constants.inl 4.63 KB
Newer Older
1 2 3
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
4
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
/// 
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
/// 
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_constants
/// @file glm/gtx/constants.inl
/// @date 2011-10-14 / 2012-01-25
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

namespace glm
{
	template <typename genType>
	GLM_FUNC_QUALIFIER genType epsilon()
	{
		return std::numeric_limits<genType>::epsilon();
	}

	template <>
	GLM_FUNC_QUALIFIER half epsilon()
	{
		return half(1.19209290e-007);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType zero()
	{
		return genType(0);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType one()
	{
		return genType(1);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType pi()
	{
		return genType(3.14159265358979323846264338327950288);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_pi()
	{
		return genType(1.772453850905516027);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType half_pi()
	{
		return genType(1.57079632679489661923132169163975144);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType quarter_pi()
	{
		return genType(0.785398163397448309615660845819875721);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType one_over_pi()
	{
		return genType(0.318309886183790671537767526745028724);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType two_over_pi()
	{
		return genType(0.636619772367581343075535053490057448);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType two_over_root_pi()
	{
		return genType(1.12837916709551257389615890312154517);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType one_over_root_two()
	{
		return genType(0.707106781186547524400844362104849039);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_half_pi()
	{
		return genType(1.253314137315500251);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_two_pi()
	{
		return genType(2.506628274631000502);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_ln_four()
	{
		return genType(1.17741002251547469);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType e()
	{
		return genType(2.71828182845904523536);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType euler()
	{
		return genType(0.577215664901532860606);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_two()
	{
		return genType(1.41421356237309504880168872420969808);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_three()
	{
		return genType(1.73205080756887729352744634150587236);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType root_five()
	{
		return genType(2.23606797749978969640917366873127623);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType ln_two()
	{
		return genType(0.693147180559945309417232121458176568);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType ln_ten()
	{
		return genType(2.30258509299404568401799145468436421);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType ln_ln_two()
	{
		return genType(-0.3665129205816643);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType third()
	{
		return genType(0.3333333333333333333333333333333333333333);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType two_thirds()
	{
		return genType(0.666666666666666666666666666666666666667);
	}

	template <typename genType>
	GLM_FUNC_QUALIFIER genType golden_ratio()
	{
		return genType(1.61803398874989484820458683436563811);
	}
} //namespace glm