
     	     	  boolean  targetApplyCorrection,
     	     	  double   targetCorrectionScale,
     	     	  boolean sensorExtrapolateDiff,
     	     	  double sensorShrinkBlurComboSigma,
     	     	  double sensorShrinkBlurComboLevel,
     	     	  double sensorAlphaThreshold,
     	     	  double sensorStep,
     	     	  double sensorInterpolationSigma,
     	     	  double sensorTangentialRadius,
     	     	  int    sensorScanDistance,
     	     	  int    sensorResultDistance,
     	     	  int    sensorInterpolationDegree,
     	     	  int flatFieldSerNumber,
     	     	  int flatFieldReferenceStation,
     	     	  double flatFieldShrink,
     	     	  double flatFieldNonVignettedRadius,
     	     	  double flatFieldMinimalAlpha,
     	     	  double flatFieldMinimalContrast,
     	     	  double flatFieldMinimalAccumulate,
     	     	  double flatFieldShrinkForMatching,
     	     	  double flatFieldMaxRelDiff,
     	     	  int    flatFieldShrinkMask,
     	     	  double flatFieldFadeBorder,
     	     	  boolean flatFieldResetMask,
     	     	  boolean flatFieldShowSensorMasks,
     	     	  boolean flatFieldShowIndividual,
     	     	  boolean flatFieldShowResult,
     	     	  boolean flatFieldApplyResult,
     	     	  boolean flatFieldUseInterpolate,
     	     	  double  flatFieldMaskThresholdOcclusion,
     	     	  int     flatFieldShrinkOcclusion,
     	     	  double  flatFieldFadeOcclusion,
     	     	  boolean flatFieldIgnoreSensorFlatField,
     	     	  int    repeatFlatFieldSensor,
     	    	  double  specularHighPassSigma,
     	    	  double  specularLowPassSigma,
     	    	  double  specularDiffFromAverageThreshold,
     	    	  int     specularNumIter,
     	    	  boolean specularApplyNewWeights,
     	    	  boolean specularPositiveDiffOnly,
     	    	  int     specularShowDebug){
     		  this.extrapolate=extrapolate;
     		  this.alphaThreshold=alphaThreshold;
         	  this.fatZero=fatZero;        // when extrapolatging color transfer coefficients (flat field) use this for logariphm
     		  this.extrapolationSigma=extrapolationSigma;
Andrey Filippov's avatar
Andrey Filippov committed
10600
     		  this.extrapolationKSigma=extrapolationKSigma;
Andrey Filippov's avatar
Andrey Filippov committed
10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666
     		  this.smoothCorrection=smoothCorrection;
     		  this.smoothSigma=smoothSigma;
     		  this.correctionScale=correctionScale;
     		  this.showCumulativeCorrection=showCumulativeCorrection;
     		  this.showUnfilteredCorrection=showUnfilteredCorrection;
     		  this.showExtrapolationCorrection=showExtrapolationCorrection;
     		  this.showThisCorrection=showThisCorrection;
     		  this.showPerImage=showPerImage;
     		  this.showIndividualNumber=showIndividualNumber; // which image to show (-1 - all)
     		  this.applyCorrection=applyCorrection;
     		  this.applyFlatField=applyFlatField;
     		  this.grid3DCorrection=grid3DCorrection;
 	    	  this.rotateCorrection=rotateCorrection; // not clear
         	  this.grid3DMaximalZCorr=grid3DMaximalZCorr; // Maximal Z-axis correc tion (if more will fall back to 2d correction algorithm)
         	  this.useVariations=useVariations;
         	  this.variationPenalty=variationPenalty; // "stiffness" of individual (per-station) Z-values of the target pattern
         	  this.fixXY=fixXY;
         	  this.resetVariations=resetVariations;
         	  this.noFallBack=     noFallBack; // may have bugs - not tested yet
         	  this.usePatternAlpha=usePatternAlpha;
         	  this.targetShowPerImage=       targetShowPerImage;
         	  this.targetShowThisCorrection=  targetShowThisCorrection;
         	  this.targetApplyCorrection=     targetApplyCorrection;
         	  this.targetCorrectionScale=     targetCorrectionScale;
         	  this.sensorExtrapolateDiff=     sensorExtrapolateDiff;
         	  this.sensorShrinkBlurComboSigma=sensorShrinkBlurComboSigma;
         	  this.sensorShrinkBlurComboLevel=sensorShrinkBlurComboLevel;
         	  this.sensorAlphaThreshold=sensorAlphaThreshold;
         	  this.sensorStep=sensorStep;
         	  this.sensorInterpolationSigma=sensorInterpolationSigma;
         	  this.sensorTangentialRadius=sensorTangentialRadius;
         	  this.sensorScanDistance=sensorScanDistance;
         	  this.sensorResultDistance=sensorResultDistance;
         	  this.sensorInterpolationDegree=sensorInterpolationDegree;
         	  this.flatFieldSerNumber=flatFieldSerNumber;
         	  this.flatFieldReferenceStation=flatFieldReferenceStation;
         	  this.flatFieldShrink=flatFieldShrink;
         	  this.flatFieldNonVignettedRadius=flatFieldNonVignettedRadius;
         	  this.flatFieldMinimalAlpha=flatFieldMinimalAlpha;
         	  this.flatFieldMinimalContrast=flatFieldMinimalContrast;
         	  this.flatFieldMinimalAccumulate=flatFieldMinimalAccumulate;
         	  this.flatFieldShrinkForMatching=flatFieldShrinkForMatching;
         	  this.flatFieldMaxRelDiff=flatFieldMaxRelDiff;
         	  this.flatFieldShrinkMask=flatFieldShrinkMask;
         	  this.flatFieldFadeBorder=flatFieldFadeBorder;
         	  this.flatFieldResetMask=flatFieldResetMask;
         	  this.flatFieldShowSensorMasks=flatFieldShowSensorMasks;
         	  this.flatFieldShowIndividual=flatFieldShowIndividual;
         	  this.flatFieldShowResult=flatFieldShowResult;
         	  this.flatFieldApplyResult=flatFieldApplyResult;
         	  this.flatFieldUseInterpolate=flatFieldUseInterpolate;
         	  this.flatFieldMaskThresholdOcclusion=flatFieldMaskThresholdOcclusion;
         	  this.flatFieldShrinkOcclusion=flatFieldShrinkOcclusion;
         	  this.flatFieldFadeOcclusion=flatFieldFadeOcclusion;
         	  this.flatFieldIgnoreSensorFlatField=flatFieldIgnoreSensorFlatField;
//         	  this.flatFieldUseSelectedChannels=flatFieldUseSelectedChannels;
         	  this.repeatFlatFieldSensor=repeatFlatFieldSensor;

         	  this.specularHighPassSigma=specularHighPassSigma;
         	  this.specularLowPassSigma=specularLowPassSigma;
         	  this.specularDiffFromAverageThreshold=specularDiffFromAverageThreshold;
         	  this.specularNumIter=specularNumIter;
         	  this.specularApplyNewWeights=specularApplyNewWeights;
         	  this.specularPositiveDiffOnly=specularPositiveDiffOnly;
         	  this.specularShowDebug=specularShowDebug;
     	  }
Andrey Filippov's avatar
Andrey Filippov committed
10667 10668
     	  @Override
		public RefineParameters clone(){
Andrey Filippov's avatar
Andrey Filippov committed
10669 10670 10671 10672 10673
     		  return new RefineParameters(
     				  this.extrapolate,
     				  this.alphaThreshold,
     	         	  this.fatZero,
     				  this.extrapolationSigma,
Andrey Filippov's avatar
Andrey Filippov committed
10674
     				  this.extrapolationKSigma,
Andrey Filippov's avatar
Andrey Filippov committed
10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689
     				  this.smoothCorrection,
     				  this.smoothSigma,
     				  this.correctionScale,
     				  this.showCumulativeCorrection,
     				  this.showUnfilteredCorrection,
     				  this.showExtrapolationCorrection,
     				  this.showThisCorrection,
     				  this.showPerImage,
     	     		  this.showIndividualNumber,
     				  this.applyCorrection,
     	     		  this.applyFlatField,
     	     		  this.grid3DCorrection,
         	    	  this.rotateCorrection, // not clear
     	        	  this.grid3DMaximalZCorr, // Maximal Z-axis correc tion (if more will fall back to 2d correction algorithm)
     	        	  this.useVariations,
Andrey Filippov's avatar
Andrey Filippov committed
10690
     	         	  this.variationPenalty, // "stiffness" of individual (per-station) Z-values of the target pattern
Andrey Filippov's avatar
Andrey Filippov committed
10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739
     	         	  this.fixXY,
     	         	  this.resetVariations,
     	         	  this.noFallBack, // may have bugs - not tested yet
     	     		  this.usePatternAlpha,
     	         	  this.targetShowPerImage,
     	         	  this.targetShowThisCorrection,
     	         	  this.targetApplyCorrection,
     	         	  this.targetCorrectionScale,
     	         	  this.sensorExtrapolateDiff,
     	         	  this.sensorShrinkBlurComboSigma,
     	         	  this.sensorShrinkBlurComboLevel,
     	         	  this.sensorAlphaThreshold,
     	         	  this.sensorStep,
     	         	  this.sensorInterpolationSigma,
     	         	  this.sensorTangentialRadius,
     	         	  this.sensorScanDistance,
     	         	  this.sensorResultDistance,
     	         	  this.sensorInterpolationDegree,
     	         	  this.flatFieldSerNumber,
     	         	  this.flatFieldReferenceStation,
     	         	  this.flatFieldShrink,
     	         	  this.flatFieldNonVignettedRadius,
     	         	  this.flatFieldMinimalAlpha,
     	         	  this.flatFieldMinimalContrast,
     	         	  this.flatFieldMinimalAccumulate,
     	         	  this.flatFieldShrinkForMatching,
     	         	  this.flatFieldMaxRelDiff,
     	         	  this.flatFieldShrinkMask,
     	         	  this.flatFieldFadeBorder,
     	         	  this.flatFieldResetMask,
     	         	  this.flatFieldShowSensorMasks,
     	         	  this.flatFieldShowIndividual,
     	         	  this.flatFieldShowResult,
     	         	  this.flatFieldApplyResult,
     	         	  this.flatFieldUseInterpolate,
     	         	  this.flatFieldMaskThresholdOcclusion,
     	         	  this.flatFieldShrinkOcclusion,
     	         	  this.flatFieldFadeOcclusion,
     	         	  this.flatFieldIgnoreSensorFlatField,
     	         	  this.repeatFlatFieldSensor,
         	    	  this.specularHighPassSigma,
         	    	  this.specularLowPassSigma,
         	    	  this.specularDiffFromAverageThreshold,
         	    	  this.specularNumIter,
         	    	  this.specularApplyNewWeights,
         	    	  this.specularPositiveDiffOnly,
         	    	  this.specularShowDebug);
     	  }
     	   	public void setProperties(String prefix,Properties properties){
Andrey Filippov's avatar
Andrey Filippov committed
10740

Andrey Filippov's avatar
Andrey Filippov committed
10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759
        		properties.setProperty(prefix+"extrapolate",this.extrapolate+"");
        		properties.setProperty(prefix+"alphaThreshold",this.alphaThreshold+"");
        		properties.setProperty(prefix+"fatZero",this.fatZero+"");
        		properties.setProperty(prefix+"extrapolationSigma",this.extrapolationSigma+"");
        		properties.setProperty(prefix+"extrapolationKSigma",this.extrapolationKSigma+"");
        		properties.setProperty(prefix+"smoothCorrection",this.smoothCorrection+"");
        		properties.setProperty(prefix+"smoothSigma",this.smoothSigma+"");
        		properties.setProperty(prefix+"correctionScale",this.correctionScale+"");
        		properties.setProperty(prefix+"showCumulativeCorrection",this.showCumulativeCorrection+"");
        		properties.setProperty(prefix+"showUnfilteredCorrection",this.showUnfilteredCorrection+"");
        		properties.setProperty(prefix+"showExtrapolationCorrection",this.showExtrapolationCorrection+"");
        		properties.setProperty(prefix+"showThisCorrection",this.showThisCorrection+"");
        		properties.setProperty(prefix+"showPerImage",this.showPerImage+"");
        		properties.setProperty(prefix+"showIndividualNumber",this.showIndividualNumber+"");
        		properties.setProperty(prefix+"applyCorrection",this.applyCorrection+"");
        		properties.setProperty(prefix+"applyFlatField",this.applyFlatField+"");
        		properties.setProperty(prefix+"grid3DCorrection",this.grid3DCorrection+"");
        		properties.setProperty(prefix+"rotateCorrection",this.rotateCorrection+"");
        		properties.setProperty(prefix+"grid3DMaximalZCorr",this.grid3DMaximalZCorr+"");
Andrey Filippov's avatar
Andrey Filippov committed
10760

Andrey Filippov's avatar
Andrey Filippov committed
10761 10762 10763
        		properties.setProperty(prefix+"useVariations",this.useVariations+"");
        		properties.setProperty(prefix+"variationPenalty",this.variationPenalty+"");
        		properties.setProperty(prefix+"fixXY",this.fixXY+"");
Andrey Filippov's avatar
Andrey Filippov committed
10764

Andrey Filippov's avatar
Andrey Filippov committed
10765 10766
        		properties.setProperty(prefix+"resetVariations",this.resetVariations+"");
        		properties.setProperty(prefix+"noFallBack",this.noFallBack+"");
Andrey Filippov's avatar
Andrey Filippov committed
10767

Andrey Filippov's avatar
Andrey Filippov committed
10768
        		properties.setProperty(prefix+"usePatternAlpha",this.usePatternAlpha+"");
Andrey Filippov's avatar
Andrey Filippov committed
10769

Andrey Filippov's avatar
Andrey Filippov committed
10770 10771 10772 10773
        		properties.setProperty(prefix+"targetShowPerImage",this.targetShowPerImage+"");
        		properties.setProperty(prefix+"targetShowThisCorrection",this.targetShowThisCorrection+"");
        		properties.setProperty(prefix+"targetApplyCorrection",this.targetApplyCorrection+"");
        		properties.setProperty(prefix+"targetCorrectionScale",this.targetCorrectionScale+"");
Andrey Filippov's avatar
Andrey Filippov committed
10774

Andrey Filippov's avatar
Andrey Filippov committed
10775 10776 10777 10778 10779 10780 10781 10782
        		properties.setProperty(prefix+"sensorExtrapolateDiff",this.sensorExtrapolateDiff+"");
        		properties.setProperty(prefix+"sensorShrinkBlurComboSigma",this.sensorShrinkBlurComboSigma+"");

        		properties.setProperty(prefix+"sensorShrinkBlurComboLevel",this.sensorShrinkBlurComboLevel+"");
        		properties.setProperty(prefix+"sensorAlphaThreshold",this.sensorAlphaThreshold+"");
        		properties.setProperty(prefix+"sensorStep",this.sensorStep+"");
        		properties.setProperty(prefix+"sensorInterpolationSigma",this.sensorInterpolationSigma+"");
        		properties.setProperty(prefix+"sensorTangentialRadius",this.sensorTangentialRadius+"");
Andrey Filippov's avatar
Andrey Filippov committed
10783

Andrey Filippov's avatar
Andrey Filippov committed
10784 10785 10786 10787 10788
        		properties.setProperty(prefix+"sensorScanDistance",this.sensorScanDistance+"");
        		properties.setProperty(prefix+"sensorResultDistance",this.sensorResultDistance+"");
        		properties.setProperty(prefix+"sensorInterpolationDegree",this.sensorInterpolationDegree+"");
        		properties.setProperty(prefix+"flatFieldSerNumber",this.flatFieldSerNumber+"");
        		properties.setProperty(prefix+"flatFieldReferenceStation",this.flatFieldReferenceStation+"");
Andrey Filippov's avatar
Andrey Filippov committed
10789

Andrey Filippov's avatar
Andrey Filippov committed
10790 10791 10792
        		properties.setProperty(prefix+"flatFieldShrink",this.flatFieldShrink+"");
        		properties.setProperty(prefix+"flatFieldNonVignettedRadius",this.flatFieldNonVignettedRadius+"");
        		properties.setProperty(prefix+"flatFieldMinimalAlpha",this.flatFieldMinimalAlpha+"");
Andrey Filippov's avatar
Andrey Filippov committed
10793

Andrey Filippov's avatar
Andrey Filippov committed
10794 10795 10796
        		properties.setProperty(prefix+"flatFieldMinimalContrast",this.flatFieldMinimalContrast+"");
        		properties.setProperty(prefix+"flatFieldMinimalAccumulate",this.flatFieldMinimalAccumulate+"");
        		properties.setProperty(prefix+"flatFieldShrinkForMatching",this.flatFieldShrinkForMatching+"");
Andrey Filippov's avatar
Andrey Filippov committed
10797

Andrey Filippov's avatar
Andrey Filippov committed
10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862
        		properties.setProperty(prefix+"flatFieldMaxRelDiff",this.flatFieldMaxRelDiff+"");
        		properties.setProperty(prefix+"flatFieldShrinkMask",this.flatFieldShrinkMask+"");
        		properties.setProperty(prefix+"flatFieldFadeBorder",this.flatFieldFadeBorder+"");
        		properties.setProperty(prefix+"flatFieldResetMask",this.flatFieldResetMask+"");
        		properties.setProperty(prefix+"flatFieldShowSensorMasks",this.flatFieldShowSensorMasks+"");

        		properties.setProperty(prefix+"flatFieldShowIndividual",this.flatFieldShowIndividual+"");
        		properties.setProperty(prefix+"flatFieldShowResult",this.flatFieldShowResult+"");
        		properties.setProperty(prefix+"flatFieldApplyResult",this.flatFieldApplyResult+"");
        		properties.setProperty(prefix+"flatFieldUseInterpolate",this.flatFieldUseInterpolate+"");
        		properties.setProperty(prefix+"flatFieldMaskThresholdOcclusion",this.flatFieldMaskThresholdOcclusion+"");

        		properties.setProperty(prefix+"flatFieldShrinkOcclusion",this.flatFieldShrinkOcclusion+"");
        		properties.setProperty(prefix+"flatFieldFadeOcclusion",this.flatFieldFadeOcclusion+"");
        		properties.setProperty(prefix+"flatFieldIgnoreSensorFlatField",this.flatFieldIgnoreSensorFlatField+"");
        		properties.setProperty(prefix+"repeatFlatFieldSensor",this.repeatFlatFieldSensor+"");

        		properties.setProperty(prefix+"specularHighPassSigma",this.specularHighPassSigma+"");
        		properties.setProperty(prefix+"specularLowPassSigma", this.specularLowPassSigma+"");
        		properties.setProperty(prefix+"specularDiffFromAverageThreshold",this.specularDiffFromAverageThreshold+"");
        		properties.setProperty(prefix+"specularNumIter",this.specularNumIter+"");
        		properties.setProperty(prefix+"specularApplyNewWeights",this.specularApplyNewWeights+"");
        		properties.setProperty(prefix+"specularPositiveDiffOnly",this.specularPositiveDiffOnly+"");
        		properties.setProperty(prefix+"specularShowDebug",this.specularShowDebug+"");
        	}

     	   	public void getProperties(String prefix,Properties properties){
        		if (properties.getProperty(prefix+"extrapolate")!=null)
        			this.extrapolate=Boolean.parseBoolean(properties.getProperty(prefix+"extrapolate"));
        		if (properties.getProperty(prefix+"alphaThreshold")!=null)
        			this.alphaThreshold=Double.parseDouble(properties.getProperty(prefix+"alphaThreshold"));
        		if (properties.getProperty(prefix+"fatZero")!=null)
        			this.fatZero=Double.parseDouble(properties.getProperty(prefix+"fatZero"));
        		if (properties.getProperty(prefix+"extrapolationSigma")!=null)
        			this.extrapolationSigma=Double.parseDouble(properties.getProperty(prefix+"extrapolationSigma"));
        		if (properties.getProperty(prefix+"extrapolationKSigma")!=null)
        			this.extrapolationKSigma=Double.parseDouble(properties.getProperty(prefix+"extrapolationKSigma"));
        		if (properties.getProperty(prefix+"smoothCorrection")!=null)
        			this.smoothCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"smoothCorrection"));
        		if (properties.getProperty(prefix+"smoothSigma")!=null)
        			this.smoothSigma=Double.parseDouble(properties.getProperty(prefix+"smoothSigma"));
        		if (properties.getProperty(prefix+"correctionScale")!=null)
        			this.correctionScale=Double.parseDouble(properties.getProperty(prefix+"correctionScale"));
        		if (properties.getProperty(prefix+"showCumulativeCorrection")!=null)
        			this.showCumulativeCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"showCumulativeCorrection"));
        		if (properties.getProperty(prefix+"showUnfilteredCorrection")!=null)
        			this.showUnfilteredCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"showUnfilteredCorrection"));
        		if (properties.getProperty(prefix+"showExtrapolationCorrection")!=null)
        			this.showExtrapolationCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"showExtrapolationCorrection"));
        		if (properties.getProperty(prefix+"showThisCorrection")!=null)
        			this.showThisCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"showThisCorrection"));
        		if (properties.getProperty(prefix+"showPerImage")!=null)
        			this.showPerImage=Boolean.parseBoolean(properties.getProperty(prefix+"showPerImage"));
        		if (properties.getProperty(prefix+"showIndividualNumber")!=null)
        			this.showIndividualNumber=Integer.parseInt(properties.getProperty(prefix+"showIndividualNumber"));
        		if (properties.getProperty(prefix+"applyCorrection")!=null)
        			this.applyCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"applyCorrection"));
        		if (properties.getProperty(prefix+"applyFlatField")!=null)
        			this.applyFlatField=Boolean.parseBoolean(properties.getProperty(prefix+"applyFlatField"));
        		if (properties.getProperty(prefix+"grid3DCorrection")!=null)
        			this.grid3DCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"grid3DCorrection"));
        		if (properties.getProperty(prefix+"rotateCorrection")!=null)
        			this.rotateCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"rotateCorrection"));
        		if (properties.getProperty(prefix+"grid3DMaximalZCorr")!=null)
        			this.grid3DMaximalZCorr=Double.parseDouble(properties.getProperty(prefix+"grid3DMaximalZCorr"));
Andrey Filippov's avatar
Andrey Filippov committed
10863

Andrey Filippov's avatar
Andrey Filippov committed
10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970
        		if (properties.getProperty(prefix+"useVariations")!=null)
        			this.useVariations=Boolean.parseBoolean(properties.getProperty(prefix+"useVariations"));
        		if (properties.getProperty(prefix+"variationPenalty")!=null)
        			this.variationPenalty=Double.parseDouble(properties.getProperty(prefix+"variationPenalty"));
        		if (properties.getProperty(prefix+"fixXY")!=null)
        			this.fixXY=Boolean.parseBoolean(properties.getProperty(prefix+"fixXY"));
        		if (properties.getProperty(prefix+"resetVariations")!=null)
        			this.resetVariations=Boolean.parseBoolean(properties.getProperty(prefix+"resetVariations"));
        		if (properties.getProperty(prefix+"noFallBack")!=null)
        			this.noFallBack=Boolean.parseBoolean(properties.getProperty(prefix+"noFallBack"));
        		if (properties.getProperty(prefix+"usePatternAlpha")!=null)
        			this.usePatternAlpha=Boolean.parseBoolean(properties.getProperty(prefix+"usePatternAlpha"));
        		if (properties.getProperty(prefix+"targetShowPerImage")!=null)
        			this.targetShowPerImage=Boolean.parseBoolean(properties.getProperty(prefix+"targetShowPerImage"));
        		if (properties.getProperty(prefix+"targetShowThisCorrection")!=null)
        			this.targetShowThisCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"targetShowThisCorrection"));
        		if (properties.getProperty(prefix+"targetApplyCorrection")!=null)
        			this.targetApplyCorrection=Boolean.parseBoolean(properties.getProperty(prefix+"targetApplyCorrection"));
        		if (properties.getProperty(prefix+"targetCorrectionScale")!=null)
        			this.targetCorrectionScale=Double.parseDouble(properties.getProperty(prefix+"targetCorrectionScale"));
        		if (properties.getProperty(prefix+"sensorExtrapolateDiff")!=null)
        			this.sensorExtrapolateDiff=Boolean.parseBoolean(properties.getProperty(prefix+"sensorExtrapolateDiff"));
        		if (properties.getProperty(prefix+"sensorShrinkBlurComboSigma")!=null)
        			this.sensorShrinkBlurComboSigma=Double.parseDouble(properties.getProperty(prefix+"sensorShrinkBlurComboSigma"));
        		if (properties.getProperty(prefix+"sensorShrinkBlurComboLevel")!=null)
        			this.sensorShrinkBlurComboLevel=Double.parseDouble(properties.getProperty(prefix+"sensorShrinkBlurComboLevel"));
        		if (properties.getProperty(prefix+"sensorAlphaThreshold")!=null)
        			this.sensorAlphaThreshold=Double.parseDouble(properties.getProperty(prefix+"sensorAlphaThreshold"));
        		if (properties.getProperty(prefix+"sensorStep")!=null)
        			this.sensorStep=Double.parseDouble(properties.getProperty(prefix+"sensorStep"));
        		if (properties.getProperty(prefix+"sensorInterpolationSigma")!=null)
        			this.sensorInterpolationSigma=Double.parseDouble(properties.getProperty(prefix+"sensorInterpolationSigma"));
        		if (properties.getProperty(prefix+"sensorTangentialRadius")!=null)
        			this.sensorTangentialRadius=Double.parseDouble(properties.getProperty(prefix+"sensorTangentialRadius"));
        		if (properties.getProperty(prefix+"sensorScanDistance")!=null)
        			this.sensorScanDistance=Integer.parseInt(properties.getProperty(prefix+"sensorScanDistance"));
        		if (properties.getProperty(prefix+"sensorResultDistance")!=null)
        			this.sensorResultDistance=Integer.parseInt(properties.getProperty(prefix+"sensorResultDistance"));
        		if (properties.getProperty(prefix+"sensorInterpolationDegree")!=null)
        			this.sensorInterpolationDegree=Integer.parseInt(properties.getProperty(prefix+"sensorInterpolationDegree"));
        		if (properties.getProperty(prefix+"flatFieldSerNumber")!=null)
        			this.flatFieldSerNumber=Integer.parseInt(properties.getProperty(prefix+"flatFieldSerNumber"));
        		if (properties.getProperty(prefix+"flatFieldReferenceStation")!=null)
        			this.flatFieldReferenceStation=Integer.parseInt(properties.getProperty(prefix+"flatFieldReferenceStation"));
        		if (properties.getProperty(prefix+"flatFieldShrink")!=null)
        			this.flatFieldShrink=Double.parseDouble(properties.getProperty(prefix+"flatFieldShrink"));
        		if (properties.getProperty(prefix+"flatFieldNonVignettedRadius")!=null)
        			this.flatFieldNonVignettedRadius=Double.parseDouble(properties.getProperty(prefix+"flatFieldNonVignettedRadius"));
        		if (properties.getProperty(prefix+"flatFieldMinimalAlpha")!=null)
        			this.flatFieldMinimalAlpha=Double.parseDouble(properties.getProperty(prefix+"flatFieldMinimalAlpha"));
        		if (properties.getProperty(prefix+"flatFieldMinimalContrast")!=null)
        			this.flatFieldMinimalContrast=Double.parseDouble(properties.getProperty(prefix+"flatFieldMinimalContrast"));
        		if (properties.getProperty(prefix+"flatFieldMinimalAccumulate")!=null)
        			this.flatFieldMinimalAccumulate=Double.parseDouble(properties.getProperty(prefix+"flatFieldMinimalAccumulate"));
        		if (properties.getProperty(prefix+"flatFieldShrinkForMatching")!=null)
        			this.flatFieldShrinkForMatching=Double.parseDouble(properties.getProperty(prefix+"flatFieldShrinkForMatching"));
        		if (properties.getProperty(prefix+"flatFieldMaxRelDiff")!=null)
        			this.flatFieldMaxRelDiff=Double.parseDouble(properties.getProperty(prefix+"flatFieldMaxRelDiff"));
        		if (properties.getProperty(prefix+"flatFieldShrinkMask")!=null)
        			this.flatFieldShrinkMask=Integer.parseInt(properties.getProperty(prefix+"flatFieldShrinkMask"));
        		if (properties.getProperty(prefix+"flatFieldFadeBorder")!=null)
        			this.flatFieldFadeBorder=Double.parseDouble(properties.getProperty(prefix+"flatFieldFadeBorder"));
        		if (properties.getProperty(prefix+"flatFieldResetMask")!=null)
        			this.flatFieldResetMask=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldResetMask"));
        		if (properties.getProperty(prefix+"flatFieldShowSensorMasks")!=null)
        			this.flatFieldShowSensorMasks=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldShowSensorMasks"));
        		if (properties.getProperty(prefix+"flatFieldShowIndividual")!=null)
        			this.flatFieldShowIndividual=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldShowIndividual"));
        		if (properties.getProperty(prefix+"flatFieldShowResult")!=null)
        			this.flatFieldShowResult=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldShowResult"));
        		if (properties.getProperty(prefix+"flatFieldApplyResult")!=null)
        			this.flatFieldApplyResult=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldApplyResult"));
        		if (properties.getProperty(prefix+"flatFieldUseInterpolate")!=null)
        			this.flatFieldUseInterpolate=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldUseInterpolate"));
        		if (properties.getProperty(prefix+"flatFieldMaskThresholdOcclusion")!=null)
        			this.flatFieldMaskThresholdOcclusion=Double.parseDouble(properties.getProperty(prefix+"flatFieldMaskThresholdOcclusion"));
        		if (properties.getProperty(prefix+"flatFieldShrinkOcclusion")!=null)
        			this.flatFieldShrinkOcclusion=Integer.parseInt(properties.getProperty(prefix+"flatFieldShrinkOcclusion"));
        		if (properties.getProperty(prefix+"flatFieldFadeOcclusion")!=null)
        			this.flatFieldFadeOcclusion=Double.parseDouble(properties.getProperty(prefix+"flatFieldFadeOcclusion"));
        		if (properties.getProperty(prefix+"flatFieldIgnoreSensorFlatField")!=null)
        			this.flatFieldIgnoreSensorFlatField=Boolean.parseBoolean(properties.getProperty(prefix+"flatFieldIgnoreSensorFlatField"));
        		if (properties.getProperty(prefix+"repeatFlatFieldSensor")!=null)
        			this.repeatFlatFieldSensor=Integer.parseInt(properties.getProperty(prefix+"repeatFlatFieldSensor"));


        		if (properties.getProperty(prefix+"specularHighPassSigma")!=null)
        			this.specularHighPassSigma=Double.parseDouble(properties.getProperty(prefix+"specularHighPassSigma"));
        		if (properties.getProperty(prefix+"specularLowPassSigma")!=null)
        			this.specularLowPassSigma=Double.parseDouble(properties.getProperty(prefix+"specularLowPassSigma"));
        		if (properties.getProperty(prefix+"specularDiffFromAverageThreshold")!=null)
        			this.specularDiffFromAverageThreshold=Double.parseDouble(properties.getProperty(prefix+"specularDiffFromAverageThreshold"));
        		if (properties.getProperty(prefix+"specularNumIter")!=null)
        			this.specularNumIter=Integer.parseInt(properties.getProperty(prefix+"specularNumIter"));
        		if (properties.getProperty(prefix+"specularApplyNewWeights")!=null)
        			this.specularApplyNewWeights=Boolean.parseBoolean(properties.getProperty(prefix+"specularApplyNewWeights"));
        		if (properties.getProperty(prefix+"specularPositiveDiffOnly")!=null)
        			this.specularPositiveDiffOnly=Boolean.parseBoolean(properties.getProperty(prefix+"specularPositiveDiffOnly"));
        		if (properties.getProperty(prefix+"specularShowDebug")!=null)
        			this.specularShowDebug=Integer.parseInt(properties.getProperty(prefix+"specularShowDebug"));
        	}

        	public int showDialog(String title, int parMask, int numSeries, double [] averageRGB) {
        		// sensor 0xfff, grid - 0xcc0 // cannot show result (cumulative) grid correction
        		GenericDialog gd = new GenericDialog(title);
        		if (numSeries>=0) gd.addNumericField("Fitting strategy series number (selects images to process) ", numSeries,0);
    			if ((parMask&0x200000)!=0) gd.addNumericField("Repeat target/sensor flat-field calculation", this.repeatFlatFieldSensor,0,3,"times");
Andrey Filippov's avatar
Andrey Filippov committed
10971 10972


Andrey Filippov's avatar
Andrey Filippov committed
10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983
    			//sensorExtrapolateDiff
    			if ((parMask&0x80000)!=0) gd.addCheckbox("Extrapolate incremetal (not checked - cumulative) correction",  this.sensorExtrapolateDiff);
        		if ((parMask&0x80000) !=0) gd.addNumericField("Shrink-blur combined sigma", this.sensorShrinkBlurComboSigma, 2,6,"sensor pixels"); // 20
        		if ((parMask&0x80000) !=0) gd.addNumericField("Shrink-blur combined level (-1..+1)", this.sensorShrinkBlurComboLevel, 2,6,""); // 0
        		if ((parMask&0x80000) !=0) gd.addNumericField("Combined alpha extrapolation threshold", this.sensorAlphaThreshold, 2,6,""); // normalize later?
        		if ((parMask&0x80000) !=0) gd.addNumericField("Extrapolation seed step",this.sensorStep, 1,4,"decimated pixels");
        		if ((parMask&0x80000) !=0) gd.addNumericField("Extrapolation gaussian sigma", this.sensorInterpolationSigma, 2,6,"sensor pixels"); // 50
        		if ((parMask&0x80000) !=0) gd.addNumericField("Extrapolation effective radius (doubling sigma in tangential direction)", this.sensorTangentialRadius, 2,6,"fraction of full image radius");
        		if ((parMask&0x80000) !=0) gd.addNumericField("Extrapolation half-square side for polynomial approximation", this.sensorScanDistance, 0,3,"sensor pixels");
        		if ((parMask&0x80000) !=0) gd.addNumericField("Extrapolation half-square side for extrapolation", this.sensorResultDistance, 0,3,"sensor pixels");
        		if ((parMask&0x80000) !=0) gd.addNumericField("Extrapolation polynomial degree", this.sensorInterpolationDegree, 0,1,"");
Andrey Filippov's avatar
Andrey Filippov committed
10984

Andrey Filippov's avatar
Andrey Filippov committed
10985 10986 10987 10988 10989
    			if ((parMask&0x100000)!=0) gd.addNumericField("Fitting series number (to select images), negative - use all enabled images", this.flatFieldSerNumber,0);
    			if ((parMask&0x100000)!=0) gd.addNumericField("Reference station number (unity target brightness)", this.flatFieldReferenceStation,0);
    			if ((parMask&0x100000)!=0) gd.addNumericField("Shrink sensor mask",    this.flatFieldShrink, 1,6,"sensor pix");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Non-vignetted radius", this.flatFieldNonVignettedRadius, 1,6,"sensor pix");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Minimal alpha",        100.0*this.flatFieldMinimalAlpha, 3,7,"%");
Andrey Filippov's avatar
Andrey Filippov committed
10990

Andrey Filippov's avatar
Andrey Filippov committed
10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010
    			if ((parMask&0x100000)!=0) gd.addNumericField("Minimal contrast (occlusion detection)", this.flatFieldMinimalContrast, 3,7,"(0 .. ~0.8");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Minimal alpha for accumulation", 100.0*this.flatFieldMinimalAccumulate, 3,7,"%");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Shrink pattern for matching", this.flatFieldShrinkForMatching, 3,7,"grid nodes");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Maximal relative difference between nodes", 100.0*this.flatFieldMaxRelDiff, 3,7,"%");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Shrink pattern border", this.flatFieldShrinkMask, 0,3,"grid nodes");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Fade pattern border", this.flatFieldFadeBorder, 3,7,"grid nodes");
    			if ((parMask&0x100000)!=0) gd.addMessage("Update pattern white balance (if the illumination is yellowish, increase red and green here)");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Average grid RED   (1.0 for white)",  averageRGB[0], 3,5,"x"); //
    			if ((parMask&0x100000)!=0) gd.addNumericField("Average grid GREEN (1.0 for white)",  averageRGB[1], 3,5,"x"); //
    			if ((parMask&0x100000)!=0) gd.addNumericField("Average grid BLUE  (1.0 for white)",  averageRGB[2], 3,5,"x"); //
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Reset pattern mask",               this.flatFieldResetMask);
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Show non-vignetting sensor masks", this.flatFieldShowSensorMasks);
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Show per-sensor patterns",         this.flatFieldShowIndividual);
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Show result mask",                 this.flatFieldShowResult);
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Apply pattern flat field and mask",this.flatFieldApplyResult);
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Use interpolation for sensor correction",this.flatFieldUseInterpolate);
    			if ((parMask&0x100000)!=0) gd.addNumericField("Suspect occlusion only if grid is missing in the area where sensor mask is above this threshold",100.0* this.flatFieldMaskThresholdOcclusion, 3,7,"%");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Expand suspected occlusion  area", this.flatFieldShrinkOcclusion, 0,3,"grid nodes");
    			if ((parMask&0x100000)!=0) gd.addNumericField("Fade grid on image (occlusion handling)", this.flatFieldFadeOcclusion, 3,7,"grid nodes");
    			if ((parMask&0x100000)!=0) gd.addCheckbox("Ignore existent sensor flat-field calibration",this.flatFieldIgnoreSensorFlatField);
Andrey Filippov's avatar
Andrey Filippov committed
11011

Andrey Filippov's avatar
Andrey Filippov committed
11012 11013 11014 11015 11016
    			if ((parMask&0x400000)!=0) gd.addMessage("Specular reflections removal parameters:");
    			if ((parMask&0x400000)!=0) gd.addCheckbox("Apply new (after removal of specular reflections) weights",           this.specularApplyNewWeights);
    			if ((parMask&0x400000)!=0) gd.addCheckbox("Process only positive difference from average",                       this.specularPositiveDiffOnly);
    			if ((parMask&0x400000)!=0) gd.addNumericField("High-pass sigma for difference from average (to detect specular)",this.specularHighPassSigma, 3,7,"pix");
    			if ((parMask&0x400000)!=0) gd.addNumericField("Low-pass sigma for difference from average (to detect specular)",this.specularLowPassSigma, 3,7,"pix");
Andrey Filippov's avatar
Andrey Filippov committed
11017

Andrey Filippov's avatar
Andrey Filippov committed
11018 11019 11020 11021
    			if ((parMask&0x400000)!=0) gd.addNumericField("Difference from average threshold",                          100.0*this.specularDiffFromAverageThreshold, 3,7,"%");
    			if ((parMask&0x400000)!=0) gd.addNumericField("Number of iterations for calculating average",                    this.specularNumIter, 0);

    			if ((parMask&0x400000)!=0) gd.addNumericField("Debug show mode (0 - off, 1 - last iteration only, 2 - all iterations)",this.specularShowDebug, 0);
Andrey Filippov's avatar
Andrey Filippov committed
11022

Andrey Filippov's avatar
Andrey Filippov committed
11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058

        		if ((parMask &     1) !=0) gd.addCheckbox    ("Extrapolate correction results", this.extrapolate);
        		if ((parMask &     2) !=0) gd.addNumericField("Threshold alpha (discard pixels with mask below that value)", this.alphaThreshold,3);
        		if ((parMask &0x8000) !=0) gd.addNumericField("Fat zero for color trasfer functions", this.fatZero,3);
        		if ((parMask &     4) !=0) gd.addNumericField("Fitting radius for extrapolation, Gaussian weight function sigma (in non-decimated pixels) ",    this.extrapolationSigma,3);
        		if ((parMask &     8) !=0) gd.addNumericField("Fitting scan half-size of the square, in multiples of Fitting Radius", this.extrapolationKSigma,3);
        		if ((parMask &  0x10) !=0) gd.addCheckbox    ("Apply smoothing to the correction results", this.smoothCorrection);
        		if ((parMask &  0x20) !=0) gd.addNumericField("Smoothing sigma, in non-decimated pixels",  this.smoothSigma,3);
        		if ((parMask &  0x40) !=0) gd.addCheckbox    ("Apply correction",                          this.applyCorrection);
        		if ((parMask&0x40000) !=0) gd.addCheckbox    ("Apply correction",                          this.targetApplyCorrection);
        		if ((parMask &0x4000) !=0) gd.addCheckbox    ("Apply flat-field correction",               this.applyFlatField);
        		if ((parMask &  0x80) !=0) gd.addNumericField("Scale correction before applying",          this.correctionScale,3);
        		if ((parMask&0x40000) !=0) gd.addNumericField("Scale correction before applying",          this.targetCorrectionScale,3);
        		if ((parMask & 0x100) !=0) gd.addCheckbox    ("Show result (cumulative) correction",       this.showCumulativeCorrection);
        		if ((parMask & 0x200) !=0) gd.addCheckbox    ("Show additional correction before blurring",this.showUnfilteredCorrection);
        		if ((parMask & 0x200) !=0) gd.addCheckbox    ("Show correction extrapolatiuon",            this.showExtrapolationCorrection);
        		if ((parMask & 0x400) !=0) gd.addCheckbox    ("Show this (additional) correction",         this.showThisCorrection);
        		if ((parMask&0x40000) !=0) gd.addCheckbox    ("Show this (additional) correction",         this.targetShowThisCorrection);
        		if ((parMask & 0x800) !=0) gd.addCheckbox    ("Show individual, per-image residuals",      this.showPerImage);
        		if ((parMask&0x40000) !=0) gd.addCheckbox    ("Show individual, per-image residuals",      this.targetShowPerImage);
        		if ((parMask&0x10000) !=0) gd.addNumericField("Show individual residuals for image number (<0 - all images)", this.showIndividualNumber,0);
        		if ((parMask &0x1000) !=0) gd.addCheckbox    ("Correct patetrn grid node locations in 3d (false - in 2d only)",  this.grid3DCorrection);
        		if ((parMask &0x1000) !=0) gd.addCheckbox    ("Rotate final 3d pattern correction (?)",   this.rotateCorrection);
        		if ((parMask&0x20000) !=0) gd.addNumericField("Maximal Z-axis correction (if more will fall back to 2d correction algorithm)", this.grid3DMaximalZCorr,1,3,"mm");
        		if ((parMask&0x20000) !=0) gd.addCheckbox    ("Use Z-variations of the pattern for different stations",   this.useVariations);
        		if ((parMask&0x20000) !=0) gd.addNumericField("Penalty for different Z for the same target nodes for different stations", 100.0*this.variationPenalty,3,7,"%");
        		if ((parMask&0x20000) !=0) gd.addCheckbox    ("Keep X and Y pattern correction, adjust only Z",this.fixXY);
        		if ((parMask&0x20000) !=0) gd.addCheckbox    ("Reset previous Z variations before calculating the new one",   this.resetVariations);
        		if ((parMask&0x20000) !=0) gd.addCheckbox    ("Do not fall back to 2-d calculation if 3d fails",   this.noFallBack);
        		if ((parMask &0x2000) !=0) gd.addCheckbox    ("Use pattern grid alpha data",  this.usePatternAlpha);
    			WindowTools.addScrollBars(gd);
        		gd.showDialog();
        		if (gd.wasCanceled()) return -1;
        		int selectedSeries=0;
        		if (numSeries>=0)          selectedSeries=          (int) gd.getNextNumber();
    			if ((parMask&0x200000)!=0) this.repeatFlatFieldSensor=  (int) gd.getNextNumber();
Andrey Filippov's avatar
Andrey Filippov committed
11059

Andrey Filippov's avatar
Andrey Filippov committed
11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138
        		if ((parMask&0x80000) !=0) this.sensorExtrapolateDiff=          gd.getNextBoolean();
        		if ((parMask&0x80000) !=0) this.sensorShrinkBlurComboSigma=     gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorShrinkBlurComboLevel=     gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorAlphaThreshold=           gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorStep=                     gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorInterpolationSigma=       gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorTangentialRadius=         gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorScanDistance=       (int) gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorResultDistance=     (int) gd.getNextNumber();
        		if ((parMask&0x80000) !=0) this.sensorInterpolationDegree=(int) gd.getNextNumber();

    			if ((parMask&0x100000)!=0) this.flatFieldSerNumber=         (int) gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldReferenceStation=  (int) gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldShrink=                  gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldNonVignettedRadius=      gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldMinimalAlpha=       0.01*gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldMinimalContrast=         gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldMinimalAccumulate=  0.01*gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldShrinkForMatching=       gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldMaxRelDiff=         0.01*gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldShrinkMask=        (int) gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldFadeBorder=              gd.getNextNumber();
    			if ((parMask&0x100000)!=0) averageRGB[0]=                         gd.getNextNumber();
    			if ((parMask&0x100000)!=0) averageRGB[1]=                         gd.getNextNumber();
    			if ((parMask&0x100000)!=0) averageRGB[2]=                         gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldResetMask=               gd.getNextBoolean();
    			if ((parMask&0x100000)!=0) this.flatFieldShowSensorMasks=         gd.getNextBoolean();
    			if ((parMask&0x100000)!=0) this.flatFieldShowIndividual=          gd.getNextBoolean();
    			if ((parMask&0x100000)!=0) this.flatFieldShowResult=              gd.getNextBoolean();
    			if ((parMask&0x100000)!=0) this.flatFieldApplyResult=             gd.getNextBoolean();
    			if ((parMask&0x100000)!=0) this.flatFieldUseInterpolate=          gd.getNextBoolean();
    			if ((parMask&0x100000)!=0) this.flatFieldMaskThresholdOcclusion=0.01*gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldShrinkOcclusion=   (int) gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldFadeOcclusion=           gd.getNextNumber();
    			if ((parMask&0x100000)!=0) this.flatFieldIgnoreSensorFlatField=   gd.getNextBoolean();
//    			if ((parMask&0x100000)!=0) this.flatFieldUseSelectedChannels=     gd.getNextBoolean();

    			if ((parMask&0x400000)!=0) this.specularApplyNewWeights=              gd.getNextBoolean();
    			if ((parMask&0x400000)!=0) this.specularPositiveDiffOnly=             gd.getNextBoolean();
    			if ((parMask&0x400000)!=0) this.specularHighPassSigma=                gd.getNextNumber();
    			if ((parMask&0x400000)!=0) this.specularLowPassSigma=                gd.getNextNumber();
    			if ((parMask&0x400000)!=0) this.specularDiffFromAverageThreshold=0.01*gd.getNextNumber();;
    			if ((parMask&0x400000)!=0) this.specularNumIter=                (int) gd.getNextNumber();
    			if ((parMask&0x400000)!=0) this.specularShowDebug=              (int) gd.getNextNumber();


        		if ((parMask &     1) !=0) this.extrapolate=              gd.getNextBoolean();
        		if ((parMask &     2) !=0) this.alphaThreshold=           gd.getNextNumber();
        		if ((parMask &0x8000) !=0) this.fatZero=                  gd.getNextNumber();
        		if ((parMask &     4) !=0) this.extrapolationSigma=       gd.getNextNumber();
        		if ((parMask &     8) !=0) this.extrapolationKSigma=      gd.getNextNumber();
        		if ((parMask &  0x10) !=0) this.smoothCorrection=         gd.getNextBoolean();
        		if ((parMask &  0x20) !=0) this.smoothSigma=              gd.getNextNumber();
        		if ((parMask &  0x40) !=0) this.applyCorrection=          gd.getNextBoolean();
        		if ((parMask&0x40000) !=0) this.targetApplyCorrection=    gd.getNextBoolean();
        		if ((parMask &0x4000) !=0) this.applyFlatField=           gd.getNextBoolean();
        		if ((parMask &  0x80) !=0) this.correctionScale=          gd.getNextNumber();
        		if ((parMask&0x40000) !=0) this.targetCorrectionScale=    gd.getNextNumber();
        		if ((parMask & 0x100) !=0) this.showCumulativeCorrection= gd.getNextBoolean();
        		if ((parMask & 0x200) !=0) this.showUnfilteredCorrection= gd.getNextBoolean();
        		if ((parMask & 0x200) !=0) this.showExtrapolationCorrection= gd.getNextBoolean();
        		if ((parMask & 0x400) !=0) this.showThisCorrection=       gd.getNextBoolean();
        		if ((parMask&0x40000) !=0) this.targetShowThisCorrection= gd.getNextBoolean();
        		if ((parMask & 0x800) !=0) this.showPerImage=             gd.getNextBoolean();
        		if ((parMask&0x40000) !=0) this.targetShowPerImage=       gd.getNextBoolean();
        		if ((parMask&0x10000) !=0) this.showIndividualNumber=(int)gd.getNextNumber();
        		if ((parMask &0x1000) !=0) this.grid3DCorrection=         gd.getNextBoolean();
        		if ((parMask &0x1000) !=0) this.rotateCorrection=         gd.getNextBoolean();
        		if ((parMask&0x20000) !=0) this.grid3DMaximalZCorr=       gd.getNextNumber();

        		if ((parMask&0x20000) !=0) this.useVariations=            gd.getNextBoolean();
        		if ((parMask&0x20000) !=0) this.variationPenalty =   0.01*gd.getNextNumber();
        		if ((parMask&0x20000) !=0) this.fixXY=                    gd.getNextBoolean();
        		if ((parMask&0x20000) !=0) this.resetVariations=          gd.getNextBoolean();
        		if ((parMask&0x20000) !=0) this.noFallBack=               gd.getNextBoolean();
        		if ((parMask &0x2000) !=0) this.usePatternAlpha=          gd.getNextBoolean();
        		return selectedSeries;
        	}
    }
Andrey Filippov's avatar
Andrey Filippov committed
11139
}
Andrey Filippov's avatar
Andrey Filippov committed
11140