coroutine.h 6.54 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * This program source code file is part of KiCad, a free EDA CAD application.
 *
 * Copyright (C) 2013 CERN
 * @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
 */

#ifndef __COROUTINE_H
#define __COROUTINE_H

#include <cstdlib>

#include <boost/context/fcontext.hpp>

#include "delegate.h"

/**
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 *  Class COROUNTINE.
 *  Implements a coroutine. Wikipedia has a good explanation:
 *
 *  "Coroutines are computer program components that generalize subroutines to
 *  allow multiple entry points for suspending and resuming execution at certain locations.
 *  Coroutines are well-suited for implementing more familiar program components such as cooperative
 *  tasks, exceptions, event loop, iterators, infinite lists and pipes."
 *
 *  In other words, a coroutine can be considered a lightweight thread - which can be
 *  preempted only when it deliberately yields the control to the caller. This way,
 *  we avoid concurrency problems such as locking / race conditions.
 *
 *  Uses boost::context library to do the actual context switching.
 *
 *  This particular version takes a DELEGATE as an entry point, so it can invoke
 *  methods within a given object as separate coroutines.
 *
 *  See coroutine_example.cpp for sample code.
53 54
 */

55
template <class ReturnType, class ArgType>
Maciej Suminski's avatar
Maciej Suminski committed
56 57
class COROUTINE
{
58
public:
59 60 61 62 63 64 65 66 67 68 69
    COROUTINE()
    {
        m_stackSize = c_defaultStackSize;
        m_stack = NULL;
        m_saved = NULL;
    }

    /**
     * Constructor
     * Creates a coroutine from a member method of an object
     */
70 71
    template <class T>
    COROUTINE( T* object, ReturnType(T::* ptr)( ArgType ) ) :
72 73 74 75 76 77 78 79 80
        m_func( object, ptr ), m_saved( NULL ), m_stack( NULL ), m_stackSize( c_defaultStackSize )
    {
    }

    /**
     * Constructor
     * Creates a coroutine from a delegate object
     */
    COROUTINE( DELEGATE<ReturnType, ArgType> aEntry ) :
81
        m_func( aEntry ), m_saved( NULL ), m_stack( NULL ), m_stackSize( c_defaultStackSize )
82
    {};
83

84 85
    ~COROUTINE()
    {
Maciej Suminski's avatar
Maciej Suminski committed
86 87
        if( m_saved )
            delete m_saved;
88

Maciej Suminski's avatar
Maciej Suminski committed
89 90
        if( m_stack )
            free( m_stack );
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    }

    /**
     * Function Yield()
     *
     * Stops execution of the coroutine and returns control to the caller.
     * After a yield, Call() or Resume() methods invoked by the caller will
     * immediately return true, indicating that we are not done yet, just asleep.
     */
    void Yield()
    {
        boost::context::jump_fcontext( m_self, m_saved, 0 );
    }

    /**
     * Function Yield()
     *
     * Yield with a value - passes a value of given type to the caller.
     * Useful for implementing generator objects.
     */
Maciej Suminski's avatar
Maciej Suminski committed
111
    void Yield( ReturnType& aRetVal )
112
    {
Maciej Suminski's avatar
Maciej Suminski committed
113
        m_retVal = aRetVal;
114 115 116 117
        boost::context::jump_fcontext( m_self, m_saved, 0 );
    }

    /**
118
     *  <F11>* Function SetEntry()
119 120 121 122 123 124 125 126 127 128 129 130 131 132
     *
     * Defines the entry point for the coroutine, if not set in the constructor.
     */
    void SetEntry( DELEGATE<ReturnType, ArgType> aEntry )
    {
        m_func = aEntry;
    }

    /* Function Call()
     *
     * Starts execution of a coroutine, passing args as its arguments.
     * @return true, if the coroutine has yielded and false if it has finished its
     * execution (returned).
     */
Maciej Suminski's avatar
Maciej Suminski committed
133
    bool Call( ArgType aArgs )
134 135
    {
        // fixme: Clean up stack stuff. Add a guard
Maciej Suminski's avatar
Maciej Suminski committed
136 137 138
        m_stack = malloc( c_defaultStackSize );

        // align to 16 bytes
139
        void* sp = (void*) ( ( ( (ptrdiff_t) m_stack ) + m_stackSize - 0xf ) & ( ~0x0f ) );
Maciej Suminski's avatar
Maciej Suminski committed
140

Maciej Suminski's avatar
Maciej Suminski committed
141
        m_args = &aArgs;
Maciej Suminski's avatar
Maciej Suminski committed
142 143 144 145 146 147 148
        m_self = boost::context::make_fcontext( sp, m_stackSize, callerStub );
        m_saved = new boost::context::fcontext_t();

        m_running = true;
        // off we go!
        boost::context::jump_fcontext( m_saved, m_self, reinterpret_cast<intptr_t>( this ) );
        return m_running;
149 150 151 152 153 154 155 156 157 158 159
    }

    /**
     * Function Resume()
     *
     * Resumes execution of a previously yielded coroutine.
     * @return true, if the coroutine has yielded again and false if it has finished its
     * execution (returned).
     */
    bool Resume()
    {
Maciej Suminski's avatar
Maciej Suminski committed
160
        boost::context::jump_fcontext( m_saved, m_self, 0 );
161

Maciej Suminski's avatar
Maciej Suminski committed
162
        return m_running;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    }

    /**
     * Function ReturnValue()
     *
     * Returns the yielded value (the argument Yield() was called with)
     */
    const ReturnType& ReturnValue() const
    {
        return m_retVal;
    }

    /**
     * Function Running()
     *
     * @return true, if the coroutine is active
     */
    bool Running() const
    {
        return m_running;
    }
184 185

private:
186
    static const int c_defaultStackSize = 2000000;    // fixme: make configurable
187 188

    /* real entry point of the coroutine */
Maciej Suminski's avatar
Maciej Suminski committed
189
    static void callerStub( intptr_t aData )
190 191
    {
        // get pointer to self
Maciej Suminski's avatar
Maciej Suminski committed
192
        COROUTINE<ReturnType, ArgType>* cor = reinterpret_cast<COROUTINE<ReturnType, ArgType>*>( aData );
193 194 195 196 197 198

        // call the coroutine method
        cor->m_retVal = cor->m_func( *cor->m_args );
        cor->m_running = false;

        // go back to wherever we came from.
199
        boost::context::jump_fcontext( cor->m_self, cor->m_saved, 0 );    // reinterpret_cast<intptr_t>( this ));
200 201
    }

202 203
    template <typename T>
    struct strip_ref
204
    {
205
        typedef T result;
206 207
    };

208 209
    template <typename T>
    struct strip_ref<T&>
210
    {
211
        typedef T result;
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    };

    DELEGATE<ReturnType, ArgType> m_func;

    ///< pointer to coroutine entry arguments. Stripped of references
    ///< to avoid compiler errors.
    typename strip_ref<ArgType>::result* m_args;
    ReturnType m_retVal;

    ///< saved caller context
    boost::context::fcontext_t* m_saved;

    ///< saved coroutine context
    boost::context::fcontext_t* m_self;

    ///< coroutine stack
    void* m_stack;

    size_t m_stackSize;

    bool m_running;
233 234 235
};

#endif