Commit a445ef42 authored by Andrey Filippov's avatar Andrey Filippov

added another channel for testing - tile write

parent 31a6b971
......@@ -2,7 +2,7 @@
// TODO: Fix VDT - without IVERILOG defined, closure does not include modules needed for Icarus
`define IVERILOG 1
`define USE_CMD_ENCOD_TILED_32_RD 1
// It can be used to check different `ifdef branches
//`define XIL_TIMING //Simprim
`define den4096Mb 1
......@@ -33,8 +33,10 @@
`define def_read_mem_chn4
`define def_tiled_chn4
// chn 5 is disabled
`undef def_enable_mem_chn5
// chn 5 is enabled
`define def_enable_mem_chn5
`undef def_read_mem_chn5
`define def_tiled_chn5
// chn 6 is disabled
`undef def_enable_mem_chn6
......
/*******************************************************************************
* Module: axibram
* Date:2014-03-18
* Author: Andrey Filippov
* Description:
*
* Copyright (c) 2014 Elphel, Inc.
* axibram.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* axibram.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/> .
*******************************************************************************/
module axibram(
input aclk, // clock - should be buffered
input aresetn, // reset, active low
// AXI Read Address
input [31:0] araddr, // ARADDR[31:0], input
input arvalid, // ARVALID, input
output arready, // ARREADY, output
input [11:0] arid, // ARID[11:0], input
// input [ 1:0] arlock, // ARLOCK[1:0], input
// input [ 3:0] archache,// ARCACHE[3:0], input
// input [ 2:0] arprot, // ARPROT[2:0], input
input [ 3:0] arlen, // ARLEN[3:0], input
input [ 1:0] arsize, // ARSIZE[1:0], input
input [ 1:0] arburst, // ARBURST[1:0], input
// input [ 3:0] adqos, // ARQOS[3:0], input
// AXI Read Data
output [31:0] rdata, // RDATA[31:0], output
output reg rvalid, // RVALID, output
input rready, // RREADY, input
output reg [11:0] rid, // RID[11:0], output
output reg rlast, // RLAST, output
output [ 1:0] rresp, // RRESP[1:0], output
// AXI Write Address
input [31:0] awaddr, // AWADDR[31:0], input
input awvalid, // AWVALID, input
output awready, // AWREADY, output
input [11:0] awid, // AWID[11:0], input
// input [ 1:0] awlock, // AWLOCK[1:0], input
// input [ 3:0] awcache, // AWCACHE[3:0], input
// input [ 2:0] awprot, // AWPROT[2:0], input
input [ 3:0] awlen, // AWLEN[3:0], input
input [ 1:0] awsize, // AWSIZE[1:0], input
input [ 1:0] awburst, // AWBURST[1:0], input
// input [ 3:0] awqos, // AWQOS[3:0], input
// AXI PS Master GP0: Write Data
input [31:0] wdata, // WDATA[31:0], input
input wvalid, // WVALID, input
output wready, // WREADY, output
input [11:0] wid, // WID[11:0], input
input wlast, // WLAST, input
input [ 3:0] wstb, // WSTRB[3:0], input
// AXI PS Master GP0: Write Responce
output bvalid, // BVALID, output
input bready, // BREADY, input
output [11:0] bid, // BID[11:0], output
output [ 1:0] bresp // BRESP[1:0], output
);
// **** Read channel ****
wire ar_nempty;
wire ar_half_full;
assign arready=~ar_half_full;
wire [ 1:0] arburst_out;
// SuppressWarnings VEditor all
wire [ 1:0] arsize_out; // not used
wire [ 3:0] arlen_out;
wire [ 9:0] araddr_out;
wire [11:0] arid_out;
wire rst=~aresetn;
reg read_in_progress=0;
reg read_in_progress_d=0; // delayed by one active cycle (not skipped)
reg read_in_progress_or=0; // read_in_progress || read_in_progress_d
reg [ 9:0] read_address; // transfer address (not including lower bits
reg [ 3:0] read_left; // number of read transfers
// will ignore arsize - assuming always 32 bits (a*size[2:0]==2)
reg [ 1:0] rburst; // registered burst type
reg [ 3:0] rlen; // registered burst type
wire [ 9:0] next_rd_address_w; // next transfer address;
assign next_rd_address_w=
rburst[1]?
(rburst[0]? (10'h0):((read_address[9:0]+1) & {6'h3f, ~rlen[3:0]})):
(rburst[0]? (read_address[9:0]+1):(read_address[9:0]));
wire start_read_burst_w;
// wire bram_re_w;
wire bram_reg_re_w;
wire read_in_progress_w;
wire read_in_progress_d_w;
wire last_in_burst_w;
wire last_in_burst_d_w;
reg pre_last_in_burst_r;
assign rresp=2'b0;
// reduce combinatorial delay from rready (use it in final mux)
// assign bram_reg_re_w= read_in_progress && (!rvalid || rready);
// assign start_read_burst_w=ar_nempty && (!read_in_progress || (bram_reg_re_w && (read_left==4'b0))); // reduce delay from arready
assign last_in_burst_w= bram_reg_re_w && (read_left==4'b0);
assign last_in_burst_d_w=bram_reg_re_w && pre_last_in_burst_r;
// make sure ar_nempty is updated
// assign start_read_burst_w=ar_nempty && (!read_in_progress || last_in_burst_w); // reduce delay from arready
assign read_in_progress_w= start_read_burst_w || (read_in_progress && !last_in_burst_w); // reduce delay from arready
assign read_in_progress_d_w=(read_in_progress && bram_reg_re_w) ||
(read_in_progress && !last_in_burst_d_w); // reduce delay from arready
// assign read_in_progress_d_w=read_in_progress_d;
wire pre_rvalid_w;
assign pre_rvalid_w=bram_reg_re_w || (rvalid && !rready);
reg bram_reg_re_0;
wire pre_left_zero_w;
reg last_in_burst_1;
reg last_in_burst_0;
reg start_read_burst_0;
reg start_read_burst_1;
reg [11:0] pre_rid0;
reg [11:0] pre_rid;
always @ (posedge aclk or posedge rst) begin
if (rst) pre_last_in_burst_r <= 0;
// else if (start_read_burst_w) pre_last_in_burst_r <= (read_left==4'b0);
else if (bram_reg_re_w) pre_last_in_burst_r <= (read_left==4'b0);
if (rst) rburst[1:0] <= 0;
else if (start_read_burst_w) rburst[1:0] <= arburst_out[1:0];
if (rst) rlen[3:0] <= 0;
else if (start_read_burst_w) rlen[3:0] <= arlen_out[3:0];
if (rst) read_in_progress <= 0;
else read_in_progress <= read_in_progress_w;
if (rst) read_in_progress_d <= 0;
// else read_in_progress_d <= read_in_progress_d_w;
else if (bram_reg_re_w) read_in_progress_d <= read_in_progress_d_w;
if (rst) read_in_progress_or <= 0;
// else read_in_progress_or <= read_in_progress_d_w || read_in_progress_w;
// else if (bram_reg_re_w) read_in_progress_or <= read_in_progress_d_w || read_in_progress_w;
// FIXME:
else if (bram_reg_re_w || !read_in_progress_or) read_in_progress_or <= read_in_progress_d_w || read_in_progress_w;
// reg read_in_progress_d=0; // delayed by one active cycle (not skipped)
// reg read_in_progress_or=0; // read_in_progress || read_in_progress_d
if (rst) read_left <= 0;
else if (start_read_burst_w) read_left <= arlen_out[3:0]; // precedence over inc
else if (bram_reg_re_w) read_left <= read_left-1;
if (rst) read_address <= 10'b0;
else if (start_read_burst_w) read_address <= araddr_out[9:0]; // precedence over inc
else if (bram_reg_re_w) read_address <= next_rd_address_w;
if (rst) rvalid <= 1'b0;
else if (bram_reg_re_w && read_in_progress_d) rvalid <= 1'b1;
else if (rready) rvalid <= 1'b0;
if (rst) rlast <= 1'b0;
else if (last_in_burst_d_w) rlast <= 1'b1;
else if (rready) rlast <= 1'b0;
end
always @ (posedge aclk) begin
// bram_reg_re_0 <= read_in_progress_w && !pre_rvalid_w;
bram_reg_re_0 <= (ar_nempty && !read_in_progress) || (read_in_progress && !read_in_progress);
last_in_burst_1 <= read_in_progress_w && pre_left_zero_w;
last_in_burst_0 <= read_in_progress_w && !pre_rvalid_w && pre_left_zero_w;
start_read_burst_1 <= !read_in_progress_w || pre_left_zero_w;
start_read_burst_0 <= !read_in_progress_w || (!pre_rvalid_w && pre_left_zero_w);
if (start_read_burst_w) pre_rid0[11:0] <= arid_out[11:0];
if (bram_reg_re_w) pre_rid[11:0] <= pre_rid0[11:0];
if (bram_reg_re_w) rid[11:0] <= pre_rid[11:0];
end
// reducing rready combinatorial delay
assign pre_left_zero_w=start_read_burst_w?(arlen_out[3:0]==4'b0):(bram_reg_re_w && (read_left==4'b0001));
// assign bram_reg_re_w= read_in_progress && (!rvalid || rready);
assign bram_reg_re_w= read_in_progress_or && (!rvalid || rready); // slower/simplier
// assign bram_reg_re_w= rready? read_in_progress : bram_reg_re_0; // faster - more verification
assign last_in_burst_w=bram_reg_re_w && (read_left==4'b0); // slower/simplier
// assign last_in_burst_w=rready? (read_in_progress && (read_left==4'b0)): (bram_reg_re_0 && (read_left==4'b0));
// assign last_in_burst_w=rready? last_in_burst_1: last_in_burst_0; // faster (unfinished) - more verification
assign start_read_burst_w=ar_nempty && (!read_in_progress || (bram_reg_re_w && (read_left==4'b0))); // reduce delay from rready
// assign start_read_burst_w=ar_nempty && (!read_in_progress || ((rready? read_in_progress : bram_reg_re_0) && (read_left==4'b0)));
// assign start_read_burst_w=
// rready?
// (ar_nempty && (!read_in_progress || ((read_in_progress) && (read_left==4'b0)))):
// (ar_nempty && (!read_in_progress || ((bram_reg_re_0 ) && (read_left==4'b0))));
/*
assign start_read_burst_w=
ar_nempty*(rready?
(!read_in_progress || (read_left==4'b0)):
((!read_in_progress || ((bram_reg_re_0 ) && (read_left==4'b0)))));
*/
// assign start_read_burst_w= ar_nempty && (rready?start_read_burst_1:start_read_burst_0);
// **** Write channel: ****
wire aw_nempty;
wire aw_half_full;
assign awready=~aw_half_full;
wire [ 1:0] awburst_out;
// SuppressWarnings VEditor all
wire [ 1:0] awsize_out; // not used
wire [ 3:0] awlen_out;
wire [ 9:0] awaddr_out;
// SuppressWarnings VEditor all
wire [11:0] awid_out; // not used
wire w_nempty;
wire w_half_full;
assign wready=~w_half_full;
wire [31:0] wdata_out;
// SuppressWarnings VEditor all
wire wlast_out; // not used
wire [ 3:0] wstb_out; // WSTRB[3:0], input
wire [11:0] wid_out;
reg write_in_progress=0;
reg [ 9:0] write_address; // transfer address (not including lower bits
reg [ 3:0] write_left; // number of read transfers
// will ignore arsize - assuming always 32 bits (a*size[2:0]==2)
reg [ 1:0] wburst; // registered burst type
reg [ 3:0] wlen; // registered awlen type (for wrapped over transfers)
wire [ 9:0] next_wr_address_w; // next transfer address;
wire bram_we_w; // write BRAM memory
wire start_write_burst_w;
wire write_in_progress_w;
assign next_wr_address_w=
wburst[1]?
(wburst[0]? (10'h0):((write_address[9:0]+1) & {6'h3f, ~wlen[3:0]})):
(wburst[0]? (write_address[9:0]+1):(write_address[9:0]));
assign bram_we_w= w_nempty && write_in_progress;
assign start_write_burst_w=aw_nempty && (!write_in_progress || (w_nempty && (write_left[3:0]==4'b0)));
assign write_in_progress_w=aw_nempty || (write_in_progress && !(w_nempty && (write_left[3:0]==4'b0)));
always @ (posedge aclk or posedge rst) begin
if (rst) wburst[1:0] <= 0;
else if (start_write_burst_w) wburst[1:0] <= awburst_out[1:0];
if (rst) wlen[3:0] <= 0;
else if (start_write_burst_w) wlen[3:0] <= awlen_out[3:0];
if (rst) write_in_progress <= 0;
else write_in_progress <= write_in_progress_w;
if (rst) write_left <= 0;
else if (start_write_burst_w) write_left <= awlen_out[3:0]; // precedence over inc
else if (bram_we_w) write_left <= write_left-1;
if (rst) write_address <= 10'b0;
else if (start_write_burst_w) write_address <= awaddr_out[9:0]; // precedence over inc
else if (bram_we_w) write_address <= next_wr_address_w;
end
// **** Write responce channel ****
wire [ 1:0] bresp_in;
assign bresp_in=2'b0;
/*
output bvalid, // BVALID, output
input bready, // BREADY, input
output [11:0] bid, // BID[11:0], output
output [ 1:0] bresp // BRESP[1:0], output
*/
/*
reg bram_reg_re_r;
always @ (posedge aclk) begin
bram_reg_re_r <= bram_reg_re_w;
end
*/
ram_1kx32_1kx32
#(
.REGISTERS(1) // 1 - registered output
)
ram_1kx32_1kx32_i
(
.rclk(aclk), // clock for read port
.raddr(read_in_progress?read_address[9:0]:10'h3ff), // read address
// .ren(read_in_progress_or) , // read port enable
.ren(bram_reg_re_w) , // read port enable
.regen(bram_reg_re_w), // output register enable
// .regen(bram_reg_re_r), // output register enable
.data_out(rdata[31:0]), // data out
.wclk(aclk), // clock for read port
.waddr(write_address[9:0]), // write address
.we(bram_we_w), // write port enable
.web(wstb_out[3:0]), // write byte enable
.data_in(wdata_out[31:0]) // data out
);
fifo_same_clock #( .DATA_WIDTH(30),.DATA_DEPTH(4))
raddr_i (
.rst(rst),
.clk(aclk),
.we(arvalid && arready),
.re(start_read_burst_w),
.data_in({arid[11:0], arburst[1:0],arsize[1:0],arlen[3:0],araddr[11:2]}),
.data_out({arid_out[11:0], arburst_out[1:0],arsize_out[1:0],arlen_out[3:0],araddr_out[9:0]}),
.nempty(ar_nempty),
.full(),
.half_full(ar_half_full)
);
fifo_same_clock #( .DATA_WIDTH(30),.DATA_DEPTH(4))
waddr_i (
.rst(rst),
.clk(aclk),
.we(awvalid && awready),
.re(start_write_burst_w),
.data_in({awid[11:0], awburst[1:0],awsize[1:0],awlen[3:0],awaddr[11:2]}),
.data_out({awid_out[11:0], awburst_out[1:0],awsize_out[1:0],awlen_out[3:0],awaddr_out[9:0]}),
.nempty(aw_nempty),
.full(),
.half_full(aw_half_full)
);
fifo_same_clock #( .DATA_WIDTH(49),.DATA_DEPTH(4))
wdata_i (
.rst(rst),
.clk(aclk),
.we(wvalid && wready),
.re(bram_we_w), //start_write_burst_w), // wrong
.data_in({wid[11:0],wlast,wstb[3:0],wdata[31:0]}),
.data_out({wid_out[11:0],wlast_out,wstb_out[3:0],wdata_out[31:0]}),
.nempty(w_nempty),
.full(),
.half_full(w_half_full)
);
fifo_same_clock #( .DATA_WIDTH(14),.DATA_DEPTH(4))
wresp_i (
.rst(rst),
.clk(aclk),
.we(bram_we_w),
.re(bready && bvalid),
.data_in({wid_out[11:0],bresp_in[1:0]}),
.data_out({bid[11:0],bresp[1:0]}),
.nempty(bvalid),
.full(),
.half_full()
);
endmodule
......@@ -19,7 +19,7 @@
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/> .
*******************************************************************************/
`define DEBUG_FIFO 1
//`define DEBUG_FIFO 1
module axibram_write #(
parameter ADDRESS_BITS = 10 // number of memory address bits
)(
......@@ -197,6 +197,7 @@ fifo_same_clock #( .DATA_WIDTH(20+ADDRESS_BITS),.DATA_DEPTH(4))
waddr_i (
.rst (rst),
.clk (aclk),
.sync_rst (1'b0),
.we (awvalid && awready),
.re (start_write_burst_w),
.data_in ({awid[11:0], awburst[1:0],awsize[1:0],awlen[3:0],awaddr[ADDRESS_BITS+1:2]}),
......@@ -216,6 +217,7 @@ fifo_same_clock #( .DATA_WIDTH(49),.DATA_DEPTH(4))
wdata_i (
.rst(rst),
.clk(aclk),
.sync_rst (1'b0),
.we(wvalid && wready),
.re(bram_we_w), //start_write_burst_w), // wrong
.data_in({wid[11:0],wlast,wstb[3:0],wdata[31:0]}),
......@@ -244,6 +246,7 @@ fifo_same_clock #( .DATA_WIDTH(14),.DATA_DEPTH(4))
wresp_i (
.rst(rst),
.clk(aclk),
.sync_rst (1'b0),
.we(bram_we_w),
// .re(bready && bvalid),
.re(bresp_re), // not allowing RE next cycle after bvalid
......
/*******************************************************************************
* Module: ddrc_test01
* Date:2014-05-18
* Author: Andrey Filippov
* Description: DDR3 controller test with axi
*
* Copyright (c) 2014 Elphel, Inc.
* ddrc_test01.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ddrc_test01.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/> .
*******************************************************************************/
`timescale 1ns/1ps
`define use200Mhz 1
`define DEBUG_FIFO 1
module ddrc_test01 #(
parameter PHASE_WIDTH = 8,
parameter SLEW_DQ = "SLOW",
parameter SLEW_DQS = "SLOW",
parameter SLEW_CMDA = "SLOW",
parameter SLEW_CLK = "SLOW",
parameter IBUF_LOW_PWR = "TRUE",
`ifdef use200Mhz
parameter real REFCLK_FREQUENCY = 200.0, // 300.0,
parameter HIGH_PERFORMANCE_MODE = "FALSE",
parameter CLKIN_PERIOD = 20, // 10, //ns >1.25, 600<Fvco<1200 // Hardware 150MHz , change to | 6.667
parameter CLKFBOUT_MULT = 16, // 8, // Fvco=Fclkin*CLKFBOUT_MULT_F/DIVCLK_DIVIDE, Fout=Fvco/CLKOUT#_DIVIDE | 16
parameter CLKFBOUT_MULT_REF = 16, // 18, // 9, // Fvco=Fclkin*CLKFBOUT_MULT_F/DIVCLK_DIVIDE, Fout=Fvco/CLKOUT#_DIVIDE | 6
parameter CLKFBOUT_DIV_REF = 4, // 200Mhz 3, // To get 300MHz for the reference clock
`else
parameter real REFCLK_FREQUENCY = 300.0,
parameter HIGH_PERFORMANCE_MODE = "FALSE",
parameter CLKIN_PERIOD = 10, //ns >1.25, 600<Fvco<1200
parameter CLKFBOUT_MULT = 8, // Fvco=Fclkin*CLKFBOUT_MULT_F/DIVCLK_DIVIDE, Fout=Fvco/CLKOUT#_DIVIDE
parameter CLKFBOUT_MULT_REF = 9, // Fvco=Fclkin*CLKFBOUT_MULT_F/DIVCLK_DIVIDE, Fout=Fvco/CLKOUT#_DIVIDE
parameter CLKFBOUT_DIV_REF = 3, // To get 300MHz for the reference clock
`endif
parameter DIVCLK_DIVIDE= 1,
parameter CLKFBOUT_PHASE = 0.000,
parameter SDCLK_PHASE = 0.000,
parameter CLK_PHASE = 0.000,
parameter CLK_DIV_PHASE = 0.000,
parameter MCLK_PHASE = 90.000,
parameter REF_JITTER1 = 0.010,
parameter SS_EN = "FALSE",
parameter SS_MODE = "CENTER_HIGH",
parameter SS_MOD_PERIOD = 10000,
parameter CMD_PAUSE_BITS= 10,
parameter CMD_DONE_BIT= 10,
parameter AXI_WR_ADDR_BITS = 13,
parameter AXI_RD_ADDR_BITS = 13,
parameter CONTROL_ADDR = 'h1000, // AXI write address of control write registers
parameter CONTROL_ADDR_MASK = 'h1400, // AXI write address of control registers
parameter STATUS_ADDR = 'h1400, // AXI write address of status read registers
parameter STATUS_ADDR_MASK = 'h1400, // AXI write address of status registers
parameter BUSY_WR_ADDR = 'h1800, // AXI write address to generate busy
parameter BUSY_WR_ADDR_MASK = 'h1c00, // AXI write address mask to generate busy
parameter CMD0_ADDR = 'h0800, // AXI write to command sequence memory
parameter CMD0_ADDR_MASK = 'h1800, // AXI read address mask for the command sequence memory
parameter PORT0_RD_ADDR = 'h0000, // AXI read address to generate busy
parameter PORT0_RD_ADDR_MASK = 'h1c00, // AXI read address mask to generate busy
parameter PORT1_WR_ADDR = 'h0400, // AXI read address to generate busy
parameter PORT1_WR_ADDR_MASK = 'h1c00, // AXI read address mask to generate busy
// parameters below to be ORed with CONTROL_ADDR and CONTROL_ADDR_MASK respectively
parameter DLY_LD_REL = 'h080, // address to generate delay load
parameter DLY_LD_REL_MASK = 'h380, // address mask to generate delay load
parameter DLY_SET_REL = 'h070, // address to generate delay set
parameter DLY_SET_REL_MASK = 'h3ff, // address mask to generate delay set
parameter RUN_CHN_REL = 'h000, // address to set sequnecer channel and run (4 LSB-s - channel)
parameter RUN_CHN_REL_MASK = 'h3f0, // address mask to generate sequencer channel/run
parameter PATTERNS_REL = 'h020, // address to set DQM and DQS patterns (16'h0055)
parameter PATTERNS_REL_MASK = 'h3ff, // address mask to set DQM and DQS patterns
parameter PATTERNS_TRI_REL = 'h021, // address to set DQM and DQS tristate on/off patterns {dqs_off,dqs_on, dq_off,dq_on} - 4 bits each
parameter PATTERNS_TRI_REL_MASK = 'h3ff, // address mask to set DQM and DQS tristate patterns
parameter WBUF_DELAY_REL = 'h022, // extra delay (in mclk cycles) to add to write buffer enable (DDR3 read data)
parameter WBUF_DELAY_REL_MASK = 'h3ff, // address mask to set extra delay
parameter PAGES_REL = 'h023, // address to set buffer pages {port1_page[1:0],port1_int_page[1:0],port0_page[1:0],port0_int_page[1:0]}
parameter PAGES_REL_MASK = 'h3ff, // address mask to set DQM and DQS patterns
parameter CMDA_EN_REL = 'h024, // address to enable('h825)/disable('h824) command/address outputs
parameter CMDA_EN_REL_MASK = 'h3fe, // address mask for command/address outputs
parameter SDRST_ACT_REL = 'h026, // address to activate('h827)/deactivate('h826) active-low reset signal to DDR3 memory
parameter SDRST_ACT_REL_MASK = 'h3fe, // address mask for reset DDR3
parameter CKE_EN_REL = 'h028, // address to enable('h829)/disable('h828) CKE signal to memory
parameter CKE_EN_REL_MASK = 'h3fe, // address mask for command/address outputs
parameter DCI_RST_REL = 'h02a, // address to activate('h82b)/deactivate('h82a) Zynq DCI calibrate circuitry
parameter DCI_RST_REL_MASK = 'h3fe, // address mask for DCI calibrate circuitry
parameter DLY_RST_REL = 'h02c, // address to activate('h82d)/deactivate('h82c) delay calibration circuitry
parameter DLY_RST_REL_MASK = 'h3fe, // address mask for delay calibration circuitry
parameter EXTRA_REL = 'h02e, // address to set extra parameters (currently just inv_clk_div)
parameter EXTRA_REL_MASK = 'h3ff, // address mask for extra parameters
parameter REFRESH_EN_REL = 'h030, // address to enable('h31) and disable ('h30) DDR refresh
parameter REFRESH_EN_REL_MASK = 'h3fe, // address mask to enable/disable DDR refresh
parameter REFRESH_PER_REL = 'h032, // address to set refresh period in 32 x tCK
parameter REFRESH_PER_REL_MASK = 'h3ff, // address mask set refresh period
parameter REFRESH_ADDR_REL = 'h033, // address to set sequencer start address for DDR refresh
parameter REFRESH_ADDR_REL_MASK = 'h3ff // address mask set refresh sequencer address
)(
// DDR3 interface
output SDRST, // DDR3 reset (active low)
output SDCLK, // DDR3 clock differential output, positive
output SDNCLK,// DDR3 clock differential output, negative
output [ADDRESS_NUMBER-1:0] SDA, // output address ports (14:0) for 4Gb device
output [2:0] SDBA, // output bank address ports
output SDWE, // output WE port
output SDRAS, // output RAS port
output SDCAS, // output CAS port
output SDCKE, // output Clock Enable port
output SDODT, // output ODT port
inout [15:0] SDD, // DQ I/O pads
output SDDML, // LDM I/O pad (actually only output)
inout DQSL, // LDQS I/O pad
inout NDQSL, // ~LDQS I/O pad
output SDDMU, // UDM I/O pad (actually only output)
inout DQSU, // UDQS I/O pad
inout NDQSU,
output DUMMY_TO_KEEP, // to keep PS7 signals from "optimization"
input MEMCLK
// ~UDQS I/O pad
// AXI write (ps -> pl)
);
localparam ADDRESS_NUMBER=15;
// Source for reset and clock
wire [3:0] fclk; // PL Clocks [3:0], output
wire [3:0] frst; // PL Clocks [3:0], output
// AXI write interface signals
//(* keep = "true" *)
wire axi_aclk; // clock - should be buffered
// wire axi_naclk; // debugging
// wire axi_aresetn; // reset, active low
//(* dont_touch = "true" *)
wire axi_rst; // reset, active high
// AXI Write Address
wire [31:0] axi_awaddr; // AWADDR[31:0], input
wire axi_awvalid; // AWVALID, input
wire axi_awready; // AWREADY, output
wire [11:0] axi_awid; // AWID[11:0], input
// input [ 1:0] awlock, // AWLOCK[1:0], input
// input [ 3:0] awcache, // AWCACHE[3:0], input
// input [ 2:0] awprot, // AWPROT[2:0], input
wire [ 3:0] axi_awlen; // AWLEN[3:0], input
wire [ 1:0] axi_awsize; // AWSIZE[1:0], input
wire [ 1:0] axi_awburst; // AWBURST[1:0], input
// input [ 3:0] awqos, // AWQOS[3:0], input
// AXI PS Master GP0: Write Data
wire [31:0] axi_wdata; // WDATA[31:0], input
wire axi_wvalid; // WVALID, input
wire axi_wready; // WREADY, output
wire [11:0] axi_wid; // WID[11:0], input
wire axi_wlast; // WLAST, input
wire [ 3:0] axi_wstb; // WSTRB[3:0], input
// AXI PS Master GP0: Write Responce
wire axi_bvalid; // BVALID, output
wire axi_bready; // BREADY, input
wire [11:0] axi_bid; // BID[11:0], output
wire [ 1:0] axi_bresp; // BRESP[1:0], output
// BRAM (and other write modules) interface from AXI write
wire [AXI_WR_ADDR_BITS-1:0] axiwr_pre_awaddr; // same as awaddr_out, early address to decode and return dev_ready
wire axiwr_start_burst; // start of write burst, valid pre_awaddr, save externally to control ext. dev_ready multiplexer
wire axiwr_dev_ready; // extrernal combinatorial ready signal, multiplexed from different sources according to pre_awaddr@start_burst
wire axiwr_bram_wclk;
wire [AXI_WR_ADDR_BITS-1:0] axiwr_bram_waddr;
wire axiwr_bram_wen; // external memory write enable, (internally combined with registered dev_ready
// SuppressWarnings VEditor unused (yet?)
wire [3:0] axiwr_bram_wstb;
wire [31:0] axiwr_bram_wdata;
// AXI Read Address
wire [31:0] axi_araddr; // ARADDR[31:0], input
wire axi_arvalid; // ARVALID, input
wire axi_arready; // ARREADY, output
wire [11:0] axi_arid; // ARID[11:0], input
// input [ 1:0] arlock, // ARLOCK[1:0], input
// input [ 3:0] archache,// ARCACHE[3:0], input
// input [ 2:0] arprot, // ARPROT[2:0], input
wire [ 3:0] axi_arlen; // ARLEN[3:0], input
wire [ 1:0] axi_arsize; // ARSIZE[1:0], input
wire [ 1:0] axi_arburst; // ARBURST[1:0], input
// input [ 3:0] adqos, // ARQOS[3:0], input
// AXI Read Data
wire [31:0] axi_rdata; // RDATA[31:0], output
wire axi_rvalid; // RVALID, output
wire axi_rready; // RREADY, input
wire [11:0] axi_rid; // RID[11:0], output
wire axi_rlast; // RLAST, output
wire [ 1:0] axi_rresp;
// External memory synchronization
wire [AXI_RD_ADDR_BITS-1:0] axird_pre_araddr; // same as awaddr_out, early address to decode and return dev_ready
wire axird_start_burst; // start of read burst, valid pre_araddr, save externally to control ext. dev_ready multiplexer
wire axird_dev_ready; // extrernal combinatorial ready signal, multiplexed from different sources according to pre_araddr@start_burst
// External memory interface
// SuppressWarnings VEditor unused (yet?) - use mclk
wire axird_bram_rclk; // .rclk(aclk), // clock for read port
wire [AXI_RD_ADDR_BITS-1:0] axird_bram_raddr; // .raddr(read_in_progress?read_address[9:0]:10'h3ff), // read address
wire axird_bram_ren; // .ren(bram_reg_re_w) , // read port enable
wire axird_bram_regen; // .regen(bram_reg_re_w), // output register enable
wire [31:0] axird_bram_rdata; // .data_out(rdata[31:0]), // data out
wire [31:0] port0_rdata; //
wire [31:0] status_rdata; //
wire mclk;
wire en_cmd0_wr;
wire [10:0] axi_run_addr;
wire [ 3:0] axi_run_chn;
wire axi_run_seq;
wire [10:0] run_addr; // multiplexed - from refresh or axi
wire [ 3:0] run_chn; // multiplexed - from refresh or axi
wire run_seq;
wire run_seq_rq_in; // higher priority request to run sequence
wire run_seq_rq_gen;// SuppressThisWarning VEditor : unused this wants to run sequencer
// wire run_seq_busy; // sequencer is busy or access granted to other master
// wire run_done; // output
wire run_busy; // TODO: add to ddrc_sequencer
wire [ 7:0] dly_data; // input[7:0]
wire [ 6:0] dly_addr; // input[6:0]
wire ld_delay; // input
wire set; // input
wire locked; // output
wire locked_mmcm;
wire locked_pll;
wire dly_ready;
wire dci_ready;
wire phy_locked_mmcm;
wire phy_locked_pll;
wire phy_dly_ready;
wire phy_dci_ready;
wire [ 7:0] tmp_debug;
wire ps_rdy; // output
wire [ 7:0] ps_out; // output[7:0]
wire en_port0_rd;
wire en_port0_regen;
wire en_port1_wr;
wire [ 1:0] port0_page; // input[1:0]
wire [ 1:0] port0_int_page; // input[1:0]
wire [ 1:0] port1_page; // input[1:0]
wire [ 1:0] port1_int_page;// input[1:0]
// additional control signals
wire cmda_en; // enable DDR3 memory control and addreee outputs
wire ddr_rst; // generate DDR3 memory reset (active hight)
wire dci_rst; // active high - reset DCI circuitry
wire dly_rst; // active high - reset delay calibration circuitry
wire ddr_cke; // control of the DDR3 memory CKE signal
wire inv_clk_div; // input
wire [ 7:0] dqs_pattern; // input[7:0] 8'h55
wire [ 7:0] dqm_pattern; // input[7:0] 8'h00
reg select_port0;
reg select_status;
wire axiwr_dev_busy;
wire axird_dev_busy;
wire [ 3:0] dq_tri_on_pattern;
wire [ 3:0] dq_tri_off_pattern;
wire [ 3:0] dqs_tri_on_pattern;
wire [ 3:0] dqs_tri_off_pattern;
wire [ 3:0] wbuf_delay;
wire port0_rd_match;
reg port0_rd_match_r; // rd address matched in previous cycle
wire [7:0] refresh_period;
wire [10:0] refresh_address;
wire refresh_en;
wire refresh_set;
assign port0_rd_match=(((axird_bram_raddr ^ PORT0_RD_ADDR) & PORT0_RD_ADDR_MASK)==0);
assign en_cmd0_wr= axiwr_bram_wen && (((axiwr_bram_waddr ^ CMD0_ADDR) & CMD0_ADDR_MASK)==0);
assign en_port0_rd= axird_bram_ren && port0_rd_match;
assign en_port0_regen= axird_bram_regen && port0_rd_match_r;
assign en_port1_wr= axiwr_bram_wen && (((axiwr_bram_waddr ^ PORT1_WR_ADDR) & PORT1_WR_ADDR_MASK)==0);
assign axiwr_dev_ready = ~axiwr_dev_busy; //may combine (AND) multiple sources if needed
assign axird_bram_rdata= select_port0? port0_rdata[31:0]:(select_status?status_rdata[31:0]:32'bx);
assign axird_dev_ready = ~axird_dev_busy; //may combine (AND) multiple sources if needed
assign locked=locked_mmcm && locked_pll;