Commit 4fb94627 authored by Andrey Filippov's avatar Andrey Filippov

changing corr2D to CDP

parent 20df596a
......@@ -190,6 +190,7 @@ public class GPUTileProcessor {
private CUdeviceptr gpu_clt = new CUdeviceptr();
private CUdeviceptr gpu_4_images = new CUdeviceptr();
private CUdeviceptr gpu_corr_indices = new CUdeviceptr(); // allocate tilesX * tilesY * 6 * Sizeof.POINTER
private CUdeviceptr gpu_num_corr_tiles = new CUdeviceptr(); // allocate tilesX * tilesY * 6 * Sizeof.POINTER
private CUdeviceptr gpu_texture_indices = new CUdeviceptr(); // allocate tilesX * tilesY * 6 * Sizeof.POINTER
private CUdeviceptr gpu_port_offsets = new CUdeviceptr(); // allocate Quad * 2 * Sizeof.POINTER
private CUdeviceptr gpu_woi = new CUdeviceptr(); // 4 integers (x, y, width, height) Rectangle - in tiles
......@@ -575,8 +576,8 @@ public class GPUTileProcessor {
cuMemAlloc(gpu_tasks, tilesX * tilesY * TPTASK_SIZE * Sizeof.FLOAT);
//=========== Seems that in many places Sizeof.POINTER (==8) is used instead of Sizeof.FLOAT !!! ============
// Set corrs array
/// cuMemAlloc(gpu_corrs, tilesX * tilesY * NUM_PAIRS * CORR_SIZE * Sizeof.POINTER);
cuMemAlloc(gpu_corr_indices, tilesX * tilesY * NUM_PAIRS * Sizeof.POINTER);
cuMemAlloc(gpu_corr_indices, tilesX * tilesY * NUM_PAIRS * Sizeof.FLOAT);
cuMemAlloc(gpu_num_corr_tiles, 1 * Sizeof.FLOAT);
//#define TILESYA ((TILESY +3) & (~3))
int tilesYa = (tilesY + 3) & ~3;
......@@ -1119,7 +1120,7 @@ public class GPUTileProcessor {
cuCtxSynchronize(); // remove later
}
public void execConverDirect() {
public void execConvertDirect() {
if (GPU_CONVERT_DIRECT_kernel == null)
{
IJ.showMessage("Error", "No GPU kernel: GPU_CONVERT_DIRECT_kernel");
......@@ -1206,20 +1207,24 @@ public class GPUTileProcessor {
float fscale0 = (float) scales[0];
float fscale1 = (num_colors >1)?((float) scales[1]):0.0f;
float fscale2 = (num_colors >2)?((float) scales[2]):0.0f;
int [] GridFullWarps = {(num_corr_tiles + CORR_TILES_PER_BLOCK-1) / CORR_TILES_PER_BLOCK,1,1};
int [] ThreadsFullWarps = {CORR_THREADS_PER_TILE, CORR_TILES_PER_BLOCK, 1};
// int [] GridFullWarps = {(num_corr_tiles + CORR_TILES_PER_BLOCK-1) / CORR_TILES_PER_BLOCK,1,1};
// int [] ThreadsFullWarps = {CORR_THREADS_PER_TILE, CORR_TILES_PER_BLOCK, 1};
int [] GridFullWarps = {1, 1, 1};
int [] ThreadsFullWarps = {1, 1, 1};
Pointer kernelParameters = Pointer.to(
Pointer.to(gpu_clt),
Pointer.to(new int[] { num_colors }),
Pointer.to(new float[] {fscale0 }),
Pointer.to(new float[] {fscale1 }),
Pointer.to(new float[] {fscale2 }),
Pointer.to(new float[] {(float) fat_zero }),
Pointer.to(new int[] { num_corr_tiles }), // lpf_mask
Pointer.to(gpu_corr_indices),
Pointer.to(new int[] { corr_stride }),
Pointer.to(new int[] { corr_radius }),
Pointer.to(gpu_corrs) // lpf_mask
Pointer.to(gpu_clt), // float ** gpu_clt,
Pointer.to(new int[] { num_colors }), // int colors, // number of colors (3/1)
Pointer.to(new float[] {fscale0 }), // float scale0, // scale for R
Pointer.to(new float[] {fscale1 }), // float scale1, // scale for B
Pointer.to(new float[] {fscale2 }), // float scale2, // scale for G
Pointer.to(new float[] {(float) fat_zero }),// float fat_zero, // here - absolute
Pointer.to(gpu_tasks), // struct tp_task * gpu_tasks,
Pointer.to(new int[] { num_task_tiles }), // int num_tiles // number of tiles in task
Pointer.to(gpu_corr_indices), // int * gpu_corr_indices, // packed tile+pair
Pointer.to(gpu_num_corr_tiles), // int * pnum_corr_tiles, // pointer to a number of tiles to process
Pointer.to(new int[] { corr_stride }), // const size_t corr_stride, // in floats
Pointer.to(new int[] { corr_radius }), // int corr_radius, // radius of the output correlation (7 for 15x15)
Pointer.to(gpu_corrs) // float * gpu_corrs); // correlation output data
);
cuCtxSynchronize();
// Call the kernel function
......@@ -1395,6 +1400,20 @@ public class GPUTileProcessor {
}
return corrs;
}
public int [] getCorrIndices() {
float [] fnum_corrs = new float[1];
cuMemcpyDtoH(Pointer.to(fnum_corrs), gpu_num_corr_tiles, 1 * Sizeof.FLOAT);
int num_corrs = Float.floatToIntBits(fnum_corrs[0]);
float [] fcorr_indices = new float [num_corrs];
cuMemcpyDtoH(Pointer.to(fcorr_indices), gpu_corr_indices, num_corrs * Sizeof.FLOAT);
int [] corr_indices = new int [num_corrs];
for (int i = 0; i < num_corrs; i++) {
corr_indices[i] = Float.floatToIntBits(fcorr_indices[i]);
}
num_corr_tiles = num_corrs;
return corr_indices;
}
/**
* Get woi and RBGA image from the GPU after execRBGA call as 2/4 slices.
......
......@@ -2078,10 +2078,10 @@ public class TwoQuadCLT {
use_aux); // boolean use_aux)
int [] corr_indices = gPUTileProcessor.getCorrTasks(
tp_tasks);
// int [] corr_indices = gPUTileProcessor.getCorrTasks(
// tp_tasks);
// corr_indices array of integers to be passed to GPU
gPUTileProcessor.setCorrIndices(corr_indices);
// gPUTileProcessor.setCorrIndices(corr_indices);
int [] texture_indices = gPUTileProcessor.getTextureTasks(
tp_tasks);
......@@ -2119,7 +2119,7 @@ public class TwoQuadCLT {
long startDirectConvert=System.nanoTime();
for (int i = 0; i < NREPEAT; i++ ) {
gPUTileProcessor.execConverDirect();
gPUTileProcessor.execConvertDirect();
}
// run imclt;
......@@ -2221,6 +2221,7 @@ public class TwoQuadCLT {
int tilesY = GPUTileProcessor.IMG_HEIGHT / GPUTileProcessor.DTT_SIZE;
int [] wh = new int[2];
if (clt_parameters.show_corr) {
int [] corr_indices = gPUTileProcessor.getCorrIndices();
float [][] corr2D = gPUTileProcessor.getCorr2D(
clt_parameters.gpu_corr_rad); // int corr_rad);
// convert to 6-layer image using tasks
......
......@@ -112,20 +112,6 @@ GPU run time =523.451927ms, (direct conversion: 24.080189999999998ms, imclt: 17.
#define MCLT_UNION_LEN (DTT_SIZE2 * (DTT_SIZE2 + 2))
//56494
// struct tp_task
//#define TASK_SIZE 12
#if 0
struct tp_task {
int task;
union {
int txy;
unsigned short sxy[2];
};
float xy[NUM_CAMS][2];
};
#endif
struct CltExtra{
float data_x; // kernel data is relative to this displacement X (0.5 pixel increments)
float data_y; // kernel data is relative to this displacement Y (0.5 pixel increments)
......@@ -835,25 +821,24 @@ __device__ void imclt_plane( // not implemented, not used
float * gpu_rbg, // WIDTH, HEIGHT
const size_t dstride); // in floats (pixels)
#if 0
extern "C"
//extern "C"
__global__ void clear_texture_list(
int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
int width, // <= TILESX, use for faster processing of LWIR images
int height); // <= TILESY, use for faster processing of LWIR images
extern "C"
//extern "C"
__global__ void mark_texture_tiles(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
int * gpu_texture_indices); // packed tile + bits (now only (1 << 7)
extern "C"
//extern "C"
__global__ void mark_texture_neighbor_tiles(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
int * gpu_texture_indices, // packed tile + bits (now only (1 << 7)
int * woi); // x,y,width,height of the woi
extern "C"
//extern "C"
__global__ void gen_texture_list(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
......@@ -861,51 +846,101 @@ __global__ void gen_texture_list(
int * num_texture_tiles, // number of texture tiles to process
int * woi); // x,y,width,height of the woi
extern "C" __global__ void clear_texture_rbga(
//extern "C"
__global__ void clear_texture_rbga(
int texture_width,
int texture_slice_height,
const size_t texture_rbga_stride, // in floats 8*stride
float * gpu_texture_tiles); // (number of colors +1 + ?)*16*16 rgba texture tiles
extern "C" __global__ void textures_accumulate(
// int border_tile, // if 1 - watch for border
int * woi, // x, y, width,height
//extern "C"
__global__ void index_direct(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task
int * active_tiles, // pointer to the calculated number of non-zero tiles
int * pnum_active_tiles); // indices to gpu_tasks // should be initialized to zero
__global__ void index_correlate(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task
int * gpu_corr_indices, // array of correlation tasks
int * pnum_corr_tiles); // pointer to the length of correlation tasks array
//extern "C"
__global__ void convert_correct_tiles(
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
float ** gpu_images, // [NUM_CAMS],
struct tp_task * gpu_tasks,
int * gpu_active_tiles, // indices in gpu_tasks to non-zero tiles
int num_active_tiles, // number of tiles in task
float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
size_t dstride, // in floats (pixels)
// int num_tiles, // number of tiles in task
int lpf_mask, // apply lpf to colors : bit 0 - red, bit 1 - blue, bit2 - green. Now - always 0 !
int woi_width,
int woi_height,
int kernels_hor,
int kernels_vert);
extern "C" __global__ void correlate2D_inner(
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
size_t num_texture_tiles, // number of texture tiles to process
int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
float * gpu_port_offsets, // relative ports x,y offsets - just to scale differences, may be approximate
int colors, // number of colors (3/1)
int is_lwir, // do not perform shot correction
float min_shot, // 10.0
float scale_shot, // 3.0
float diff_sigma, // pixel value/pixel change
float diff_threshold, // pixel value/pixel change
float min_agree, // minimal number of channels to agree on a point (real number to work with fuzzy averages)
float weight0, // scale for R
float weight1, // scale for B
float weight2, // scale for G
int dust_remove, // Do not reduce average weight when only one image differs much from the average
int keep_weights, // return channel weights after A in RGBA (was removed) (should be 0 if gpu_texture_rbg)?
// combining both non-overlap and overlap (each calculated if pointer is not null )
size_t texture_rbg_stride, // in floats
float * gpu_texture_rbg, // (number of colors +1 + ?)*16*16 rgba texture tiles
size_t texture_stride, // in floats (now 256*4 = 1024)
float * gpu_texture_tiles); // (number of colors +1 + ?)*16*16 rgba texture tiles
float scale0, // scale for R
float scale1, // scale for B
float scale2, // scale for G
float fat_zero, // here - absolute
size_t num_corr_tiles, // number of correlation tiles to process
int * gpu_corr_indices, // packed tile+pair
const size_t corr_stride, // in floats
int corr_radius, // radius of the output correlation (7 for 15x15)
float * gpu_corrs); // correlation output data
extern "C"
__global__ void imclt_rbg(
float * gpu_clt, // [TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
float * gpu_rbg, // WIDTH, 3 * HEIGHT
int apply_lpf,
int mono, // defines lpf filter
int color, // defines location of clt data
int v_offset,
int h_offset,
const size_t dstride); // in floats (pixels)
//===========================
#endif
// ====== end of local declarations ====
extern "C"
__global__ void correlate2D(
extern "C" __global__ void correlate2D(
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
int colors, // number of colors (3/1)
float scale0, // scale for R
float scale1, // scale for B
float scale2, // scale for G
float fat_zero, // here - absolute
struct tp_task * gpu_tasks, // array of per-tile tasks (now bits 4..9 - correlation pairs)
int num_tiles, // number of tiles in task
int * gpu_corr_indices, // packed tile+pair
int * pnum_corr_tiles, // pointer to a number of correlation tiles to process
const size_t corr_stride, // in floats
int corr_radius, // radius of the output correlation (7 for 15x15)
float * gpu_corrs) // correlation output data
{
dim3 threads0(CONVERT_DIRECT_INDEXING_THREADS, 1, 1);
dim3 blocks0 ((num_tiles + CONVERT_DIRECT_INDEXING_THREADS -1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2,1, 1);
if (threadIdx.x == 0) { // only 1 thread, 1 block
*pnum_corr_tiles = 0;
index_correlate<<<blocks0,threads0>>>(
gpu_tasks, // struct tp_task * gpu_tasks,
num_tiles, // int num_tiles, // number of tiles in task
gpu_corr_indices, // int * gpu_corr_indices, // array of correlation tasks
pnum_corr_tiles); // int * pnum_corr_tiles); // pointer to the length of correlation tasks array
cudaDeviceSynchronize();
dim3 threads_corr(CORR_THREADS_PER_TILE, CORR_TILES_PER_BLOCK, 1);
dim3 grid_corr((*pnum_corr_tiles + CORR_TILES_PER_BLOCK-1) / CORR_TILES_PER_BLOCK,1,1);
correlate2D_inner<<<grid_corr,threads_corr>>>(
gpu_clt, // float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
colors, // int colors, // number of colors (3/1)
scale0, // float scale0, // scale for R
scale1, // float scale1, // scale for B
scale2, // float scale2, // scale for G
fat_zero, // float fat_zero, // here - absolute
*pnum_corr_tiles, // size_t num_corr_tiles, // number of correlation tiles to process
gpu_corr_indices, // int * gpu_corr_indices, // packed tile+pair
corr_stride, // const size_t corr_stride, // in floats
corr_radius, // int corr_radius, // radius of the output correlation (7 for 15x15)
gpu_corrs); // float * gpu_corrs); // correlation output data
}
}
extern "C" __global__ void correlate2D_inner(
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
int colors, // number of colors (3/1)
float scale0, // scale for R
......@@ -1304,7 +1339,8 @@ __global__ void generate_RBGA(
}
// blockDim.x * gridDim.x >= width
extern "C" __global__ void clear_texture_rbga(
//extern "C"
__global__ void clear_texture_rbga(
int texture_width, // aligned to DTT_SIZE
int texture_slice_height,
const size_t texture_rbga_stride, // in floats 8*stride
......@@ -1329,7 +1365,7 @@ extern "C" __global__ void clear_texture_rbga(
* prepare list of texture tiles, woi, and calculate orthogonal neighbors for tiles (in 4 bits of the task field
* use 4x8=32 threads,
*/
extern "C"
//extern "C"
__global__ void prepare_texture_list(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
......@@ -1402,7 +1438,7 @@ __global__ void prepare_texture_list(
}
// blockDim.x * gridDim.x >= width
extern "C"
//extern "C"
__global__ void clear_texture_list(
int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
int width, // <= TILESX, use for faster processing of LWIR images
......@@ -1417,7 +1453,7 @@ __global__ void clear_texture_list(
}
// treads (*,1,1), blocks = (*,1,1)
extern "C"
//extern "C"
__global__ void mark_texture_tiles(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
......@@ -1437,7 +1473,7 @@ __global__ void mark_texture_tiles(
// treads (*,1,1), blocks = (*,1,1)
extern "C"
//extern "C"
__global__ void mark_texture_neighbor_tiles(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
......@@ -1471,7 +1507,7 @@ __global__ void mark_texture_neighbor_tiles(
gpu_tasks[task_num].task = ((task ^ d) & TASK_TEXTURE_BITS) ^ task;
}
extern "C"
//extern "C"
__global__ void gen_texture_list(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
......@@ -1543,32 +1579,50 @@ __global__ void gen_texture_list(
#endif //#ifdef USE_CDP
//#define CONVERT_DIRECT_INDEXING_THREADS_LOG2 5
//#define CONVERT_DIRECT_INDEXING_THREADS (1 << CONVERT_DIRECT_INDEXING_THREADS_LOG2) // 32
//#define CONVERT_DIRECT_NUM_CHUNKS ((TILESY*TILESX+CONVERT_DIRECT_INDEXING_THREADS-1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2)
//#define CONVERT_DIRECT_NUM_CHUNKS2 ((CONVERT_DIRECT_NUM_CHUNKS+CONVERT_DIRECT_INDEXING_THREADS-1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2)
//__global__ int num_active_tiles;
//__global__ int active_tiles [TILESY*TILESX]; // indices of tiles in gpu_tasks that have non-zero correlations and/or textures
//__device__ int num_acive_per_chunk [CONVERT_DIRECT_NUM_CHUNKS+1];
//__device__ int num_acive_per_chunk2[CONVERT_DIRECT_NUM_CHUNKS2+1];
// not maintaining order of the tiles to be processed
extern "C" __global__ void index_direct(
//extern "C"
__global__ void index_direct(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task
int * active_tiles, // pointer to the calculated number of non-zero tiles
int * num_active_tiles) // indices to gpu_tasks // should be initialized to zero
int * pnum_active_tiles) // indices to gpu_tasks // should be initialized to zero
{
int num_tile = blockIdx.x * blockDim.x + threadIdx.x;
if (num_tile >= num_tiles){
return;
}
if (gpu_tasks[num_tile].task != 0) {
active_tiles[atomicAdd(num_active_tiles, 1)] = num_tile;
active_tiles[atomicAdd(pnum_active_tiles, 1)] = num_tile;
}
}
__global__ void index_correlate(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task
int * gpu_corr_indices, // array of correlation tasks
int * pnum_corr_tiles) // pointer to the length of correlation tasks array
{
int num_tile = blockIdx.x * blockDim.x + threadIdx.x;
if (num_tile >= num_tiles){
return;
}
int cm = (gpu_tasks[num_tile].task >> TASK_CORR_BITS) & ((1 << NUM_PAIRS)-1);
if (cm != 0) {
int nb = __popc (cm); // number of non-zero bits
int indx = atomicAdd(pnum_corr_tiles, nb);
int txy = gpu_tasks[num_tile].txy;
int tx = txy & 0xffff;
int ty = txy >> 16;
int nt = ty * TILESX + tx;
for (int b = 0; b < NUM_PAIRS; b++) if ((cm & (1 << b)) != 0) {
gpu_corr_indices[indx++] = (nt << CORR_NTILE_SHIFT) | b;
}
}
}
extern "C" __global__ void convert_direct( // called with a single block, CONVERT_DIRECT_INDEXING_THREADS threads
extern "C" __global__ void convert_direct( // called with a single block, single thread
// struct CltExtra ** gpu_kernel_offsets, // [NUM_CAMS], // changed for jcuda to avoid struct parameters
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
......@@ -1587,7 +1641,7 @@ extern "C" __global__ void convert_direct( // called with a single block, CONVER
{
dim3 threads0(CONVERT_DIRECT_INDEXING_THREADS, 1, 1);
dim3 blocks0 ((num_tiles + CONVERT_DIRECT_INDEXING_THREADS -1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2,1, 1);
if (threadIdx.x == 0) { // of CONVERT_DIRECT_INDEXING_THREADS
if (threadIdx.x == 0) { // always 1
*pnum_active_tiles = 0;
index_direct<<<blocks0,threads0>>>(
gpu_tasks, // struct tp_task * gpu_tasks,
......@@ -1614,139 +1668,9 @@ extern "C" __global__ void convert_direct( // called with a single block, CONVER
kernels_vert); // int kernels_vert); // varaible to swict between EO and LWIR
}
}
#if 0 // trying to keep the same order
extern "C" __global__ void index_direct_init(
int num_chunks, // number of tiles in task
struct convert_direct_tmp* tmp)
{
int chunk_index = blockIdx.x * blockDim.x + threadIdx.x;
if (chunk_index <= num_chunks){
tmp->num_acive_per_chunk[chunk_index] = 0;
}
}
extern "C" __global__ void index_direct(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task
struct convert_direct_tmp* tmp)
{
__shared__ int num_active;
if (threadIdx.x == 0) {
num_active = 0;
}
__syncthreads();
int num_tile = blockIdx.x * blockDim.x + threadIdx.x;
if (num_tile < num_tiles) {
if (gpu_tasks[num_tile].task){
atomicAdd(&num_active, 1);
}
}
__syncthreads();
tmp -> num_acive_per_chunk[(num_tile >> CONVERT_DIRECT_INDEXING_THREADS_LOG2) + 1] = num_active; // skip [0]
}
extern "C" __global__ void build_index_direct(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task
struct convert_direct_tmp* tmp)
{
__shared__ int num_active;
if (threadIdx.x == 0) {
num_active = 0;
}
__syncthreads();
int num_tile = blockIdx.x * blockDim.x + threadIdx.x;
if (num_tile < num_tiles) {
if (gpu_tasks[num_tile].task){
atomicAdd(&num_active, 1);
}
}
__syncthreads();
tmp -> num_acive_per_chunk[(num_tile >> CONVERT_DIRECT_INDEXING_THREADS_LOG2) + 1] = num_active; // skip [0]
}
/**
* Top level to call other kernel with CDP
*/
extern "C" __global__ void convert_direct( // called with a single block, CONVERT_DIRECT_INDEXING_THREADS threads
// struct CltExtra ** gpu_kernel_offsets, // [NUM_CAMS], // changed for jcuda to avoid struct parameters
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
float ** gpu_images, // [NUM_CAMS],
struct tp_task * gpu_tasks,
float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
size_t dstride, // in floats (pixels)
int num_tiles, // number of tiles in task
int lpf_mask, // apply lpf to colors : bit 0 - red, bit 1 - blue, bit2 - green. Now - always 0 !
int woi_width,
int woi_height,
int kernels_hor,
int kernels_vert,
int * num_active_tiles,
struct convert_direct_tmp* tmp) // temporary storage - avoiding static data for future overlap of kernel execution
{
int num_chunks = (num_tiles + CONVERT_DIRECT_INDEXING_THREADS -1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2;
int num_chunk_blocks = (num_chunks + CONVERT_DIRECT_INDEXING_THREADS -1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2;
dim3 threads0(CONVERT_DIRECT_INDEXING_THREADS, 1, 1);
dim3 blocks0 (num_chunk_blocks,1, 1);
__shared__ int superchunks[CONVERT_DIRECT_INDEXING_THREADS + 1];
if (threadIdx.x == 0) { // of CONVERT_DIRECT_INDEXING_THREADS
index_direct_init<<<blocks0,threads0>>>(num_chunks, tmp); // zero num_acive_per_chunk[]
cudaDeviceSynchronize(); // not needed yet, just for testing
index_direct<<<blocks0,threads0>>>(
gpu_tasks, // struct tp_task * gpu_tasks,
num_tiles, // int num_tiles)
tmp);
cudaDeviceSynchronize(); // not needed yet, just for testing
// single-threaded - make cumulative
// tmp-> num_acive_per_chunk2[0] = 0;
superchunks[0] = 0;
}
__syncthreads();
// calculate cumulative in 3 steps
//1. num_acive_per_chunk2 with each element being a sum of CONVERT_DIRECT_INDEXING_THREADS (32) elements of num_acive_per_chunk
int num_passes = (num_chunk_blocks + CONVERT_DIRECT_INDEXING_THREADS - 1) >> CONVERT_DIRECT_INDEXING_THREADS_LOG2;
for (int pass = 0; pass < num_passes; pass++){
int num_cluster2 = (pass << CONVERT_DIRECT_INDEXING_THREADS_LOG2) + threadIdx.x + 1; // skip 0
if (num_cluster2 <= num_chunk_blocks){
superchunks[threadIdx.x+1] = superchunks[0];
int indx = num_cluster2 << CONVERT_DIRECT_INDEXING_THREADS_LOG2 + 1;
for (int i = 0; i < CONVERT_DIRECT_INDEXING_THREADS; i++){
if (indx <= num_chunks) {
superchunks[threadIdx.x+1] += tmp -> num_acive_per_chunk[indx++];
}
}
}
__syncthreads();
// make superchunks cumulative (single-threaded
if (threadIdx.x == 0) { // of CONVERT_DIRECT_INDEXING_THREADS
for (int i = 0; i < CONVERT_DIRECT_INDEXING_THREADS; i++){
superchunks[i + 1] += superchunks[i];
}
}
__syncthreads();
// now update tmp -> num_acive_per_chunk[] by adding them together and adding the initial value
if (num_cluster2 <= num_chunk_blocks){
int indx = num_cluster2 << CONVERT_DIRECT_INDEXING_THREADS_LOG2 + 1;
tmp -> num_acive_per_chunk[indx] += superchunks[threadIdx.x];
for (int i = 0; i < CONVERT_DIRECT_INDEXING_THREADS; i++){
int prev = tmp -> num_acive_per_chunk[indx++];
if (indx <= num_chunks) {
tmp -> num_acive_per_chunk[indx] += prev;
}
}
}
__syncthreads();
}
}
#endif
extern "C" __global__ void convert_correct_tiles(
//extern "C"
__global__ void convert_correct_tiles(
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
float ** gpu_images, // [NUM_CAMS],
......
......@@ -31,82 +31,50 @@
*/
/**
**************************************************************************
* \file TileProcessor.h
* \brief header file for the Tile Processor for frequency domain
**************************************************************************
* \file TileProcessor.h
* \brief header file for the Tile Processor for frequency domain
*/
*/
#pragma once
#ifndef NUM_CAMS
#include "tp_defines.h"
#endif
extern "C" __global__ void index_direct(
extern "C" __global__ void convert_direct( // called with a single block, single thread
// struct CltExtra ** gpu_kernel_offsets, // [NUM_CAMS], // changed for jcuda to avoid struct parameters
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
float ** gpu_images, // [NUM_CAMS],
struct tp_task * gpu_tasks,
float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
size_t dstride, // in floats (pixels)
int num_tiles, // number of tiles in task
int * active_tiles, // pointer to the calculated number of non-zero tiles
int * num_active_tiles); // indices to gpu_tasks // should be initialized to zero
extern "C" __global__ void convert_direct( // called with a single block, CONVERT_DIRECT_INDEXING_THREADS threads
// struct CltExtra ** gpu_kernel_offsets, // [NUM_CAMS], // changed for jcuda to avoid struct parameters
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
float ** gpu_images, // [NUM_CAMS],
struct tp_task * gpu_tasks,
float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
size_t dstride, // in floats (pixels)
int num_tiles, // number of tiles in task
int lpf_mask, // apply lpf to colors : bit 0 - red, bit 1 - blue, bit2 - green. Now - always 0 !
int woi_width,
int woi_height,
int kernels_hor,
int kernels_vert,
int * gpu_active_tiles, // pointer to the calculated number of non-zero tiles
int * pnum_active_tiles); // indices to gpu_tasks
int lpf_mask, // apply lpf to colors : bit 0 - red, bit 1 - blue, bit2 - green. Now - always 0 !
int woi_width,
int woi_height,
int kernels_hor,
int kernels_vert,
int * gpu_active_tiles, // pointer to the calculated number of non-zero tiles
int * pnum_active_tiles); // indices to gpu_tasks
extern "C" __global__ void convert_correct_tiles(
float ** gpu_kernel_offsets, // [NUM_CAMS],
float ** gpu_kernels, // [NUM_CAMS],
float ** gpu_images, // [NUM_CAMS],
struct tp_task * gpu_tasks,
int * gpu_active_tiles, // indices in gpu_tasks to non-zero tiles
int num_active_tiles, // number of tiles in task
float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
size_t dstride, // in floats (pixels)
// int num_tiles, // number of tiles in task
int lpf_mask, // apply lpf to colors : bit 0 - red, bit 1 - blue, bit2 - green. Now - always 0 !
int woi_width,
int woi_height,
int kernels_hor,
int kernels_vert);
extern "C" __global__ void clear_texture_list(
int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
int width, // <= TILESX, use for faster processing of LWIR images
int height); // <= TILESY, use for faster processing of LWIR images
extern "C" __global__ void correlate2D(
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
int colors, // number of colors (3/1)
float scale0, // scale for R
float scale1, // scale for B
float scale2, // scale for G
float fat_zero, // here - absolute
struct tp_task * gpu_tasks, // array of per-tile tasks (now bits 4..9 - correlation pairs)
int num_tiles, // number of tiles in task
int * gpu_corr_indices, // packed tile+pair
int * pnum_corr_tiles, // pointer to a number of correlation tiles to process
const size_t corr_stride, // in floats
int corr_radius, // radius of the output correlation (7 for 15x15)
float * gpu_corrs); // correlation output data
extern "C" __global__ void mark_texture_tiles(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
int * gpu_texture_indices); // packed tile + bits (now only (1 << 7)
extern "C" __global__ void mark_texture_neighbor_tiles(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
int * gpu_texture_indices, // packed tile + bits (now only (1 << 7)
int * woi); // x,y,width,height of the woi
extern "C" __global__ void gen_texture_list(
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
int * gpu_texture_indices, // packed tile + bits (now only (1 << 7)
int * num_texture_tiles, // number of texture tiles to process
int * woi); // x,y,width,height of the woi
extern "C" __global__ void clear_texture_rbga(
int texture_width,
int texture_slice_height,
const size_t texture_rbga_stride, // in floats 8*stride
float * gpu_texture_tiles); // (number of colors +1 + ?)*16*16 rgba texture tiles
extern "C" __global__ void textures_accumulate(
int * woi, // x, y, width,height
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
......@@ -126,7 +94,7 @@ extern "C" __global__ void textures_accumulate(
float weight2, // scale for G
int dust_remove, // Do not reduce average weight when only one image differs much from the average
int keep_weights, // return channel weights after A in RGBA (was removed) (should be 0 if gpu_texture_rbg)?
// combining both non-overlap and overlap (each calculated if pointer is not null )
// combining both non-overlap and overlap (each calculated if pointer is not null )
size_t texture_rbg_stride, // in floats
float * gpu_texture_rbg, // (number of colors +1 + ?)*16*16 rgba texture tiles
size_t texture_stride, // in floats (now 256*4 = 1024)
......@@ -154,33 +122,32 @@ extern "C" __global__ void imclt_rbg(
int woi_theight,
const size_t dstride); // in floats (pixels)
extern "C"
__global__ void generate_RBGA(
// Parameters to generate texture tasks
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
// declare arrays in device code?
int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
int * num_texture_tiles, // number of texture tiles to process (8 separate elements for accumulation)
int * woi, // x,y,width,height of the woi
int width, // <= TILESX, use for faster processing of LWIR images (should be actual + 1)
int height, // <= TILESY, use for faster processing of LWIR images
// Parameters for the texture generation
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
// TODO: use geometry_correction rXY !
float * gpu_port_offsets, // relative ports x,y offsets - just to scale differences, may be approximate
int colors, // number of colors (3/1)
int is_lwir, // do not perform shot correction
float min_shot, // 10.0
float scale_shot, // 3.0
float diff_sigma, // pixel value/pixel change
float diff_threshold, // pixel value/pixel change
float min_agree, // minimal number of channels to agree on a point (real number to work with fuzzy averages)
float weight0, // scale for R
float weight1, // scale for B
float weight2, // scale for G
int dust_remove, // Do not reduce average weight when only one image differs much from the average
int keep_weights, // return channel weights after A in RGBA (was removed)
const size_t texture_rbga_stride, // in floats
float * gpu_texture_tiles); // (number of colors +1 + ?)*16*16 rgba texture tiles
extern "C" __global__ void generate_RBGA(
// Parameters to generate texture tasks
struct tp_task * gpu_tasks,
int num_tiles, // number of tiles in task list
// declare arrays in device code?
int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
int * num_texture_tiles, // number of texture tiles to process (8 separate elements for accumulation)
int * woi, // x,y,width,height of the woi
int width, // <= TILESX, use for faster processing of LWIR images (should be actual + 1)
int height, // <= TILESY, use for faster processing of LWIR images
// Parameters for the texture generation
float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
// TODO: use geometry_correction rXY !
float * gpu_port_offsets, // relative ports x,y offsets - just to scale differences, may be approximate
int colors, // number of colors (3/1)
int is_lwir, // do not perform shot correction
float min_shot, // 10.0
float scale_shot, // 3.0
float diff_sigma, // pixel value/pixel change
float diff_threshold, // pixel value/pixel change
float min_agree, // minimal number of channels to agree on a point (real number to work with fuzzy averages)
float weight0, // scale for R
float weight1, // scale for B
float weight2, // scale for G
int dust_remove, // Do not reduce average weight when only one image differs much from the average
int keep_weights, // return channel weights after A in RGBA (was removed)
const size_t texture_rbga_stride, // in floats
float * gpu_texture_tiles); // (number of colors +1 + ?)*16*16 rgba texture tiles
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment