Commit b3b9c121 authored by charras's avatar charras

code cleaning

parent 237a8539
...@@ -153,7 +153,6 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode ) ...@@ -153,7 +153,6 @@ void BOARD::Test_Connections_To_Copper_Areas( int aNetcode )
if( (old_subnet > 0) && (old_subnet != subnet) ) // Merge previous subnet with the current if( (old_subnet > 0) && (old_subnet != subnet) ) // Merge previous subnet with the current
{ {
//printf(" merge subnets: %d et %d (%d)\n", old_subnet, subnet,item->Type());
for( unsigned jj = 0; jj < Candidates.size(); jj++ ) for( unsigned jj = 0; jj < Candidates.size(); jj++ )
{ {
BOARD_CONNECTED_ITEM* item_to_merge = Candidates[jj]; BOARD_CONNECTED_ITEM* item_to_merge = Candidates[jj];
...@@ -233,7 +232,6 @@ void Merge_SubNets_Connected_By_CopperAreas( BOARD* aPcb, int aNetcode ) ...@@ -233,7 +232,6 @@ void Merge_SubNets_Connected_By_CopperAreas( BOARD* aPcb, int aNetcode )
if( !found ) // No zone with this netcode, therefore no connection by zone if( !found ) // No zone with this netcode, therefore no connection by zone
return; return;
printf(" Merge_SubNets net = %d\n", aNetcode);
std::vector <BOARD_CONNECTED_ITEM*> Candidates; // list of pads and tracks candidates to test. std::vector <BOARD_CONNECTED_ITEM*> Candidates; // list of pads and tracks candidates to test.
// Build a list of candidates connected to the net: // Build a list of candidates connected to the net:
......
This diff is collapsed.
...@@ -19,56 +19,10 @@ typedef struct EllipseTag ...@@ -19,56 +19,10 @@ typedef struct EllipseTag
double theta1, theta2; // start and end angle for arc double theta1, theta2; // start and end angle for arc
} EllipseKH; } EllipseKH;
const CPoint zero(0,0);
class my_circle {
public:
my_circle(){};
my_circle( int xx, int yy, int rr )
{
x = xx;
y = yy;
r = rr;
};
int x, y, r;
};
class my_rect {
public:
my_rect(){};
my_rect( int xi, int yi, int xf, int yf )
{
xlo = MIN(xi,xf);
xhi = MAX(xi,xf);
ylo = MIN(yi,yf);
yhi = MAX(yi,yf);
};
int xlo, ylo, xhi, yhi;
};
class my_seg {
public:
my_seg(){};
my_seg( int xxi, int yyi, int xxf, int yyf )
{
xi = xxi;
yi = yyi;
xf = xxf;
yf = yyf;
};
int xi, yi, xf, yf;
};
// math stuff for graphics // math stuff for graphics
#if 0
void DrawArc( CDC * pDC, int shape, int xxi, int yyi, int xxf, int yyf, bool bMeta=FALSE );
#endif
bool Quadratic( double a, double b, double c, double *x1, double *x2 ); bool Quadratic( double a, double b, double c, double *x1, double *x2 );
void RotatePoint( CPoint *p, int angle, CPoint org );
void RotateRect( CRect *r, int angle, CPoint org );
int TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist ); int TestLineHit( int xi, int yi, int xf, int yf, int x, int y, double dist );
int FindLineIntersection( double a, double b, double c, double d, double * x, double * y );
int FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, int yf, int style, int FindLineSegmentIntersection( double a, double b, int xi, int yi, int xf, int yf, int style,
double * x1, double * y1, double * x2, double * y2, double * dist=NULL ); double * x1, double * y1, double * x2, double * y2, double * dist=NULL );
int FindSegmentIntersections( int xi, int yi, int xf, int yf, int style, int FindSegmentIntersections( int xi, int yi, int xf, int yf, int style,
...@@ -79,13 +33,6 @@ bool FindVerticalLineEllipseIntersections( double a, double b, double x, double ...@@ -79,13 +33,6 @@ bool FindVerticalLineEllipseIntersections( double a, double b, double x, double
bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y1f, bool TestForIntersectionOfStraightLineSegments( int x1i, int y1i, int x1f, int y1f,
int x2i, int y2i, int x2f, int y2f, int x2i, int y2i, int x2f, int y2f,
int * x=NULL, int * y=NULL, double * dist=NULL ); int * x=NULL, int * y=NULL, double * dist=NULL );
void GetPadElements( int type, int x, int y, int wid, int len, int radius, int angle,
int * nr, my_rect r[], int * nc, my_circle c[], int * ns, my_seg s[] );
int GetClearanceBetweenPads( int type1, int x1, int y1, int w1, int l1, int r1, int angle1,
int type2, int x2, int y2, int w2, int l2, int r2, int angle2 );
int GetClearanceBetweenSegmentAndPad( int x1, int y1, int x2, int y2, int w,
int type, int x, int y, int wid, int len,
int radius, int angle );
int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int style1, int w1, int GetClearanceBetweenSegments( int x1i, int y1i, int x1f, int y1f, int style1, int w1,
int x2i, int y2i, int x2f, int y2f, int style2, int w2, int x2i, int y2i, int x2f, int y2f, int style2, int w2,
int max_cl, int * x, int * y ); int max_cl, int * x, int * y );
...@@ -104,5 +51,4 @@ double Distance( int x1, int y1, int x2, int y2 ); ...@@ -104,5 +51,4 @@ double Distance( int x1, int y1, int x2, int y2 );
int GetArcIntersections( EllipseKH * el1, EllipseKH * el2, int GetArcIntersections( EllipseKH * el1, EllipseKH * el2,
double * x1=NULL, double * y1=NULL, double * x1=NULL, double * y1=NULL,
double * x2=NULL, double * y2=NULL ); double * x2=NULL, double * y2=NULL );
CPoint GetInflectionPoint( CPoint pi, CPoint pf, int mode );
...@@ -15,6 +15,10 @@ using namespace std; ...@@ -15,6 +15,10 @@ using namespace std;
* At each crossing, the ray switches between inside and outside. * At each crossing, the ray switches between inside and outside.
* If odd count, the test point is inside the polygon * If odd count, the test point is inside the polygon
* This is called the Jordan curve theorem, or sometimes referred to as the "even-odd" test. * This is called the Jordan curve theorem, or sometimes referred to as the "even-odd" test.
* Take care to starting and ending points of segments outlines:
* Only one must be used because the startingpoint of a segemnt is also the ending point of the previous.
* And we do no use twice the same segment, so we do NOT use both starting and ending points of segments.
* So we must use starting point but not ending point of each segment when calculating intersections
*/ */
/* 2 versions are given. /* 2 versions are given.
...@@ -22,7 +26,7 @@ using namespace std; ...@@ -22,7 +26,7 @@ using namespace std;
* the first version is for explanations and tests (used to test the second version) * the first version is for explanations and tests (used to test the second version)
* both use the same algorithm. * both use the same algorithm.
*/ */
#if 1 #if 0
/* This text and the algorithm come from http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html /* This text and the algorithm come from http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
* *
...@@ -291,7 +295,6 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList, ...@@ -291,7 +295,6 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
/** Function TestPointInsidePolygon /** Function TestPointInsidePolygon
* test if a point is inside or outside a polygon. * test if a point is inside or outside a polygon.
* if a point is on a outline segment, it is considered outside the polygon
* the polygon must have only lines (not arcs) for outlines. * the polygon must have only lines (not arcs) for outlines.
* Use TestPointInside or TestPointInsideContour for more complex polygons * Use TestPointInside or TestPointInsideContour for more complex polygons
* @param aPolysList: the list of polygons * @param aPolysList: the list of polygons
...@@ -301,55 +304,54 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList, ...@@ -301,55 +304,54 @@ bool TestPointInsidePolygon( std::vector <CPolyPt> aPolysList,
* @return true if the point is inside, false for outside * @return true if the point is inside, false for outside
*/ */
{ {
#define OUTSIDE_IF_ON_SIDE 0 // = 1 if we consider point on a side outside the polygon // count intersection points to right of (refx,refy), if odd (refx,refy) is inside polyline
// define line passing through (x,y), with slope = 0 (horizontal line)
// get intersection points
// count intersection points to right of (x,y), if odd (x,y) is inside polyline
int xx, yy;
double slope = 0; // Using an horizontal line.
double a = refy - slope * refx;
int ics, ice; int ics, ice;
bool inside = false; bool inside = false;
// find all intersection points of line with polyline sides // find all intersection points of line with polyline sides
for( ics = istart, ice = iend; ics <= iend; ice = ics++ ) for( ics = istart, ice = iend; ics <= iend; ice = ics++ )
{ {
double intersectx1, intersecty1, intersectx2, intersecty2; int seg_startX = aPolysList[ics].x;
int ok; int seg_startY = aPolysList[ics].y;
ok = FindLineSegmentIntersection( a, slope, int seg_endX = aPolysList[ice].x;
aPolysList[ics].x, aPolysList[ics].y, int seg_endY = aPolysList[ice].y;
aPolysList[ice].x, aPolysList[ice].y,
CPolyLine::STRAIGHT,
&intersectx1, &intersecty1,
&intersectx2, &intersecty2 );
/* FindLineSegmentIntersection() returns 0, 1 or 2 coordinates (ok = 0, 1, 2) /* Trivial cases: skip if ref above or below the segment to test
* for straight line segments, only 0 or 1 are possible * Note: end point segment is skipped, because we do not test twice the same point:
* (2 intersections points are possible only with arcs * If the start point of segments is tested, the end point must be skipped, because
*/ * this is also the starting point of the next segment
if( ok ) // Intersection found */
{ // segment above ref point: skip
xx = (int) intersectx1; if( ( seg_startY > refy ) && (seg_endY > refy ) )
yy = (int) intersecty1; continue;
/* if the intersection point is on the start point of the current segment, // segment below ref point, or its end on ref point: skip
* do not count it, // Note: also we skip vertical segments
* because it was already counted, as ending point of the previous segment // So points on vertical segments outlines are seen as outside the polygon
*/ if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
if( xx == aPolysList[ics].x && yy == aPolysList[ics].y ) continue;
continue;
#if OUTSIDE_IF_ON_SIDE /* refy is between seg_startY and seg_endY.
if( xx == refx && yy == refy ) * see if an horizontal line from refx is intersecting the segment
return false; // (x,y) is on a side, call it outside */
else
#endif // calculate the x position of the intersection of this segment and the semi infinite line
if( xx > refx ) // this is more easier if we move the X,Y axis origin to the segment start point:
inside = not inside; seg_endX -= seg_startX;
} seg_endY -= seg_startY;
double newrefx = (double)(refx - seg_startX);
double newrefy = (double) (refy - seg_startY);
// Now calculate the x intersection coordinate of the line from (0,0) to (seg_endX,seg_endY)
// with the horizontal line at the new refy position
// the line slope is slope = seg_endY/seg_endX;
// and the x pos relative to the new origin is intersec_x = refy/slope
// Note: because vertical segments are skipped, slope exists (seg_end_y not O)
double intersec_x = newrefy * seg_endX / seg_endY;
if( newrefx < intersec_x ) // Intersection found with the semi-infinite line from -infinite to refx
inside = not inside;
} }
return inside; return inside;
} }
#endif #endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment