Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
X
x393
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
x393
Commits
0a756781
Commit
0a756781
authored
Sep 15, 2015
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
re-wrote old FIFO module, got rid of timing-critical latches
parent
ccbfbf84
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
46 additions
and
103 deletions
+46
-103
huff_fifo393.v
compressor_jp/huff_fifo393.v
+46
-103
No files found.
compressor_jp/huff_fifo393.v
View file @
0a756781
...
...
@@ -24,146 +24,89 @@
** -----------------------------------------------------------------------------**
**
*/
//used the other edge of the clk2x
module
huff_fifo393
(
input
xclk
,
// pixel clock, posedge
input
xclk2x
,
// twice frequency - uses negedge inside
input
en
,
// will reset if ==0 (sync to xclk)
input
[
15
:
0
]
di
,
// data in (sync to xclk)
input
ds
,
// din valid (sync to xclk)
input
want_read
,
input
want_read_early
,
output
reg
dav
,
// FIFO output latch has data (fifo_or_full)
`ifdef
INFER_LATCHES
output
reg
[
15
:
0
]
q_latch
`else
output
[
15
:
0
]
q_latch
`endif
input
want_read
,
// will be and-ed with dav
output
dav
,
// FIFO output latch has data (fifo_or_full)
output
reg
[
15
:
0
]
q
)
;
// output data
reg
[
9
:
0
]
wa
;
reg
[
9
:
0
]
sync_wa
;
// delayed wa, re_latch-calculated at output clock
reg
[
9
:
0
]
ra_r
;
wire
[
15
:
0
]
fifo_o
;
reg
ds1
;
// ds delayed by one xclk to give time to block ram to write data. Not needed likely.
reg
synci
;
reg
[
1
:
0
]
synco
;
reg
[
2
:
0
]
synco
;
reg
sync_we
;
// single xclk2x period pulse for each ds@xclk
reg
en2x
;
// en sync to xclk2x;
reg
re_r
;
reg
fifo_dav
;
// RAM output reg has data
reg
dav_and_fifo_dav
;
wire
ram_dav
;
// RAM has data inside
reg
[
9
:
0
]
diff_a
;
wire
next_re
;
reg
load_q
;
`ifdef
INFER_LATCHES
reg
[
9
:
0
]
ra_latch
;
reg
re_latch
;
`else
wire
[
9
:
0
]
ra_latch
;
wire
re_latch
;
`endif
wire
[
3
:
0
]
re
;
reg
[
2
:
0
]
nempty_r
;
// output register and RAM registers not empty
wire
[
3
:
0
]
nempty
;
// output register and RAM register and RAM internal are not empty
wire
many
;
assign
dav
=
nempty
[
0
]
;
assign
nempty
=
{
(
|
diff_a
)
,
nempty_r
};
assign
many
=
&
(
nempty
)
;
// memory and all the register chain are full
assign
re
=
{
4
{
many
&
want_read
}}
|
{
nempty
[
3
]
&
~
nempty
[
2
]
,
// read memory location
nempty
[
2
]
&
~
nempty
[
1
]
,
// regen
nempty
[
1
]
&
~
nempty
[
0
]
,
// copy to q- register
nempty
[
0
]
&
want_read
};
// external read when data is available
always
@
(
posedge
xclk
)
begin
// input stage, no overrun detection. TODO: propagate half-full?
if
(
!
en
)
wa
<=
0
;
else
if
(
ds
)
wa
<=
wa
+
1
;
always
@
(
posedge
xclk
)
begin
// input stage, no overrun detection
if
(
!
en
)
wa
[
9
:
0
]
<=
10'b0
;
else
if
(
ds
)
wa
[
9
:
0
]
<=
wa
[
9
:
0
]
+
1
;
ds1
<=
ds
&&
en
;
if
(
!
en
)
synci
<=
1'b0
;
else
if
(
ds1
)
synci
<=
~
synci
;
end
always
@
(
negedge
xclk2x
)
begin
en2x
<=
en
;
synco
[
1
:
0
]
<=
{
synco
[
0
]
,
synci
};
sync_we
<=
en2x
&&
(
synco
[
0
]
!=
synco
[
1
])
;
synco
<=
{
synco
[
1
:
0
]
,
synci
};
sync_we
<=
en2x
&&
(
synco
[
1
]
!=
synco
[
2
])
;
end
assign
ram_dav
=
sync_we
||
(
diff_a
[
9
:
0
]
!=
10'b0
)
;
assign
next_re
=
ram_dav
&&
(
!
dav_and_fifo_dav
||
want_read
)
;
always
@
(
negedge
xclk2x
)
begin
dav
<=
en2x
&&
(
fifo_dav
||
(
dav
&&
!
want_read
))
;
fifo_dav
<=
en2x
&&
(
ram_dav
||
(
dav
&&
fifo_dav
&&
!
want_read
))
;
dav_and_fifo_dav
<=
en2x
&&
(
fifo_dav
||
(
dav
&&
!
want_read
))
&&
(
ram_dav
||
(
dav
&&
fifo_dav
&&
!
want_read
))
;
// will optimize auto
re_r
<=
en2x
&&
next_re
;
if
(
!
en2x
)
nempty_r
[
0
]
<=
0
;
else
if
(
re
[
1
]
^
re
[
0
])
nempty_r
[
0
]
<=
re
[
1
]
;
if
(
!
en2x
)
sync_wa
[
9
:
0
]
<=
10'b
0
;
else
if
(
sync_we
)
sync_wa
[
9
:
0
]
<=
sync_wa
[
9
:
0
]
+
1
;
if
(
!
en2x
)
nempty_r
[
1
]
<=
0
;
else
if
(
re
[
2
]
^
re
[
1
])
nempty_r
[
1
]
<=
re
[
2
]
;
if
(
!
en2x
)
ra_r
[
9
:
0
]
<=
10'b
0
;
else
if
(
next_re
)
ra_r
[
9
:
0
]
<=
ra_r
[
9
:
0
]
+
1
;
if
(
!
en2x
)
nempty_r
[
2
]
<=
0
;
else
if
(
re
[
3
]
^
re
[
2
])
nempty_r
[
2
]
<=
re
[
3
]
;
if
(
!
en2x
)
diff_a
[
9
:
0
]
<=
10'b0
;
else
if
(
sync_we
&&
!
next_re
)
diff_a
[
9
:
0
]
<=
diff_a
[
9
:
0
]
+
1
;
else
if
(
!
sync_we
&&
next_re
)
diff_a
[
9
:
0
]
<=
diff_a
[
9
:
0
]
-
1
;
if
(
!
en2x
)
ra_r
<=
0
;
else
if
(
re
[
3
])
ra_r
<=
ra_r
+
1
;
end
if
(
!
en2x
)
diff_a
<=
0
;
else
if
(
sync_we
&&
!
re
[
3
])
diff_a
<=
diff_a
+
1
;
else
if
(
!
sync_we
&&
re
[
3
])
diff_a
<=
diff_a
-
1
;
always
@
(
posedge
xclk2x
)
begin
load_q
<=
dav
?
want_read_early
:
re_r
;
end
if
(
!
en2x
)
q
<=
0
;
else
if
(
re
[
1
])
q
<=
fifo_o
;
`ifdef
INFER_LATCHES
always
@*
if
(
xclk2x
)
re_latch
<=
next_re
;
always
@*
if
(
xclk2x
)
ra_latch
<=
ra_r
;
always
@*
if
(
~
xclk2x
)
if
(
load_q
)
q_latch
<=
fifo_o
;
end
`else
latch_g_ce
#(
.
WIDTH
(
1
)
,
.
INIT
(
0
)
,
.
IS_CLR_INVERTED
(
0
)
,
.
IS_G_INVERTED
(
0
)
)
latch_re_i
(
.
rst
(
1'b0
)
,
// input
.
g
(
xclk2x
)
,
// input
.
ce
(
1'b1
)
,
// input
.
d_in
(
next_re
)
,
// input[0:0]
.
q_out
(
re_latch
)
// output[0:0]
)
;
latch_g_ce
#(
.
WIDTH
(
10
)
,
.
INIT
(
0
)
,
.
IS_CLR_INVERTED
(
0
)
,
.
IS_G_INVERTED
(
0
)
)
latch_ra_i
(
.
rst
(
1'b0
)
,
// input
.
g
(
xclk2x
)
,
// input
.
ce
(
1'b1
)
,
// input
.
d_in
(
ra_r
)
,
// input[0:0]
.
q_out
(
ra_latch
)
// output[0:0]
)
;
latch_g_ce
#(
.
WIDTH
(
16
)
,
.
INIT
(
0
)
,
.
IS_CLR_INVERTED
(
0
)
,
.
IS_G_INVERTED
(
1'b1
)
// inverted!
)
latch_q_i
(
.
rst
(
1'b0
)
,
// input
.
g
(
xclk2x
)
,
// input
.
ce
(
load_q
)
,
// input
.
d_in
(
fifo_o
)
,
// input[0:0]
.
q_out
(
q_latch
)
// output[0:0]
)
;
`endif
ram18_var_w_var_r
#(
.
REGISTERS
(
0
)
,
.
REGISTERS
(
1
)
,
.
LOG2WIDTH_WR
(
4
)
,
.
LOG2WIDTH_RD
(
4
)
,
.
DUMMY
(
0
)
)
i_fifo
(
.
rclk
(
xclk2x
)
,
// input
.
raddr
(
ra_
latch
[
9
:
0
])
,
// input[9:0]
.
ren
(
re
_latch
)
,
// input
.
regen
(
1'b1
)
,
// input
.
raddr
(
ra_
r
[
9
:
0
])
,
// input[9:0]
.
ren
(
re
[
3
])
,
// input
.
regen
(
re
[
2
])
,
// input
.
data_out
(
fifo_o
[
15
:
0
])
,
// output[15:0]
.
wclk
(
xclk
)
,
// input
.
waddr
(
wa
[
9
:
0
])
,
// input[9:0]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment