Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
6a6d0c40
Commit
6a6d0c40
authored
Aug 13, 2024
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
working on quaterions <-> affines
parent
7ad0875e
Changes
5
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
808 additions
and
50 deletions
+808
-50
OrthoAltitudeMatch.java
...ava/com/elphel/imagej/orthomosaic/OrthoAltitudeMatch.java
+212
-28
OrthoMap.java
src/main/java/com/elphel/imagej/orthomosaic/OrthoMap.java
+111
-19
OrthoMapsCollection.java
...va/com/elphel/imagej/orthomosaic/OrthoMapsCollection.java
+10
-3
QuatUtils.java
src/main/java/com/elphel/imagej/orthomosaic/QuatUtils.java
+272
-0
SingularValueDecomposition.java
...elphel/imagej/orthomosaic/SingularValueDecomposition.java
+203
-0
No files found.
src/main/java/com/elphel/imagej/orthomosaic/OrthoAltitudeMatch.java
View file @
6a6d0c40
This diff is collapsed.
Click to expand it.
src/main/java/com/elphel/imagej/orthomosaic/OrthoMap.java
View file @
6a6d0c40
/**
** OrthoMap - Dealing with orthographic maps
**
** Copyright (C) 2024 Elphel, Inc.
**
** -----------------------------------------------------------------------------**
**
** OrthoMap.java is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
** -----------------------------------------------------------------------------**
**
*/
package
com
.
elphel
.
imagej
.
orthomosaic
;
import
java.awt.Color
;
...
...
@@ -9,23 +32,15 @@ import java.io.IOException;
import
java.io.ObjectInputStream
;
import
java.io.ObjectOutputStream
;
import
java.io.Serializable
;
import
java.nio.charset.StandardCharsets
;
import
java.nio.file.Files
;
import
java.nio.file.Path
;
import
java.nio.file.Paths
;
import
java.text.SimpleDateFormat
;
import
java.time.LocalDateTime
;
import
java.util.ArrayList
;
import
java.util.Arrays
;
import
java.util.Calendar
;
import
java.util.Collections
;
import
java.util.Comparator
;
import
java.util.HashMap
;
import
java.util.List
;
import
java.util.Properties
;
import
java.util.concurrent.atomic.AtomicInteger
;
import
com.elphel.imagej.cameras.CLTParameters
;
import
com.elphel.imagej.common.DoubleFHT
;
import
com.elphel.imagej.common.DoubleGaussianBlur
;
import
com.elphel.imagej.common.GenericJTabbedDialog
;
...
...
@@ -98,9 +113,9 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
public
LocalDateTime
dt
;
// affine convert (input) rectified coordinates (meters) relative to vert_meters to source image
// coordinates relative to vert_meters
public
double
[][]
affine
=
new
double
[][]
{{
1
,
0
,
0
},{
0
,
1
,
0
}};
// relative to vert_meters[]
public
double
[][]
affine
=
new
double
[][]
{{
1
,
0
,
0
},{
0
,
1
,
0
}};
// relative to vert_meters[]
, positive Y is down (as in images)
public
double
orig_pix_meters
;
public
double
[]
vert_meters
;
// offset of the image vertical in meters (scale-invariant)
public
double
[]
vert_meters
;
// offset of the image vertical in meters (scale-invariant)
, right (X) and down (Y)
public
int
orig_width
;
public
int
orig_height
;
public
transient
FloatImageData
orig_image
;
...
...
@@ -704,7 +719,7 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
}
/**
* Get vertical point offset from the top-left corner of the original orthoimage in meters
* Get vertical point offset from the top-left corner of the original orthoimage in meters
(right and down)
* @return vertical point X,Y offset in meters from the top-left image corner
*/
public
double
[]
getVertMeters
()
{
...
...
@@ -3700,10 +3715,7 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
ImageDtt
.
startAndJoin
(
threads
);
return
weights
;
}
/**
* Fit a plane to the input data, relative to the specified point in Rectangle wnd
...
...
@@ -5508,7 +5520,7 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
* R1={{cos(beta),sin(beta)},{-sin(beta), cos(beta)}} ,
* non-uniform scale transform W={{w1,0}{0,w2}}, and rotation
* R2={{cos(gamma),sin(gamma)},{-sin(gamma), cos(gamma)}}
* A=R1*W*R2 using singular value decomposition
* A=R1*W*R2 using singular value decomposition
-- tested
* https://math.stackexchange.com/questions/861674/decompose-a-2d-arbitrary-transform-into-only-scaling-and-rotation
* @param A - input 2x2 matrix
* @return {s,beta,w,gamma,beta+gamma}
...
...
@@ -5546,12 +5558,57 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
* @param A - linear transformation matrix from rectified ground coordinates
* to source image coordinates. OK to use 2x3 affine matrix,extra
* components will be ignored.
* @return {beta, s, t, beta+gamma}, beta+gamma - total rotation
* @param y_down_ccw - positive Y is down, positive angles are CCW
* @return {gamma, s, t, beta+gamma}, beta+gamma - total rotation
*/
public
static
double
[]
singularValueDecomposeScaleTilt
(
double
[][]
A
)
{
double
[][]
A
,
boolean
y_down_ccw
)
{
double
[]
svd
=
singularValueDecompose
(
A
);
double
w1
=
svd
[
1
],
w2
=
svd
[
2
],
g_p_b
=
svd
[
4
];
// pure rotation // , beta=svd[0]
double
gamma
=
svd
[
3
];
// For Y-down, angles are CW positive, for Y-up angles are CCW positive
// Affines are Y-up?
// considering tilt in y direction (unless long_axis), it should have higher scale
// (and source image coordinates), while X should correspond to
// the axis of rotation, and scale is just scale caused by error in
// altitude.
double
s
=
Math
.
min
(
w1
,
w2
);
double
t
=
w1
/
w2
;
// <=1.0, ==cos(tilt)
if
(
w1
>
w2
)
{
// rotate tilt by PI/2
t
=
w2
/
w1
;
gamma
+=
Math
.
PI
/
2
;
// start with rotation (last in matrices)
if
(
gamma
>
Math
.
PI
)
{
gamma
-=
2
*
Math
.
PI
;
}
}
if
(
gamma
>
Math
.
PI
/
2
)
{
gamma
-=
Math
.
PI
;
}
else
if
(
gamma
<
-
Math
.
PI
)
{
gamma
+=
Math
.
PI
;
}
if
(
y_down_ccw
)
{
gamma
=-
gamma
;
g_p_b
=
-
g_p_b
;
// pure rotation
}
return
new
double
[]
{
gamma
,
s
,
t
,
g_p_b
};
}
public
static
double
[]
singularValueDecomposeScaleTiltOld
(
double
[][]
A
,
boolean
y_down_ccw
)
{
double
[]
svd
=
singularValueDecompose
(
A
);
double
w1
=
svd
[
1
],
w2
=
svd
[
2
],
beta
=
svd
[
0
],
g_p_b
=
svd
[
4
];
// For Y-down, angles are CW positive, for Y-up angles are CCW positive
// Affines are Y-up?
if
(
y_down_ccw
)
{
beta
=-
beta
;
// find where is the error that beta is negated, check rotation
g_p_b
=
-
g_p_b
;
}
// considering tilt in y direction, it should have higher scale
// (and source image coordinates), while X should correspond to
...
...
@@ -5566,6 +5623,12 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
beta
-=
2
*
Math
.
PI
;
}
}
// beta should be in the range of +/-pi/2
if
(
beta
>
Math
.
PI
/
2
)
{
beta
-=
Math
.
PI
;
}
else
if
(
beta
<
-
Math
.
PI
)
{
beta
+=
Math
.
PI
;
}
return
new
double
[]
{
beta
,
s
,
t
,
g_p_b
};
}
...
...
@@ -5648,7 +5711,36 @@ public class OrthoMap implements Comparable <OrthoMap>, Serializable{
}
ImageDtt
.
startAndJoin
(
threads
);
return
data_out
;
}
public
static
double
[]
extractWoi
(
final
double
[]
data0
,
final
int
width
,
Rectangle
woi_in
)
{
final
int
height
=
data0
.
length
/
width
;
if
(
woi_in
==
null
)
{
woi_in
=
new
Rectangle
(
0
,
0
,
width
,
height
);
}
final
Rectangle
woi
=
new
Rectangle
(
woi_in
);
final
int
woi_len
=
woi
.
width
*
woi
.
height
;
final
double
[]
data_out
=
new
double
[
woi_len
];
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
iPix
=
ai
.
getAndIncrement
();
iPix
<
woi_len
;
iPix
=
ai
.
getAndIncrement
())
{
int
x
=
woi
.
x
+
(
iPix
%
woi
.
width
);
int
y
=
woi
.
y
+
(
iPix
/
woi
.
width
);
int
nPix
=
y
*
width
+
x
;
data_out
[
iPix
]
=
data0
[
nPix
];
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
return
data_out
;
}
}
src/main/java/com/elphel/imagej/orthomosaic/OrthoMapsCollection.java
View file @
6a6d0c40
...
...
@@ -1040,7 +1040,7 @@ public class OrthoMapsCollection implements Serializable{
int
opX
=
nPix
%
ownd_width
+
obounds
[
0
][
0
];
// absolute output pX, pY
int
opY
=
nPix
/
ownd_width
+
obounds
[
1
][
0
];
double
dX
=
(
opX
-
scaled_out_center
[
0
])
/
scale
;
// in meters
double
dY
=
(
opY
-
scaled_out_center
[
1
])
/
scale
;
double
dY
=
(
opY
-
scaled_out_center
[
1
])
/
scale
;
// in meters, Y-down
double
[]
xy_src
=
{
// pixels of the source image
src_scale
*
(
affine
[
0
][
0
]*
dX
+
affine
[
0
][
1
]*
dY
+
affine
[
0
][
2
]
+
src_center
[
0
]),
src_scale
*
(
affine
[
1
][
0
]*
dX
+
affine
[
1
][
1
]*
dY
+
affine
[
1
][
2
]
+
src_center
[
1
])};
...
...
@@ -7192,6 +7192,7 @@ public class OrthoMapsCollection implements Serializable{
indices
[
i
]
=
i
;
}
}
boolean
y_down_ccw
=
true
;
String
[]
stats
=
new
String
[
2
];
// header, body
StringBuffer
sb
=
new
StringBuffer
();
// String head_fmt = "%3s\t%17s\t%26s\t%13s\t%13s\t%7s\t%6s\t%7s\t%6s\t%6s\t%6s\t%6s\n";
...
...
@@ -7224,7 +7225,13 @@ public class OrthoMapsCollection implements Serializable{
double
sfm_gain
=
map
.
getSfmGain
();
int
scenes
=
map
.
getNumberScenes
();
double
[][]
affine
=
map
.
getAffine
();
double
[]
svd_st
=
OrthoMap
.
singularValueDecomposeScaleTilt
(
affine
);
SingularValueDecomposition
svd_st
=
SingularValueDecomposition
.
singularValueDecomposeScaleTiltGamma
(
affine
,
y_down_ccw
);
// boolean y_down_ccw)
// double [] svd_st = OrthoMap.singularValueDecomposeScaleTilt(
// affine,
// y_down_ccw); // boolean y_down_ccw)
// svd_st[0] - now gamma - short axis relative to map
sb
.
append
(
String
.
format
(
"%3d\t%17s\t%26s\t%11.6f\t%11.6f\t%7.2f\t"
+
"%6.2f\t%7.4f\t%6d\t%6d\t%6d\t%6d\t"
+
...
...
@@ -7234,7 +7241,7 @@ public class OrthoMapsCollection implements Serializable{
indx
,
name
,
sdt
,
lla
[
0
],
lla
[
1
],
lla
[
2
]
-
agl
,
// ground level
agl
,
pix_size_cm
,
width
,
height
,
vert_pix
[
0
],
vert_pix
[
1
],
scenes
,
sfm_gain
,
svd_st
[
1
],
svd_st
[
2
],
svd_st
[
0
],
svd_st
[
3
]
,
affine
[
0
][
2
],
affine
[
1
][
2
],
svd_st
.
scale
,
svd_st
.
ratio
,
svd_st
.
beta
,
svd_st
.
rot
,
affine
[
0
][
2
],
affine
[
1
][
2
],
affine
[
0
][
0
],
affine
[
0
][
1
],
affine
[
1
][
0
],
affine
[
1
][
1
]));
}
stats
[
1
]
=
sb
.
toString
();
...
...
src/main/java/com/elphel/imagej/orthomosaic/QuatUtils.java
0 → 100644
View file @
6a6d0c40
/**
** OrthoMap - Dealing with orthographic maps
**
** Copyright (C) 2024 Elphel, Inc.
**
** -----------------------------------------------------------------------------**
**
** OrthoMap.java is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
** -----------------------------------------------------------------------------**
**
*/
package
com
.
elphel
.
imagej
.
orthomosaic
;
public
final
class
QuatUtils
{
// static class
public
static
final
double
[]
UNIT_QUAT
=
{
1
,
0
,
0
,
0
};
public
static
final
double
[][]
UNIT_AFFINE
=
{{
1
,
0
},{
0
,
1
}};
private
QuatUtils
()
{}
/*
* t= r*s
* (t0, t1, t2, t3) = (r0, r1, r2, r3) * (s0, s1, s2, s3)
* t0 = (r0s0 - r1s1 - r2s2 - r3s3)
* t1 = (r0s1 + r1s0 - r2s3 + r3s2)
* t2 = (r0s2 + r1s3 + r2s0 - r3s1)
* t3 = (r0s3 - r1s2 + r2s1 + r3s0)
*/
/**
* Multiply to quaternions
* @param r first quaternion
* @param s second quaternion
* @return product of two quaternions: r*s
*/
public
static
double
[]
multiply
(
double
[]
r
,
double
[]
s
)
{
double
[]
t
=
{
r
[
0
]*
s
[
0
]
-
r
[
1
]*
s
[
1
]
-
r
[
2
]*
s
[
2
]
-
r
[
3
]*
s
[
3
],
r
[
0
]*
s
[
1
]
+
r
[
1
]*
s
[
0
]
-
r
[
2
]*
s
[
3
]
+
r
[
3
]*
s
[
2
],
r
[
0
]*
s
[
2
]
+
r
[
1
]*
s
[
3
]
+
r
[
2
]*
s
[
0
]
-
r
[
3
]*
s
[
1
],
r
[
0
]*
s
[
3
]
-
r
[
1
]*
s
[
2
]
+
r
[
2
]*
s
[
1
]
+
r
[
3
]*
s
[
0
]};
return
t
;
}
public
static
double
norm
(
double
[]
quat
)
{
return
Math
.
sqrt
(
quat
[
0
]*
quat
[
0
]+
quat
[
1
]*
quat
[
1
]+
quat
[
2
]*
quat
[
2
]+
quat
[
3
]*
quat
[
3
]);
}
public
static
double
[]
invert
(
double
[]
quat
)
{
return
new
double
[]
{
quat
[
0
],
-
quat
[
1
],
-
quat
[
2
],
-
quat
[
3
]};
}
public
static
double
[]
normalize
(
double
[]
quat
)
{
// double k = 1/norm(quat);
// return new double [] {k*quat[0], k*quat[1], k*quat[2], k*quat[3]};
return
scale
(
quat
,
1
/
norm
(
quat
));
}
public
static
double
normalizeInPlace
(
double
[]
quat
)
{
double
scale
=
norm
(
quat
);
for
(
int
i
=
0
;
i
<
quat
.
length
;
i
++)
{
quat
[
i
]
/=
scale
;
}
return
scale
;
}
public
static
double
[]
scale
(
double
[]
quat
,
double
k
)
{
return
new
double
[]
{
k
*
quat
[
0
],
k
*
quat
[
1
],
k
*
quat
[
2
],
k
*
quat
[
3
]};
}
/**
* Convert two tilts {tx,ty} Z=x*tx+y*ty to quaternion. Source y is down, quaternion - x - same, y - opposite (positive - up), z - up from the XY plane.
* @param txy {tiltX, tiltY,...} - may contain other values like offset and center
* @param y_down_ccw Invert Y for tilts
* @return plane rotation quaternion rotation righth-hand thread
*/
public
static
double
[]
tiltToQuaternion
(
double
[]
txy
,
boolean
y_down_ccw
)
{
// boolean y_down_ccw)
double
tx
=
txy
[
0
],
ty
=
y_down_ccw
?-
txy
[
1
]:
txy
[
1
];
// invert y
double
t2
=
tx
*
tx
+
ty
*
ty
;
double
t
=
Math
.
sqrt
(
t2
);
if
(
t
==
0
)
{
return
UNIT_QUAT
;
}
double
[]
axis
=
{
ty
/
t
,-
tx
/
t
,
0
};
// pi/2 CW
/* sin (A/2) = +-sqrt((1 - cos(A))/2)
* cos (A/2) = +-sqrt((1 + cos(A))/2)
* cos(A) = sqrt(t*t+1)
*/
double
cos_theta
=
1
/
Math
.
sqrt
(
t2
+
1
);
double
cos_theta2
=
Math
.
sqrt
((
1
+
cos_theta
)/
2
);
double
sin_theta2
=
Math
.
sqrt
((
1
-
cos_theta
)/
2
);
double
[]
quat
=
new
double
[]
{
cos_theta2
,
sin_theta2
*
axis
[
0
],
sin_theta2
*
axis
[
1
],
0
};
return
quat
;
}
/**
* Remove rotation around Z-axis, keep only tilt around axis in XY plane
* @param quat_in input rotation that may include rotation around Z (vertical) axis
* @return nearest rotation around axis in XY plane
*/
public
static
double
[]
pureTilt
(
double
[]
quat_in
)
{
double
r0
=
quat_in
[
0
],
r1
=
quat_in
[
1
],
r2
=
quat_in
[
2
],
r3
=
quat_in
[
3
];
if
(
r0
==
0
)
{
return
UNIT_QUAT
;
}
double
r3_r0
=
r3
/
r0
;
// find {s0,0,0,s3} - rotation around vertical axis so r*s will not have Z component
double
s0
=
Math
.
sqrt
(
1
/(
1
+
r3_r0
*
r3_r0
));
double
s3
=
-
r3_r0
*
s0
;
double
[]
quat
=
{
r0
*
s0
-
r3
*
s3
,
r1
*
s0
-
r2
*
s3
,
r1
*
s3
+
r2
*
s0
,
r0
*
s3
+
r3
*
s0
};
return
quat
;
}
/**
* Normalize quaterion (in-place) and return its original length to be used as scale
* @param quat quaternion with encoded scale, will be normalized in place
* @return length of the input quaternion before normalization;
*/
public
static
double
normQuat
(
double
[]
quat
)
{
double
s2
=
0
;
for
(
double
q:
quat
)
{
s2
+=
q
*
q
;
}
double
l
=
Math
.
sqrt
(
s2
);
for
(
int
i
=
0
;
i
<
quat
.
length
;
i
++)
{
quat
[
i
]
/=
l
;
}
return
l
;
}
/**
* Convert rotation around some axis in XY plane to affine transformation
* @param quat rotation, quat[3]~=0 (y-up)
* @param stretch project to tilted plane (stretch perpendicular to rotation axis)
* @param make__pure_tilt rotate around vertical axis (Z) to make quat[3]=0
* @return [2][2] affine transform ( y-down)
*/
public
static
double
[][]
quatToAffine
(
double
[]
quat
,
boolean
stretch
,
boolean
make__pure_tilt
,
boolean
y_down_ccw
){
// TODO: use scale
double
scale
=
normQuat
(
quat
);
double
y_sign
=
y_down_ccw
?-
1
:
1
;
// invert y from quaternions to affines
if
(
make__pure_tilt
)
{
quat
=
pureTilt
(
quat
);
}
double
ax
=
quat
[
1
],
ay
=
quat
[
2
]
*
y_sign
;
double
l
=
Math
.
sqrt
(
ax
*
ax
+
ay
*
ay
);
if
(
l
==
0
)
{
return
UNIT_AFFINE
;
}
ax
/=
l
;
ay
/=
l
;
double
cos_theta
=
2
*
quat
[
0
]*
quat
[
0
]
-
1
;
// cos(2 * A) = 2 * cos(A)^2 -1
double
k
=
stretch
?
(
1
/
cos_theta
)
:
cos_theta
;
double
s
=
k
-
1
;
double
ax2
=
ax
*
ax
,
ay2
=
ay
*
ay
,
axy
=
ax
*
ay
;
double
[][]
affine
=
{
// {1 + s * ax * ax, s * ax * ay},
// { - s * ax * ay , 1 + s * ay * ay}};
/// {k*ax2 + ay2,-s*axy},
/// {-s*axy , ax2 + k*ay2}};
{
1
+
s
*
ay2
,
-
s
*
axy
},
{
-
s
*
axy
,
1
+
s
*
ax2
}};
// {1 + s*ay2, s*axy},
// { s*axy ,1 + s*ax2}};
for
(
int
i
=
0
;
i
<
2
;
i
++)
{
for
(
int
j
=
0
;
j
<
2
;
j
++)
{
affine
[
i
][
j
]
*=
scale
;
}
}
return
affine
;
}
/**
* Restore quaternion (rotation+scale) from affine traqnsform (only [2][2] is used, ok to have [2][3] input
* As there are 2 solutions, both are provided in the output. As the
* input linear transformation matrix converts ground coordinates to source
* image coordinates, the scale in the tilt direction is > than scale in the
* perpendicular direction (tilt axis).
* @param affine affine transform, only [2][2] top-left subarray is used
* @param y_down_ccw if true, affine corresponds to to y-down (image) coordinate system
* @return a pair of quaternions including scale (sqrt(q0^2+q1^2+q2^2+q3^2)
*/
public
static
double
[][]
affineToQuatScaled
(
double
[][]
affine
,
boolean
y_down_ccw
)
{
SingularValueDecomposition
svd
=
SingularValueDecomposition
.
singularValueDecomposeScaleTiltBeta
(
affine
,
y_down_ccw
);
double
scale
=
svd
.
getMinScale
();
double
rot
=
svd
.
getRotAngle
();
// TODO: check sign !
// Now beta,rot correspond to Y - up
double
chalfrot
=
Math
.
cos
(
rot
/
2
);
double
shalfrot
=
Math
.
sin
(
rot
/
2
);
double
[]
qrot
=
{
chalfrot
,
0
,
0
,
shalfrot
};
// rotation around vertical axis
double
cbeta
=
Math
.
cos
(
svd
.
beta
);
double
sbeta
=
Math
.
sin
(
svd
.
beta
);
// TODO: check sign !
double
tiltAngle
=
svd
.
getTiltAngle
();
// >0
double
ctilt
=
Math
.
cos
(
tiltAngle
/
2
);
double
stilt
=
Math
.
sin
(
tiltAngle
/
2
);
double
[]
q_plus
=
{
ctilt
,
stilt
*
cbeta
,
stilt
*
sbeta
,
0
};
double
[]
q_minus
=
{
ctilt
,
-
stilt
*
cbeta
,
-
stilt
*
sbeta
,
0
};
double
[][]
quats_pm
=
{
scale
(
multiply
(
q_plus
,
qrot
),
scale
),
scale
(
multiply
(
q_minus
,
qrot
),
scale
)};
return
quats_pm
;
}
public
static
double
[][]
matMult
(
double
[][]
m1
,
double
[][]
m2
){
if
(
m1
[
0
].
length
!=
m2
.
length
)
{
System
.
out
.
println
(
"matMul(): m1[0].length != m2.length ("
+
m1
[
0
].
length
+
" !="
+
m2
.
length
+
")"
);
return
null
;
}
double
[][]
m
=
new
double
[
m1
.
length
][
m2
[
0
].
length
];
for
(
int
i
=
0
;
i
<
m
.
length
;
i
++)
{
for
(
int
j
=
0
;
j
<
m
[
i
].
length
;
j
++)
{
for
(
int
k
=
0
;
k
<
m1
.
length
;
k
++)
{
m
[
i
][
j
]
+=
m1
[
i
][
k
]*
m2
[
k
][
j
];
}
}
}
return
m
;
}
public
static
double
[]
matMul
(
double
[][]
m1
,
double
[]
v
){
if
(
m1
[
0
].
length
!=
v
.
length
)
{
System
.
out
.
println
(
"matMul(): m1[0].length != v.length ("
+
m1
[
0
].
length
+
" !="
+
v
.
length
+
")"
);
return
null
;
}
double
[]
v2
=
new
double
[
v
.
length
];
for
(
int
i
=
0
;
i
<
m1
.
length
;
i
++)
{
for
(
int
k
=
0
;
k
<
m1
.
length
;
k
++)
{
v2
[
i
]
+=
m1
[
i
][
k
]*
v
[
k
];
}
}
return
v2
;
}
}
src/main/java/com/elphel/imagej/orthomosaic/SingularValueDecomposition.java
0 → 100644
View file @
6a6d0c40
package
com
.
elphel
.
imagej
.
orthomosaic
;
public
class
SingularValueDecomposition
{
double
beta
;
double
gamma
;
double
w1
;
double
w2
;
double
rot
;
double
scale
;
// min (w1,w2) or sqrt(w1*w2) for raw singularValueDecompose()
double
ratio
;
// <=1.0, ==cos(tilt) or w2/w1 for raw singularValueDecompose()
boolean
st
=
false
;
boolean
y_down_ccw
;
public
SingularValueDecomposition
(
double
beta
,
double
gamma
,
double
w1
,
double
w2
,
double
rot
)
{
this
.
beta
=
beta
;
this
.
gamma
=
gamma
;
this
.
w1
=
w1
;
this
.
w2
=
w2
;
this
.
rot
=
rot
;
}
public
static
double
[][]
rotMatrix
(
double
a
){
double
c
=
Math
.
cos
(
a
);
double
s
=
Math
.
sin
(
a
);
return
new
double
[][]
{{
c
,
s
},{-
s
,
c
}};
}
// A = getR1() * getW() getR2() = getR1() * getW() * getIR1() * getRot()
public
double
[][]
getR1
(){
return
rotMatrix
(
beta
);}
public
double
[][]
getR2
(){
return
rotMatrix
(
gamma
);}
public
double
[][]
getIR1
(){
return
rotMatrix
(-
beta
);}
public
double
[][]
getRot
(){
return
rotMatrix
(
rot
);}
public
double
getTiltAngle
()
{
if
(
ratio
<=
1.0
)
return
Math
.
acos
(
ratio
);
else
return
Math
.
acos
(
1
/
ratio
);
}
public
double
getRotAngle
()
{
return
rot
;}
public
double
getScale
()
{
return
scale
;}
public
double
getAvgScale
()
{
return
Math
.
sqrt
(
w1
*
w2
);}
public
double
getMinScale
()
{
return
Math
.
min
(
w1
,
w2
);}
public
double
getMaxScale
()
{
return
Math
.
max
(
w1
,
w2
);}
public
double
[][]
getW
(){
return
new
double
[][]
{{
w1
,
0
},{
0
,
w1
}};
}
/**
* Decomposing linear transform into rotation
* R1={{cos(beta),sin(beta)},{-sin(beta), cos(beta)}} ,
* non-uniform scale transform W={{w1,0}{0,w2}}, and rotation
* R2={{cos(gamma),sin(gamma)},{-sin(gamma), cos(gamma)}}
* A=R1*W*R2 using singular value decomposition -- tested
* https://math.stackexchange.com/questions/861674/decompose-a-2d-arbitrary-transform-into-only-scaling-and-rotation
* @param A - input 2x2 matrix
* @return {s,beta,w,gamma,beta+gamma}
* A = B + C
* b00= b11; c00=-c01
* b10=-b01; c10= c01
*/
public
static
SingularValueDecomposition
singularValueDecompose
(
double
[][]
A
)
{
double
a00
=
A
[
0
][
0
],
a01
=
A
[
0
][
1
],
a10
=
A
[
1
][
0
],
a11
=
A
[
1
][
1
];
double
b00
=(
a00
+
a11
)/
2
;
// , b11 = b00;
double
c00
=(
a00
-
a11
)/
2
;
//, c11 =-c00;
double
b01
=(
a01
-
a10
)/
2
;
//, b10 =-b01;
double
c01
=(
a01
+
a10
)/
2
;
//, c10 = c01;
double
w1_p_w2_2
=
Math
.
sqrt
(
b00
*
b00
+
b01
*
b01
);
double
w1_m_w2_2
=
Math
.
sqrt
(
c00
*
c00
+
c01
*
c01
);
double
w1
=
w1_p_w2_2
+
w1_m_w2_2
;
double
w2
=
w1_p_w2_2
-
w1_m_w2_2
;
double
g_p_b
=
Math
.
atan2
(
b01
,
b00
);
double
g_m_b
=
Math
.
atan2
(
c01
,
c00
);
double
gamma
=
(
g_p_b
+
g_m_b
)/
2
;
double
beta
=
(
g_p_b
-
g_m_b
)/
2
;
SingularValueDecomposition
svd
=
new
SingularValueDecomposition
(
beta
,
gamma
,
w1
,
w2
,
g_p_b
);
svd
.
scale
=
Math
.
sqrt
(
svd
.
w1
*
svd
.
w2
);
svd
.
ratio
=
svd
.
w2
/
svd
.
w1
;
return
svd
;
}
/**
* Use singular value decomposition and then split scaling {{w1,0},{0,w1}}
* into overall scaling caused by zoom != 1.0 because of altitude error
* and unidirectional scaling caused by tilted projection plane. As the
* input linear transformation matrix converts ground coordinates to source
* image coordinates, the scale in the tilt direction is > than scale in the
* perpendicular direction (tilt axis).
* Matrix R1 is additionally rotated by PI/2 if needed so W={{w1,0},{0,w2}}
* has w2>=w1 and W={{s,0},{0,s/t}}, where t <= 1.0 and equals to cos(tilt)
*
* @param A - linear transformation matrix from rectified ground coordinates
* to source image coordinates. OK to use 2x3 affine matrix,extra
* components will be ignored.
* @param y_down_ccw - positive Y is down, positive angles are CCW
* @return SingularValueDecomposition instance with scale and ratio (<=1) defined, gamma and beta updated
*/
public
static
SingularValueDecomposition
singularValueDecomposeScaleTiltGamma
(
double
[][]
A
,
boolean
y_down_ccw
)
{
SingularValueDecomposition
svd
=
singularValueDecompose
(
A
);
svd
.
setScaleTiltGamma
(
y_down_ccw
);
return
svd
;
}
public
static
SingularValueDecomposition
singularValueDecomposeScaleTiltBeta
(
double
[][]
A
,
boolean
y_down_ccw
)
{
SingularValueDecomposition
svd
=
singularValueDecompose
(
A
);
svd
.
setScaleTiltBeta
(
y_down_ccw
);
return
svd
;
}
public
void
setScaleTiltGamma
(
boolean
y_down_ccw
)
{
// For Y-down, angles are CW positive, for Y-up angles are CCW positive
// Affines are Y-up?
// considering tilt in y direction (unless long_axis), it should have higher scale
// (and source image coordinates), while X should correspond to
// the axis of rotation, and scale is just scale caused by error in
// altitude.
scale
=
Math
.
min
(
w1
,
w2
);
ratio
=
w1
/
w2
;
// <=1.0, ==cos(tilt)
if
(
w1
>
w2
)
{
// rotate tilt by PI/2
ratio
=
w2
/
w1
;
gamma
+=
Math
.
PI
/
2
;
// start with rotation (last in matrices)
if
(
gamma
>
Math
.
PI
)
{
gamma
-=
2
*
Math
.
PI
;
}
}
if
(
gamma
>
Math
.
PI
/
2
)
{
gamma
-=
Math
.
PI
;
}
else
if
(
gamma
<
-
Math
.
PI
)
{
gamma
+=
Math
.
PI
;
}
beta
=
rot
-
gamma
;
while
(
beta
>=
Math
.
PI
/
2
)
{
beta
-=
Math
.
PI
;
}
while
(
beta
<
Math
.
PI
/
2
)
{
beta
+=
Math
.
PI
;
}
if
(
y_down_ccw
)
{
gamma
*=
-
1
;
beta
*=
-
1
;
rot
*=
-
1
;
// pure rotation
}
this
.
y_down_ccw
=
y_down_ccw
;
st
=
true
;
}
public
void
setScaleTiltBeta
(
boolean
y_down_ccw
)
{
// For Y-down, angles are CW positive, for Y-up angles are CCW positive
// Affines are Y-up?
// considering tilt in y direction (unless long_axis), it should have higher scale
// (and source image coordinates), while X should correspond to
// the axis of rotation, and scale is just scale caused by error in
// altitude.
scale
=
Math
.
min
(
w1
,
w2
);
ratio
=
w1
/
w2
;
// <=1.0, ==cos(tilt)
if
(
w1
>
w2
)
{
// rotate tilt by PI/2
ratio
=
w2
/
w1
;
beta
+=
Math
.
PI
/
2
;
// start with rotation (last in matrices)