Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
c7c32277
Commit
c7c32277
authored
Jul 08, 2022
by
Bryce Hepner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
testing on gaussian blur, not good
parent
96e5883b
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
37 additions
and
42 deletions
+37
-42
Remove_Noise.py
Remove_Noise.py
+35
-41
WorkingPyDemo.py
WorkingPyDemo.py
+2
-1
second_dic.npy
second_dic.npy
+0
-0
No files found.
Remove_Noise.py
View file @
c7c32277
from
audioop
import
mul
from
matplotlib.image
import
composite_images
from
WorkingPyDemo
import
*
from
scipy.ndimage.filters
import
gaussian_filter
import
paramiko
from
PIL
import
ImageFilter
from
scipy.signal
import
convolve2d
from
scipy.stats
import
multivariate_normal
from
skimage.restoration
import
wiener
def
setup_remote_sftpclient
():
client
=
paramiko
.
SSHClient
()
client
.
load_system_host_keys
()
...
...
@@ -175,14 +177,14 @@ def save_new_gauss():
creates gaussian kernel with side length `l` and a sigma of `sig`
"""
# x,y = np.mgrid[-1:1:.003125, -1:1:.003125]
x
,
y
=
np
.
mgrid
[
-
1
:
1
:
.
003911
,
-
1
:
1
:
.003911
]
#
print(x.shape)
x
,
y
=
np
.
mgrid
[
-
1
:
1
:
.
44
,
-
1
:
1
:
.44
]
print
(
x
.
shape
)
pos
=
np
.
dstack
((
x
,
y
))
# grid = np.zeros((l,l))
# gauss = np.exp(-0.5 * np.square(ax) / np.square(sig))
from
scipy.stats
import
multivariate_normal
# normal_grid = multivariate_normal.pdf(grid, mean = [0]*l, cov = [5]*l)
normal_grid
=
multivariate_normal
([
0
,
0
],
[[
2.0
,
0.3
],
[
0.3
,
0.5
]])
.
pdf
(
pos
)
normal_grid
=
multivariate_normal
([
0
,
0
],
[[
1.1
,
5
],
[
2
,
1
]])
.
pdf
(
pos
)
normal_grid
=
normal_grid
/
np
.
sum
(
normal_grid
)
end_image
=
Image
.
fromarray
(
normal_grid
)
# fig2 = plt.figure()
...
...
@@ -191,43 +193,18 @@ def save_new_gauss():
# plt.show()
# print(np.sum(np.array(end_image)))
end_image
.
save
(
"gaussian_kernel.tiff"
)
def
little_inverter
(
initial_matrix
):
n
=
initial_matrix
.
shape
[
0
]
initial_matrix
=
np
.
hstack
((
initial_matrix
,
np
.
zeros_like
(
initial_matrix
)))
print
(
initial_matrix
.
shape
)
initial_matrix
=
initial_matrix
.
tolist
()
for
i
in
range
(
n
):
for
j
in
range
(
n
):
if
i
==
j
:
initial_matrix
[
i
][
j
+
n
]
=
1
# Applying Guass Jordan Elimination
for
i
in
range
(
n
):
if
initial_matrix
[
i
][
i
]
==
0.0
:
sys
.
exit
(
'Divide by zero detected!'
)
for
j
in
range
(
n
):
if
i
!=
j
:
ratio
=
initial_matrix
[
j
][
i
]
/
initial_matrix
[
i
][
i
]
for
k
in
range
(
2
*
n
):
initial_matrix
[
j
][
k
]
=
initial_matrix
[
j
][
k
]
-
ratio
*
initial_matrix
[
i
][
k
]
# Row operation to make principal diagonal element to 1
for
i
in
range
(
n
):
divisor
=
initial_matrix
[
i
][
i
]
for
j
in
range
(
2
*
n
):
initial_matrix
[
i
][
j
]
=
initial_matrix
[
i
][
j
]
/
divisor
return
np
.
array
(
initial_matrix
)[:,
n
:]
if
__name__
==
"__main__"
:
# save_new_average(350,"11")
save_new_gauss
()
# save_new_gauss()
gaussian_kernel
=
np
.
array
(
Image
.
open
(
"gaussian_kernel.tiff"
))
# gaussian_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
scenes
=
remote_file_extractor
(
"/media/elphel/NVME/lwir16-proc/te0607/scenes/"
)
images
=
remote_image_extractor
(
scenes
)
images
=
find_only_in_channel
(
images
,
"11"
)
# average_image = np.array(Image.open("Average_On_Channel(" + "11" + ").tiff"))
# create_testable_images(images,"11",
6
)
# create_testable_images(images,"11",
3
)
# plt.imshow(color_adjust(average_image),cmap='gray',vmin = 0, vmax=1)
# plt.show()
...
...
@@ -238,15 +215,32 @@ if __name__ == "__main__":
sftp_client
=
setup_remote_sftpclient
()
# print(len(images))
# print(images[10000])
test_image
=
sftp_client
.
open
(
images
[
47
00
])
test_image
=
sftp_client
.
open
(
images
[
100
00
])
test_image
=
Image
.
open
(
test_image
)
test_image
=
np
.
array
(
test_image
)[
1
:]
# print(test_image)
plt
.
subplot
(
121
)
plt
.
imshow
(
color_adjust
(
adjust_to_original
(
test_image
,
average_image
)),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
plt
.
show
()
little_more_blurred
=
gaussian_kernel
@
adjust_to_original
(
test_image
,
average_image
)
print
(
little_inverter
(
gaussian_kernel
)
@
gaussian_kernel
)
plt
.
imshow
(
color_adjust
(
little_inverter
(
gaussian_kernel
)
@
little_more_blurred
),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
plt
.
subplot
(
122
)
# plt.show()
# print(gaussian_kernel)
little_more_blurred
=
convolve2d
(
np
.
pad
(
test_image
,
2
,
mode
=
'edge'
),
gaussian_kernel
,
"valid"
)
# print(little_more_blurred)
print
(
little_more_blurred
.
shape
)
# print(little_inverter(gaussian_kernel)@gaussian_kernel)
altered_image
=
Image
.
fromarray
(
little_more_blurred
.
astype
(
np
.
uint16
))
altered_image
.
save
(
"averaged_images("
+
"11"
+
")/innerfolder"
+
"/testable.tiff"
)
plt
.
imshow
(
color_adjust
(
little_more_blurred
[
3
:
-
3
,
3
:
-
3
]),
cmap
=
'gray'
,
vmin
=
0
,
vmax
=
1
)
# plt.show()
# renewed_array =
# H = fft(kernel)
# deconvolved = np.real(ifft(fft(signal)*np.conj(H)/(H*np.conj(H) + lambd**2)))
back_to_normal
=
wiener
(
little_more_blurred
,
gaussian_kernel
,
.02
,
clip
=
False
)
# print(back_to_normal)
# print(back_to_normal.shape)
# plt.imshow(color_adjust(back_to_normal), cmap='gray',vmin = 0, vmax=1)
plt
.
show
()
# newimage = Image.fromarray(test_image - average_image)
# newimage.save("NoInterference.tiff")
...
...
WorkingPyDemo.py
View file @
c7c32277
...
...
@@ -11,6 +11,7 @@ import numpy.linalg as la
from
time
import
time
from
time
import
sleep
import
tifffile
as
tiff
folder_name
=
"images"
outputlocation
=
""
...
...
@@ -514,7 +515,7 @@ def text_to_tiff(filename, list_dic, bins):
if
__name__
==
"__main__"
:
scenes
=
file_extractor
(
"
original
_images(11)"
)
scenes
=
file_extractor
(
"
averaged
_images(11)"
)
images
=
image_extractor
(
scenes
)
newnamesforlater
=
[]
list_dic
,
bins
=
make_dictionary
(
images
,
4
,
False
)
...
...
second_dic.npy
View file @
c7c32277
No preview for this file type
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment