Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
fb44bc1a
Commit
fb44bc1a
authored
Jan 10, 2020
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implemented 2d maximum modelled as Gaussian in addition to parabola
parent
6cbf1da0
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
194 additions
and
17 deletions
+194
-17
Corr2dLMA.java
src/main/java/com/elphel/imagej/tileprocessor/Corr2dLMA.java
+152
-2
Correlation2d.java
...n/java/com/elphel/imagej/tileprocessor/Correlation2d.java
+33
-9
ImageDtt.java
src/main/java/com/elphel/imagej/tileprocessor/ImageDtt.java
+2
-2
ImageDttParameters.java
...a/com/elphel/imagej/tileprocessor/ImageDttParameters.java
+7
-4
No files found.
src/main/java/com/elphel/imagej/tileprocessor/Corr2dLMA.java
View file @
fb44bc1a
...
...
@@ -130,6 +130,7 @@ public class Corr2dLMA {
private
final
int
[][]
pindx
=
new
int
[
NUM_CAMS
][
NUM_CAMS
];
private
int
numTiles
=
1
;
public
boolean
gaussian_mode
=
true
;
public
class
Sample
{
// USED in lwir
int
tile
;
// tile in a cluster
...
...
@@ -162,8 +163,10 @@ public class Corr2dLMA {
public
Corr2dLMA
(
int
numTiles
,
int
ts
,
// null - use default table
double
[][]
corr_wnd
// may be null
double
[][]
corr_wnd
,
// may be null
boolean
gaussian_mode
)
{
this
.
gaussian_mode
=
gaussian_mode
;
for
(
int
f
=
0
;
f
<
NUM_CAMS
;
f
++)
{
pindx
[
f
][
f
]=-
1
;
for
(
int
s
=
f
+
1
;
s
<
NUM_CAMS
;
s
++)
{
...
...
@@ -495,10 +498,16 @@ public class Corr2dLMA {
}
}
}
public
double
[]
getFxJt
(
// USED in lwir
double
[]
vector
,
double
[][]
jt
)
{
// should be either [vector.length][samples.size()] or null - then only fx is calculated
if
(
this
.
gaussian_mode
)
return
getFxJt_gaussian
(
vector
,
jt
);
else
return
getFxJt_parabola
(
vector
,
jt
);
}
public
double
[]
getFxJt_parabola
(
// USED in lwir
double
[]
vector
,
double
[][]
jt
)
{
// should be either [vector.length][samples.size()] or null - then only fx is calculated
if
(
vector
==
null
)
return
null
;
double
[]
av
=
fromVector
(
vector
);
Matrix
[][]
xcam_ycam
=
new
Matrix
[
numTiles
][
NUM_CAMS
];
...
...
@@ -635,6 +644,147 @@ public class Corr2dLMA {
return
fx
;
}
public
double
[]
getFxJt_gaussian
(
// USED in lwir
double
[]
vector
,
double
[][]
jt
)
{
// should be either [vector.length][samples.size()] or null - then only fx is calculated
if
(
vector
==
null
)
return
null
;
double
[]
av
=
fromVector
(
vector
);
Matrix
[][]
xcam_ycam
=
new
Matrix
[
numTiles
][
NUM_CAMS
];
double
[][][][]
xp_yp
=
new
double
[
numTiles
][
NUM_CAMS
][
NUM_CAMS
][];
double
[]
axc_yc
=
{
transform_size
-
1.0
,
transform_size
-
1.0
};
Matrix
xc_yc
=
new
Matrix
(
axc_yc
,
2
);
double
[]
AT
=
new
double
[
numTiles
];
// av[A_INDEX];
double
[]
BT
=
new
double
[
numTiles
];
// av[B_INDEX];
double
[]
CT
=
new
double
[
numTiles
];
// A + av[CMA_INDEX];
for
(
int
nTile
=
0
;
nTile
<
numTiles
;
nTile
++)
{
for
(
int
i
=
0
;
i
<
NUM_CAMS
;
i
++)
if
(
used_cameras
[
i
])
{
double
[]
add_dnd
=
{
av
[
DISP_INDEX
+
nTile
*
TILE_PARAMS
]+
av
[
DDISP_INDEX
+
i
],
av
[
NDISP_INDEX
+
i
]};
xcam_ycam
[
nTile
][
i
]
=
m_disp
[
nTile
][
i
].
times
(
new
Matrix
(
add_dnd
,
2
));
}
for
(
int
f
=
0
;
f
<
NUM_CAMS
;
f
++)
if
(
used_cameras
[
f
])
{
for
(
int
s
=
0
;
s
<
NUM_CAMS
;
s
++)
if
(
used_cameras
[
s
])
{
xp_yp
[
nTile
][
f
][
s
]
=
xcam_ycam
[
nTile
][
f
].
minus
(
xcam_ycam
[
nTile
][
s
]).
plus
(
xc_yc
).
getColumnPackedCopy
();
}
}
AT
[
nTile
]
=
av
[
A_INDEX
+
nTile
*
TILE_PARAMS
];
BT
[
nTile
]
=
av
[
B_INDEX
+
nTile
*
TILE_PARAMS
];
CT
[
nTile
]
=
AT
[
nTile
]
+
av
[
CMA_INDEX
+
nTile
*
TILE_PARAMS
];
}
int
num_samples
=
samples
.
size
();
double
[]
fx
=
new
double
[
num_samples
+
2
*
NUM_CAMS
];
//corr_wnd
for
(
int
ns
=
0
;
ns
<
num_samples
;
ns
++)
{
Sample
s
=
samples
.
get
(
ns
);
int
pair
=
pindx
[
s
.
fcam
][
s
.
scam
];
// all pairs, noit just used?
double
A
=
AT
[
s
.
tile
];
double
B
=
BT
[
s
.
tile
];
double
C
=
CT
[
s
.
tile
];
double
Gp
=
av
[
G0_INDEX
+
pair
+
s
.
tile
*
TILE_PARAMS
];
double
Wp
=
corr_wnd
[
s
.
ix
][
s
.
iy
];
double
WGp
=
Wp
*
Gp
;
double
xmxp
=
s
.
ix
-
xp_yp
[
s
.
tile
][
s
.
fcam
][
s
.
scam
][
0
];
double
ymyp
=
s
.
iy
-
xp_yp
[
s
.
tile
][
s
.
fcam
][
s
.
scam
][
1
];
double
xmxp2
=
xmxp
*
xmxp
;
double
ymyp2
=
ymyp
*
ymyp
;
double
xmxp_ymyp
=
xmxp
*
ymyp
;
//// double comm = Wp*(1.0 - (A*xmxp2 + 2 * B * xmxp_ymyp + C * ymyp2));
double
exp
=
Math
.
exp
(-(
A
*
xmxp2
+
2
*
B
*
xmxp_ymyp
+
C
*
ymyp2
));
double
comm
=
exp
*
Wp
;
double
WGpexp
=
WGp
*
exp
;
fx
[
ns
]
=
comm
*
Gp
;
if
(
Double
.
isNaN
(
fx
[
ns
]))
{
System
.
out
.
println
(
"fx["
+
ns
+
"]="
+
fx
[
ns
]);
}
if
(
s
.
tile
>
0
)
{
System
.
out
.
print
(
""
);
}
if
(
jt
!=
null
)
{
if
(
par_map
[
DISP_INDEX
+
s
.
tile
*
TILE_PARAMS
]
>=
0
)
jt
[
par_map
[
DISP_INDEX
+
s
.
tile
*
TILE_PARAMS
]][
ns
]
=
2
*
WGpexp
*
((
A
*
xmxp
+
B
*
ymyp
)
*
m_pairs
[
s
.
tile
][
s
.
fcam
][
s
.
scam
].
get
(
0
,
0
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_pairs
[
s
.
tile
][
s
.
fcam
][
s
.
scam
].
get
(
1
,
0
));
if
(
par_map
[
A_INDEX
+
s
.
tile
*
TILE_PARAMS
]
>=
0
)
jt
[
par_map
[
A_INDEX
+
s
.
tile
*
TILE_PARAMS
]][
ns
]
=
-
WGpexp
*(
xmxp2
+
ymyp2
);
if
(
par_map
[
B_INDEX
+
s
.
tile
*
TILE_PARAMS
]
>=
0
)
jt
[
par_map
[
B_INDEX
+
s
.
tile
*
TILE_PARAMS
]][
ns
]
=
-
WGpexp
*
2
*
xmxp_ymyp
;
if
(
par_map
[
CMA_INDEX
+
s
.
tile
*
TILE_PARAMS
]
>=
0
)
jt
[
par_map
[
CMA_INDEX
+
s
.
tile
*
TILE_PARAMS
]][
ns
]
=
-
WGp
*
ymyp2
*
exp
;
for
(
int
p
=
0
;
p
<
npairs
[
s
.
tile
];
p
++)
{
// par_mask[G0_INDEX + p] as all pairs either used, or not - then npairs == 0
if
(
par_map
[
G0_INDEX
+
p
+
s
.
tile
*
TILE_PARAMS
]
>=
0
)
jt
[
par_map
[
G0_INDEX
+
p
+
s
.
tile
*
TILE_PARAMS
]][
ns
]
=
(
p
==
pair
)?
comm
:
0.0
;
// (par_mask[G0_INDEX + pair])? d;
}
// process ddisp (last camera not used, is equal to minus sum of others to make a sum == 0)
for
(
int
f
=
0
;
f
<
NUM_CAMS
;
f
++)
if
(
par_map
[
DDISP_INDEX
+
f
]
>=
0
)
{
// -1 for the last_cam
jt
[
par_map
[
DDISP_INDEX
+
f
]][
ns
]
=
0.0
;
}
if
(
par_map
[
DDISP_INDEX
+
s
.
fcam
]
>=
0
){
// par_map[DDISP_INDEX + last_cam] always <0
jt
[
par_map
[
DDISP_INDEX
+
s
.
fcam
]][
ns
]
+=
2
*
WGpexp
*
((
A
*
xmxp
+
B
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
fcam
].
get
(
0
,
0
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
fcam
].
get
(
1
,
0
));
}
else
if
(
s
.
fcam
==
last_cam
)
{
for
(
int
c
=
0
;
c
<
NUM_CAMS
;
c
++)
if
((
c
!=
last_cam
)
&&
(
par_map
[
DDISP_INDEX
+
c
]
>=
0
))
{
jt
[
par_map
[
DDISP_INDEX
+
c
]][
ns
]
-=
2
*
WGpexp
*
(
(
A
*
xmxp
+
B
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
fcam
].
get
(
0
,
0
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
fcam
].
get
(
1
,
0
));
}
}
if
(
par_map
[
DDISP_INDEX
+
s
.
scam
]>=
0
){
// par_map[DDISP_INDEX + last_cam] always <0
jt
[
par_map
[
DDISP_INDEX
+
s
.
scam
]][
ns
]
-=
2
*
WGpexp
*
((
A
*
xmxp
+
B
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
scam
].
get
(
0
,
0
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
scam
].
get
(
1
,
0
));
}
else
if
(
s
.
scam
==
last_cam
)
{
for
(
int
c
=
0
;
c
<
NUM_CAMS
;
c
++)
if
((
c
!=
last_cam
)
&&
(
par_map
[
DDISP_INDEX
+
c
]
>=
0
))
{
jt
[
par_map
[
DDISP_INDEX
+
c
]][
ns
]
+=
2
*
WGpexp
*
((
A
*
xmxp
+
B
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
scam
].
get
(
0
,
0
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
scam
].
get
(
1
,
0
));
}
}
// process ndisp
for
(
int
f
=
0
;
f
<
ncam
;
f
++)
if
(
par_map
[
NDISP_INDEX
+
f
]
>=
0
)
{
jt
[
par_map
[
NDISP_INDEX
+
f
]][
ns
]
=
0.0
;
}
if
(
par_map
[
NDISP_INDEX
+
s
.
fcam
]
>=
0
){
jt
[
par_map
[
NDISP_INDEX
+
s
.
fcam
]][
ns
]
+=
2
*
WGpexp
*
(
(
A
*
xmxp
+
B
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
fcam
].
get
(
0
,
1
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
fcam
].
get
(
1
,
1
));
}
if
(
par_map
[
NDISP_INDEX
+
s
.
scam
]
>=
0
)
{
jt
[
par_map
[
NDISP_INDEX
+
s
.
scam
]][
ns
]
-=
2
*
WGpexp
*
(
(
A
*
xmxp
+
B
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
scam
].
get
(
0
,
1
)+
(
B
*
xmxp
+
C
*
ymyp
)
*
m_disp
[
s
.
tile
][
s
.
scam
].
get
(
1
,
1
));
}
}
}
for
(
int
n
=
0
;
n
<
NUM_CAMS
;
n
++)
{
// av[DDISP_INDEX +last_cam] is already populated
fx
[
num_samples
+
n
]
=
av
[
DDISP_INDEX
+
n
];
fx
[
num_samples
+
NUM_CAMS
+
n
]
=
av
[
NDISP_INDEX
+
n
];
}
// and derivatives
if
(
jt
!=
null
)
{
for
(
int
i
=
0
;
i
<
NUM_CAMS
;
i
++)
{
if
((
i
!=
last_cam
)
&&
(
par_map
[
DDISP_INDEX
+
i
]
>=
0
))
{
for
(
int
j
=
0
;
j
<
NUM_CAMS
;
j
++)
{
// j - column
jt
[
par_map
[
DDISP_INDEX
+
i
]][
num_samples
+
j
]
=
(
i
==
j
)?
1.0
:
0.0
;
}
jt
[
par_map
[
DDISP_INDEX
+
i
]][
num_samples
+
last_cam
]
=
-
1.0
;
}
}
for
(
int
i
=
0
;
i
<
NUM_CAMS
;
i
++)
{
if
(
par_map
[
NDISP_INDEX
+
i
]
>=
0
)
{
for
(
int
j
=
0
;
j
<
NUM_CAMS
;
j
++)
{
// j - column
jt
[
par_map
[
NDISP_INDEX
+
i
]
][
num_samples
+
NUM_CAMS
+
j
]
=
(
i
==
j
)?
1.0
:
0.0
;
}
}
}
}
return
fx
;
}
public
void
printParams
()
{
// not used in lwir
for
(
int
np
=
0
;
np
<
all_pars
.
length
;
np
++)
{
...
...
src/main/java/com/elphel/imagej/tileprocessor/Correlation2d.java
View file @
fb44bc1a
...
...
@@ -1823,14 +1823,19 @@ public class Correlation2d {
// corrs are organized as PAIRS, some are null if not used
// for each enabled and available pair find a maximum, filter convex and create sample list
boolean
debug_graphic
=
(
debug_level
>
-
1
);
boolean
debug_second_all
=
true
;
boolean
debug_second_all
=
false
;
//
true;
int
clust_height
=
corrs
.
length
/
clust_width
;
int
ntiles
=
corrs
.
length
;
DoubleGaussianBlur
gb
=
null
;
if
(
imgdtt_params
.
lma_sigma
>
0
)
gb
=
new
DoubleGaussianBlur
();
int
center
=
transform_size
-
1
;
int
corr_size
=
2
*
transform_size
-
1
;
Corr2dLMA
lma
=
new
Corr2dLMA
(
corrs
.
length
,
transform_size
,
corr_wnd
);
Corr2dLMA
lma
=
new
Corr2dLMA
(
corrs
.
length
,
transform_size
,
corr_wnd
,
imgdtt_params
.
lma_gaussian
//boolean gaussian_mode
);
double
[][][]
dbg_corr
=
debug_graphic
?
new
double
[
corrs
.
length
][][]
:
null
;
double
[][][]
dbg_weights
=
debug_graphic
?
new
double
[
corrs
.
length
][][]
:
null
;
...
...
@@ -2082,24 +2087,37 @@ public class Correlation2d {
true
,
"corr_fx"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
}
else
{
double
[][]
repacked_y
=
repackCluster
(
lma
.
dbgGetSamples
(
0
),
clust_width
);
double
[][]
repacked_fx
=
repackCluster
(
lma
.
dbgGetSamples
(
2
),
clust_width
);
double
[][]
y_minux_fx
=
new
double
[
repacked_y
.
length
][];
for
(
int
i
=
0
;
i
<
repacked_y
.
length
;
i
++)
if
((
repacked_y
[
i
]
!=
null
)
&&
(
repacked_fx
[
i
]
!=
null
)){
y_minux_fx
[
i
]
=
new
double
[
repacked_y
[
i
].
length
];
for
(
int
j
=
0
;
j
<
y_minux_fx
[
i
].
length
;
j
++)
y_minux_fx
[
i
][
j
]
=
repacked_y
[
i
][
j
]
-
repacked_fx
[
i
][
j
];
}
(
new
ShowDoubleFloatArrays
()).
showArrays
(
repack
Cluster
(
lma
.
dbgGetSamples
(
0
),
clust_width
)
,
repack
ed_y
,
dbg_out_width
,
dbg_out_height
,
true
,
"
corr_values
"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
"
y
"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
(
new
ShowDoubleFloatArrays
()).
showArrays
(
repack
Cluster
(
lma
.
dbgGetSamples
(
1
),
clust_width
)
,
repack
ed_fx
,
dbg_out_width
,
dbg_out_height
,
true
,
"
corr_weights
"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
"
fx
"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
(
new
ShowDoubleFloatArrays
()).
showArrays
(
repackCluster
(
lma
.
dbgGetSamples
(
2
),
clust_width
)
,
y_minux_fx
,
dbg_out_width
,
dbg_out_height
,
true
,
"corr_fx"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
"y-fx"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
(
new
ShowDoubleFloatArrays
()).
showArrays
(
repackCluster
(
lma
.
dbgGetSamples
(
1
),
clust_width
),
dbg_out_width
,
dbg_out_height
,
true
,
"weights"
+
"_x"
+
tileX
+
"_y"
+
tileY
,
sliceTitles
);
}
}
...
...
@@ -2129,7 +2147,13 @@ public class Correlation2d {
if
(
imgdtt_params
.
lma_sigma
>
0
)
gb
=
new
DoubleGaussianBlur
();
int
center
=
transform_size
-
1
;
int
corr_size
=
2
*
transform_size
-
1
;
Corr2dLMA
lma
=
new
Corr2dLMA
(
1
,
transform_size
,
corr_wnd
);
Corr2dLMA
lma
=
new
Corr2dLMA
(
1
,
transform_size
,
corr_wnd
,
imgdtt_params
.
lma_gaussian
//boolean gaussian_mode
);
double
[][]
dbg_corr
=
debug_graphic
?
new
double
[
corrs
.
length
][]
:
null
;
double
[][]
dbg_weights
=
debug_graphic
?
new
double
[
corrs
.
length
][]
:
null
;
...
...
src/main/java/com/elphel/imagej/tileprocessor/ImageDtt.java
View file @
fb44bc1a
...
...
@@ -1746,7 +1746,7 @@ public class ImageDtt {
double
centerX
;
// center of aberration-corrected (common model) tile, X
double
centerY
;
//
double
[][]
fract_shiftsXY
=
new
double
[
quad
][];
double
[][]
corr_wnd
=
(
new
Corr2dLMA
(
1
,
transform_size
,
null
)).
getCorrWnd
();
double
[][]
corr_wnd
=
(
new
Corr2dLMA
(
1
,
transform_size
,
null
,
imgdtt_params
.
lma_gaussian
)).
getCorrWnd
();
double
[]
corr_wnd_inv_limited
=
null
;
if
(
imgdtt_params
.
lma_min_wnd
<=
1.0
)
{
corr_wnd_inv_limited
=
new
double
[
corr_wnd
.
length
*
corr_wnd
[
0
].
length
];
...
...
@@ -2431,7 +2431,7 @@ public class ImageDtt {
double
[][][]
tcorr_partial
=
null
;
// [quad][numcol+1][15*15]
double
[][][][]
tcorr_tpartial
=
null
;
// [quad][numcol+1][4][8*8]
double
[]
ports_rgb
=
null
;
double
[][]
corr_wnd
=
(
new
Corr2dLMA
(
1
,
transform_size
,
null
)).
getCorrWnd
();
double
[][]
corr_wnd
=
(
new
Corr2dLMA
(
1
,
transform_size
,
null
,
imgdtt_params
.
lma_gaussian
)).
getCorrWnd
();
double
[]
corr_wnd_inv_limited
=
null
;
if
(
imgdtt_params
.
lma_min_wnd
<=
1.0
)
{
corr_wnd_inv_limited
=
new
double
[
corr_wnd
.
length
*
corr_wnd
[
0
].
length
];
...
...
src/main/java/com/elphel/imagej/tileprocessor/ImageDttParameters.java
View file @
fb44bc1a
...
...
@@ -99,6 +99,7 @@ public class ImageDttParameters {
public
double
corr_wndx_blur
=
5.0
;
// 100% to 0 % vertical transition range
// LMA parameters
public
boolean
lma_gaussian
=
true
;
// model correlation maximum as a Gaussian (false - as a parabola)
public
boolean
lma_adjust_wm
=
true
;
// used in new for width
public
boolean
lma_adjust_wy
=
true
;
// false; // used in new for ellipse
public
boolean
lma_adjust_wxy
=
true
;
// used in new for lazy eye adjust parallel-to-disparity correction
...
...
@@ -267,6 +268,8 @@ public class ImageDttParameters {
"Transition range, shifted sine is used"
);
gd
.
addTab
(
"Corr LMA"
,
"Parameters for LMA fitting of the correlation maximum parameters"
);
gd
.
addCheckbox
(
"Correlation maximum as gaussian"
,
this
.
lma_gaussian
,
"Model correlation maximum as a Gaussian exp(-r^2) (false - as a parabola - 1-r^2)"
);
gd
.
addCheckbox
(
"Fit correlation defined half-width"
,
this
.
lma_adjust_wm
,
"Allow fitting of the half-width common for all pairs, defined by the LPF filter of the phase correlation"
);
gd
.
addCheckbox
(
"Adjust ellipse parameters (was Fit extra vertical half-width)"
,
this
.
lma_adjust_wy
,
...
...
@@ -412,6 +415,7 @@ public class ImageDttParameters {
this
.
corr_wndx_blur
=
gd
.
getNextNumber
();
//LMA tab
this
.
lma_gaussian
=
gd
.
getNextBoolean
();
this
.
lma_adjust_wm
=
gd
.
getNextBoolean
();
this
.
lma_adjust_wy
=
gd
.
getNextBoolean
();
this
.
lma_adjust_wxy
=
gd
.
getNextBoolean
();
...
...
@@ -514,8 +518,7 @@ public class ImageDttParameters {
properties
.
setProperty
(
prefix
+
"corr_wndx_hwidth"
,
this
.
corr_wndx_hwidth
+
""
);
properties
.
setProperty
(
prefix
+
"corr_wndx_blur"
,
this
.
corr_wndx_blur
+
""
);
properties
.
setProperty
(
prefix
+
"lma_gaussian"
,
this
.
lma_gaussian
+
""
);
properties
.
setProperty
(
prefix
+
"lma_adjust_wm"
,
this
.
lma_adjust_wm
+
""
);
properties
.
setProperty
(
prefix
+
"lma_adjust_wy"
,
this
.
lma_adjust_wy
+
""
);
properties
.
setProperty
(
prefix
+
"lma_adjust_wxy"
,
this
.
lma_adjust_wxy
+
""
);
...
...
@@ -622,8 +625,7 @@ public class ImageDttParameters {
if
(
properties
.
getProperty
(
prefix
+
"corr_wndx_hwidth"
)!=
null
)
this
.
corr_wndx_hwidth
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"corr_wndx_hwidth"
));
if
(
properties
.
getProperty
(
prefix
+
"corr_wndx_blur"
)!=
null
)
this
.
corr_wndx_blur
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"corr_wndx_blur"
));
if
(
properties
.
getProperty
(
prefix
+
"lma_gaussian"
)!=
null
)
this
.
lma_gaussian
=
Boolean
.
parseBoolean
(
properties
.
getProperty
(
prefix
+
"lma_gaussian"
));
if
(
properties
.
getProperty
(
prefix
+
"lma_adjust_wm"
)!=
null
)
this
.
lma_adjust_wm
=
Boolean
.
parseBoolean
(
properties
.
getProperty
(
prefix
+
"lma_adjust_wm"
));
if
(
properties
.
getProperty
(
prefix
+
"lma_adjust_wy"
)!=
null
)
this
.
lma_adjust_wy
=
Boolean
.
parseBoolean
(
properties
.
getProperty
(
prefix
+
"lma_adjust_wy"
));
if
(
properties
.
getProperty
(
prefix
+
"lma_adjust_wxy"
)!=
null
)
this
.
lma_adjust_wxy
=
Boolean
.
parseBoolean
(
properties
.
getProperty
(
prefix
+
"lma_adjust_wxy"
));
...
...
@@ -736,6 +738,7 @@ public class ImageDttParameters {
idp
.
corr_wndx_hwidth
=
this
.
corr_wndx_hwidth
;
idp
.
corr_wndx_blur
=
this
.
corr_wndx_blur
;
idp
.
lma_gaussian
=
this
.
lma_gaussian
;
idp
.
lma_adjust_wm
=
this
.
lma_adjust_wm
;
idp
.
lma_adjust_wy
=
this
.
lma_adjust_wy
;
idp
.
lma_adjust_wxy
=
this
.
lma_adjust_wxy
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment