Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
image-compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
image-compression
Commits
5c7cf95e
Commit
5c7cf95e
authored
Feb 05, 2022
by
Kelly Chang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
kelly changes
parent
e4df997c
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
76 additions
and
90 deletions
+76
-90
multiple_compression_kelly-checkpoint.ipynb
...b_checkpoints/multiple_compression_kelly-checkpoint.ipynb
+18
-27
prediction_MSE_kelly-checkpoint.ipynb
.ipynb_checkpoints/prediction_MSE_kelly-checkpoint.ipynb
+20
-18
multiple_compression_kelly.ipynb
multiple_compression_kelly.ipynb
+18
-27
prediction_MSE_kelly.ipynb
prediction_MSE_kelly.ipynb
+20
-18
No files found.
.ipynb_checkpoints/
compression_jupyter
-checkpoint.ipynb
→
.ipynb_checkpoints/
multiple_compression_kelly
-checkpoint.ipynb
View file @
5c7cf95e
...
...
@@ -213,7 +213,7 @@
},
{
"cell_type": "markdown",
"id": "
d866df6f
",
"id": "
5437bd8d
",
"metadata": {},
"source": [
"## use MSE"
...
...
@@ -221,7 +221,7 @@
},
{
"cell_type": "code",
"execution_count":
42
,
"execution_count":
50
,
"id": "73412bc9",
"metadata": {},
"outputs": [],
...
...
@@ -233,47 +233,38 @@
" fix this later. 1/25/22\n",
" \"\"\"\n",
" \n",
"\n",
" image = tiff_list\n",
" image = Image.open(image) #Open the image and read it as an Image object\n",
" image = np.array(image)[1:,:] #Convert to an array, leaving out the first row because the first row is just housekeeping data\n",
" image = image.astype(int)\n",
" row, col = image.shape\n",
" predict = np.empty([row,col]) # create a empty matrix to update prediction\n",
" predict[0,:] = np.copy(image[0,:]) # keep the first row from the image\n",
" predict[:,0] = np.copy(image[:,0]) # keep the first columen from the image\n",
" predict[-1,:] = np.copy(image[-1,:]) # keep the first row from the image\n",
" predict[:,-1] = np.copy(image[:,-1]) # keep the first columen from the image\n",
" diff = np.empty([row,col])\n",
" diff[0,:] = np.zeros(col) # keep the first row from the image\n",
" diff[:,0] = np.zeros(row)\n",
" diff[-1,:] = np.zeros(col) # keep the first row from the image\n",
" diff[:,-1] = np.zeros(row)\n",
" A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])\n",
" z0 = image[0:-2,0:-2]\n",
" z1 = image[0:-2,1:-1]\n",
" z2 = image[0:-2,2::]\n",
" z3 = image[1:-1,0:-2]\n",
" A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]]) # the matrix for system of equation\n",
" z0 = image[0:-2,0:-2] # get all the first pixel for the entire image\n",
" z1 = image[0:-2,1:-1] # get all the second pixel for the entire image\n",
" z2 = image[0:-2,2::] # get all the third pixel for the entire image\n",
" z3 = image[1:-1,0:-2] # get all the forth pixel for the entire image\n",
" # calculate the out put of the system of equation\n",
" y0 = np.ravel(-z0+z2-z3)\n",
" y1 = np.ravel(z0+z1+z2)\n",
" y2 = np.ravel(-z0-z1-z2-z3)\n",
" y = np.vstack((y0,y1,y2))\n",
" # use numpy solver to solve the system of equations all at once\n",
" predict = np.linalg.solve(A,y)[-1]\n",
" \n",
"
# flatten the neighbor pixlels and stack them together
\n",
" z0 = np.ravel(z0)\n",
" z1 = np.ravel(z1)\n",
" z2 = np.ravel(z2)\n",
" z3 = np.ravel(z3)\n",
" neighbor = np.vstack((z0,z1,z2,z3)).T\n",
" # calculate the difference\n",
" diff = np.max(neighbor,axis = 1) - np.min(neighbor, axis=1)\n",
" \n",
"
# flatten the image to a vector
\n",
" image = np.ravel(image[1:-1,1:-1])\n",
" return image, predict, diff"
]
},
{
"cell_type": "code",
"execution_count":
44
,
"execution_count":
51
,
"id": "1bc0bed5",
"metadata": {},
"outputs": [],
...
...
@@ -287,8 +278,8 @@
},
{
"cell_type": "code",
"execution_count":
46
,
"id": "
a8c46fb2
",
"execution_count":
52
,
"id": "
0f908e6c
",
"metadata": {},
"outputs": [
{
...
...
@@ -296,7 +287,7 @@
"output_type": "stream",
"text": [
"mean of error = 18.740279058331875\n",
"time to run = 0.0
6311893463134766
\n"
"time to run = 0.0
7091403007507324
\n"
]
},
{
...
...
@@ -330,7 +321,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "
0c73bbe
2",
"id": "
fb798c3
2",
"metadata": {},
"outputs": [],
"source": []
...
...
@@ -338,7 +329,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "
1f19bb5d
",
"id": "
23f8c8a7
",
"metadata": {},
"outputs": [],
"source": []
...
...
.ipynb_checkpoints/prediction_MSE-checkpoint.ipynb
→
.ipynb_checkpoints/prediction_MSE
_kelly
-checkpoint.ipynb
View file @
5c7cf95e
...
...
@@ -19,7 +19,7 @@
},
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
44
,
"id": "b7a550e0",
"metadata": {},
"outputs": [],
...
...
@@ -74,7 +74,7 @@
},
{
"cell_type": "code",
"execution_count":
4
1,
"execution_count":
5
1,
"id": "9ed20f84",
"metadata": {},
"outputs": [],
...
...
@@ -91,33 +91,35 @@
" image = Image.open(image) #Open the image and read it as an Image object\n",
" image = np.array(image)[1:,:] #Convert to an array, leaving out the first row because the first row is just housekeeping data\n",
" image = image.astype(int)\n",
"
row, col = image.shape
\n",
"
A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])
\n",
" z
0 = image[0:-2,0:-2]
\n",
" z
1 = image[0:-2,1:-1]
\n",
" z
2 = image[0:-2,2::]
\n",
"
z3 = image[1:-1,0:-2]
\n",
"
A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]]) # the matrix for system of equation
\n",
"
z0 = image[0:-2,0:-2] # get all the first pixel for the entire image
\n",
" z
1 = image[0:-2,1:-1] # get all the second pixel for the entire image
\n",
" z
2 = image[0:-2,2::] # get all the third pixel for the entire image
\n",
" z
3 = image[1:-1,0:-2] # get all the forth pixel for the entire image
\n",
"
# calculate the out put of the system of equation
\n",
" y0 = np.ravel(-z0+z2-z3)\n",
" y1 = np.ravel(z0+z1+z2)\n",
" y2 = np.ravel(-z0-z1-z2-z3)\n",
" y = np.vstack((y0,y1,y2))\n",
"\n",
" predict = np.linalg.solve(A,y
[:10]
)[-1]\n",
" \n",
"
# use numpy solver to solve the system of equations all at once
\n",
" predict = np.linalg.solve(A,y)[-1]\n",
"
# flatten the neighbor pixlels and stack them together
\n",
" z0 = np.ravel(z0)\n",
" z1 = np.ravel(z1)\n",
" z2 = np.ravel(z2)\n",
" z3 = np.ravel(z3)\n",
" neighbor = np.vstack((z0,z1,z2,z3)).T\n",
" diff = np.max(neighbor,axis = 1) - np.max(neighbor, axis=1)\n",
" \n",
" # calculate the difference\n",
" diff = np.max(neighbor,axis = 1) - np.min(neighbor, axis=1)\n",
" # flatten the image to a vector\n",
" image = np.ravel(image[1:-1,1:-1])\n",
" return image, predict, diff"
" return image, predict, diff\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4
2
,
"execution_count": 4
9
,
"id": "8e3ef654",
"metadata": {},
"outputs": [],
...
...
@@ -150,7 +152,7 @@
},
{
"cell_type": "code",
"execution_count":
43
,
"execution_count":
52
,
"id": "fa65dcd6",
"metadata": {},
"outputs": [
...
...
@@ -160,8 +162,8 @@
"text": [
"Average Error First and Second Added: 20.017164930235474\n",
"Standard Deviaiton of Mean Errors: 0.16101183692475135\n",
"Average Difference:
-
53.678648426455226\n",
"Average Time per Image for First: 0.0
508149564266204
8\n"
"Average Difference: 53.678648426455226\n",
"Average Time per Image for First: 0.0
453574061393737
8\n"
]
}
],
...
...
compression_jupyter
.ipynb
→
multiple_compression_kelly
.ipynb
View file @
5c7cf95e
...
...
@@ -213,7 +213,7 @@
},
{
"cell_type": "markdown",
"id": "
d866df6f
",
"id": "
5437bd8d
",
"metadata": {},
"source": [
"## use MSE"
...
...
@@ -221,7 +221,7 @@
},
{
"cell_type": "code",
"execution_count":
42
,
"execution_count":
50
,
"id": "73412bc9",
"metadata": {},
"outputs": [],
...
...
@@ -233,47 +233,38 @@
" fix this later. 1/25/22\n",
" \"\"\"\n",
" \n",
"\n",
" image = tiff_list\n",
" image = Image.open(image) #Open the image and read it as an Image object\n",
" image = np.array(image)[1:,:] #Convert to an array, leaving out the first row because the first row is just housekeeping data\n",
" image = image.astype(int)\n",
" row, col = image.shape\n",
" predict = np.empty([row,col]) # create a empty matrix to update prediction\n",
" predict[0,:] = np.copy(image[0,:]) # keep the first row from the image\n",
" predict[:,0] = np.copy(image[:,0]) # keep the first columen from the image\n",
" predict[-1,:] = np.copy(image[-1,:]) # keep the first row from the image\n",
" predict[:,-1] = np.copy(image[:,-1]) # keep the first columen from the image\n",
" diff = np.empty([row,col])\n",
" diff[0,:] = np.zeros(col) # keep the first row from the image\n",
" diff[:,0] = np.zeros(row)\n",
" diff[-1,:] = np.zeros(col) # keep the first row from the image\n",
" diff[:,-1] = np.zeros(row)\n",
" A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])\n",
" z0 = image[0:-2,0:-2]\n",
" z1 = image[0:-2,1:-1]\n",
" z2 = image[0:-2,2::]\n",
" z3 = image[1:-1,0:-2]\n",
" A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]]) # the matrix for system of equation\n",
" z0 = image[0:-2,0:-2] # get all the first pixel for the entire image\n",
" z1 = image[0:-2,1:-1] # get all the second pixel for the entire image\n",
" z2 = image[0:-2,2::] # get all the third pixel for the entire image\n",
" z3 = image[1:-1,0:-2] # get all the forth pixel for the entire image\n",
" # calculate the out put of the system of equation\n",
" y0 = np.ravel(-z0+z2-z3)\n",
" y1 = np.ravel(z0+z1+z2)\n",
" y2 = np.ravel(-z0-z1-z2-z3)\n",
" y = np.vstack((y0,y1,y2))\n",
" # use numpy solver to solve the system of equations all at once\n",
" predict = np.linalg.solve(A,y)[-1]\n",
" \n",
"
# flatten the neighbor pixlels and stack them together
\n",
" z0 = np.ravel(z0)\n",
" z1 = np.ravel(z1)\n",
" z2 = np.ravel(z2)\n",
" z3 = np.ravel(z3)\n",
" neighbor = np.vstack((z0,z1,z2,z3)).T\n",
" # calculate the difference\n",
" diff = np.max(neighbor,axis = 1) - np.min(neighbor, axis=1)\n",
" \n",
"
# flatten the image to a vector
\n",
" image = np.ravel(image[1:-1,1:-1])\n",
" return image, predict, diff"
]
},
{
"cell_type": "code",
"execution_count":
44
,
"execution_count":
51
,
"id": "1bc0bed5",
"metadata": {},
"outputs": [],
...
...
@@ -287,8 +278,8 @@
},
{
"cell_type": "code",
"execution_count":
46
,
"id": "
a8c46fb2
",
"execution_count":
52
,
"id": "
0f908e6c
",
"metadata": {},
"outputs": [
{
...
...
@@ -296,7 +287,7 @@
"output_type": "stream",
"text": [
"mean of error = 18.740279058331875\n",
"time to run = 0.0
6311893463134766
\n"
"time to run = 0.0
7091403007507324
\n"
]
},
{
...
...
@@ -330,7 +321,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "
0c73bbe
2",
"id": "
fb798c3
2",
"metadata": {},
"outputs": [],
"source": []
...
...
@@ -338,7 +329,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "
1f19bb5d
",
"id": "
23f8c8a7
",
"metadata": {},
"outputs": [],
"source": []
...
...
prediction_MSE.ipynb
→
prediction_MSE
_kelly
.ipynb
View file @
5c7cf95e
...
...
@@ -19,7 +19,7 @@
},
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
44
,
"id": "b7a550e0",
"metadata": {},
"outputs": [],
...
...
@@ -74,7 +74,7 @@
},
{
"cell_type": "code",
"execution_count":
4
1,
"execution_count":
5
1,
"id": "9ed20f84",
"metadata": {},
"outputs": [],
...
...
@@ -91,33 +91,35 @@
" image = Image.open(image) #Open the image and read it as an Image object\n",
" image = np.array(image)[1:,:] #Convert to an array, leaving out the first row because the first row is just housekeeping data\n",
" image = image.astype(int)\n",
"
row, col = image.shape
\n",
"
A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])
\n",
" z
0 = image[0:-2,0:-2]
\n",
" z
1 = image[0:-2,1:-1]
\n",
" z
2 = image[0:-2,2::]
\n",
"
z3 = image[1:-1,0:-2]
\n",
"
A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]]) # the matrix for system of equation
\n",
"
z0 = image[0:-2,0:-2] # get all the first pixel for the entire image
\n",
" z
1 = image[0:-2,1:-1] # get all the second pixel for the entire image
\n",
" z
2 = image[0:-2,2::] # get all the third pixel for the entire image
\n",
" z
3 = image[1:-1,0:-2] # get all the forth pixel for the entire image
\n",
"
# calculate the out put of the system of equation
\n",
" y0 = np.ravel(-z0+z2-z3)\n",
" y1 = np.ravel(z0+z1+z2)\n",
" y2 = np.ravel(-z0-z1-z2-z3)\n",
" y = np.vstack((y0,y1,y2))\n",
"\n",
" predict = np.linalg.solve(A,y
[:10]
)[-1]\n",
" \n",
"
# use numpy solver to solve the system of equations all at once
\n",
" predict = np.linalg.solve(A,y)[-1]\n",
"
# flatten the neighbor pixlels and stack them together
\n",
" z0 = np.ravel(z0)\n",
" z1 = np.ravel(z1)\n",
" z2 = np.ravel(z2)\n",
" z3 = np.ravel(z3)\n",
" neighbor = np.vstack((z0,z1,z2,z3)).T\n",
" diff = np.max(neighbor,axis = 1) - np.max(neighbor, axis=1)\n",
" \n",
" # calculate the difference\n",
" diff = np.max(neighbor,axis = 1) - np.min(neighbor, axis=1)\n",
" # flatten the image to a vector\n",
" image = np.ravel(image[1:-1,1:-1])\n",
" return image, predict, diff"
" return image, predict, diff\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4
2
,
"execution_count": 4
9
,
"id": "8e3ef654",
"metadata": {},
"outputs": [],
...
...
@@ -150,7 +152,7 @@
},
{
"cell_type": "code",
"execution_count":
43
,
"execution_count":
52
,
"id": "fa65dcd6",
"metadata": {},
"outputs": [
...
...
@@ -160,8 +162,8 @@
"text": [
"Average Error First and Second Added: 20.017164930235474\n",
"Standard Deviaiton of Mean Errors: 0.16101183692475135\n",
"Average Difference:
-
53.678648426455226\n",
"Average Time per Image for First: 0.0
508149564266204
8\n"
"Average Difference: 53.678648426455226\n",
"Average Time per Image for First: 0.0
453574061393737
8\n"
]
}
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment