DoubleGaussianBlur.java 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
package com.elphel.imagej.common;
/**
 * The code below is extracted form ImageJ plugin GaussianBlur.java, stripped of ImageProcessor and used (double) instead of (float) arrays.
 * The following are notes from the original file:
 *
 *
 *  This plug-in filter uses convolution with a Gaussian function for smoothing.
 * 'Radius' means the radius of decay to exp(-0.5) ~ 61%, i.e. the standard
 * deviation sigma of the Gaussian (this is the same as in Photoshop, but
 * different from the previous ImageJ function 'Gaussian Blur', where a value
 * 2.5 times as much has to be entered.
 * - Like all convolution operations in ImageJ, it assumes that out-of-image
 * pixels have a value equal to the nearest edge pixel. This gives higher
 * weight to edge pixels than pixels inside the image, and higher weight
 * to corner pixels than non-corner pixels at the edge. Thus, when smoothing
 * with very high blur radius, the output will be dominated by the edge
 * pixels and especially the corner pixels (in the extreme case, with
 * a blur radius of e.g. 1e20, the image will be raplaced by the average
 * of the four corner pixels).
 * - For increased speed, except for small blur radii, the lines (rows or
 * columns of the image) are downscaled before convolution and upscaled
 * to their original length thereafter.
 *
 * Version 03-Jun-2007 M. Schmid with preview, progressBar stack-aware,
 * snapshot via snapshot flag; restricted range for resetOutOfRoi
 *
 */


public class DoubleGaussianBlur {
	/* the standard deviation of the Gaussian*/
	//    private static double sigma = 2.0;
	/* whether sigma is given in units corresponding to the pixel scale (not pixels)*/
	//    private static boolean sigmaScaled = false;
	/* The flags specifying the capabilities and needs */
	//    private int flags = DOES_ALL|SUPPORTS_MASKING|PARALLELIZE_STACKS|KEEP_PREVIEW;
	//    private ImagePlus imp;              // The ImagePlus of the setup call, needed to get the spatial calibration
	//    private boolean hasScale = false;   // whether the image has an x&y scale
	private int nPasses = 1;            // The number of passes (filter directions * color channels * stack slices)
	//	private int nChannels = 1;        // The number of color channels
	private int pass;                   // Current pass

	/* Default constructor */
	public DoubleGaussianBlur() {
		
	}

	public double [] blurWithNaN(
			double[] pixels,
			double [] in_weight, // or null
			int width,
			int height,
			double sigmaX,
			double sigmaY,
			double accuracy
			) {
		double [] weight;
		double [] blured = new double[pixels.length];
		if (in_weight == null) {
			weight = new double [pixels.length];
			for (int i = 0; i < weight.length; i++) {
				weight[i] = 1.0;
			}
		} else {
			weight = in_weight.clone();
		}
		for (int i = 0; i < pixels.length; i++) {
			if (Double.isNaN(pixels[i])) {
				weight[i] = 0.0;
			} else {
				blured[i] = pixels[i] * weight[i];
			}
		}
		blurDouble(
				blured,
				width,
				height,
				sigmaX,
				sigmaY,
				accuracy);
		blurDouble(
				weight,
				width,
				height,
				sigmaX,
				sigmaY,
				accuracy);
		for (int i = 0; i < pixels.length; i++) {
			blured[i] /= weight[i];
		}
		return blured;
	}

	public void blurDouble(
			double[] pixels,
			int width,
			int height,
			double sigmaX,
			double sigmaY,
			double accuracy) {
		if (sigmaX > 0)
			blur1Direction(pixels, width,height, sigmaX, accuracy, true);
		if (Thread.currentThread().isInterrupted()) return; // interruption for new parameters during preview?
		if (sigmaY > 0)
			blur1Direction(pixels, width,height, sigmaY, accuracy, false);
		return;
	}

	/* Blur an image in one direction (x or y) by a Gaussian.
	 * @param ip        The Image with the original data where also the result will be stored
	 * @param sigma     Standard deviation of the Gaussian
	 * @param accuracy  Accuracy of kernel, should not be > 0.02
	 * @param xDirection True for blurring in x direction, false for y direction
	 * @param extraLines Number of lines (parallel to the blurring direction)
	 *                  below and above the roi bounds that should be processed.
	 */
	// TODO: Make threaded!
	public void blur1Direction(double [] pixels,
			int        width,
			int       height,
			double     sigma,
			double   accuracy,
			boolean xDirection
			//	                               int extraLines
			) {
		final int UPSCALE_K_RADIUS = 2;             //number of pixels to add for upscaling
		final double MIN_DOWNSCALED_SIGMA = 4.;     //minimum standard deviation in the downscaled image
		//	        float[] pixels = (float[])ip.getPixels();
		//	        int width = ip.getWidth();
		//	        int height = ip.getHeight();
		//	        Rectangle roi = ip.getRoi();
		int length = xDirection ? width : height;   //number of points per line (line can be a row or column)
		int pointInc = xDirection ? 1 : width;      //increment of the pixels array index to the next point in a line
		int lineInc = xDirection ? width : 1;       //increment of the pixels array index to the next line
		//	        int lineFrom = (xDirection ? roi.y : roi.x) - extraLines;  //the first line to process
		//	        if (lineFrom < 0) lineFrom = 0;
		int lineFrom = 0;  //the first line to process
		//	        int lineTo = (xDirection ? roi.y+roi.height : roi.x+roi.width) + extraLines; //the last line+1 to process
		//	        if (lineTo > (xDirection ? height:width)) lineTo = (xDirection ? height:width);
		int lineTo = (xDirection ? height:width);
		//	        int writeFrom = xDirection? roi.x : roi.y;  //first point of a line that needs to be written
		//	        int writeTo = xDirection ? roi.x+roi.width : roi.y+roi.height;
		int writeFrom = 0;  //first point of a line that needs to be written
		int writeTo = xDirection ? width : height;
		//	        int inc = Math.max((lineTo-lineFrom)/(100/(nPasses>0?nPasses:1)+1),20);
		pass++;
		if (pass>nPasses) pass =1;
		//	        Thread thread = Thread.currentThread();     // needed to check for interrupted state
		if (sigma > 2*MIN_DOWNSCALED_SIGMA + 0.5) {
			/* large radius (sigma): scale down, then convolve, then scale up */
			int reduceBy = (int)Math.floor(sigma/MIN_DOWNSCALED_SIGMA); //downscale by this factor
			if (reduceBy > length) reduceBy = length;
			/* Downscale gives std deviation sigma = 1/sqrt(3); upscale gives sigma = 1/2. (in downscaled pixels) */
			/* All sigma^2 values add to full sigma^2  */
			double sigmaGauss = Math.sqrt(sigma*sigma/(reduceBy*reduceBy) - 1./3. - 1./4.);
			int maxLength = (length+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1); //downscaled line can't be longer
			double[][] gaussKernel = makeGaussianKernel(sigmaGauss, accuracy, maxLength);
			int kRadius = gaussKernel[0].length*reduceBy; //Gaussian kernel radius after upscaling
			int readFrom = (writeFrom-kRadius < 0) ? 0 : writeFrom-kRadius; //not including broadening by downscale&upscale
			int readTo = (writeTo+kRadius > length) ? length : writeTo+kRadius;
			int newLength = (readTo-readFrom+reduceBy-1)/reduceBy + 2*(UPSCALE_K_RADIUS + 1);
			int unscaled0 = readFrom - (UPSCALE_K_RADIUS + 1)*reduceBy; //input point corresponding to cache index 0
			//IJ.log("reduce="+reduceBy+", newLength="+newLength+", unscaled0="+unscaled0+", sigmaG="+(float)sigmaGauss+", kRadius="+gaussKernel[0].length);
			double[] downscaleKernel = makeDownscaleKernel(reduceBy);
			double[] upscaleKernel = makeUpscaleKernel(reduceBy);
			double[] cache1 = new double[newLength];  //holds data after downscaling
			double[] cache2 = new double[newLength];  //holds data after convolution
			int pixel0 = lineFrom*lineInc;
			for (int line=lineFrom; line<lineTo; line++, pixel0+=lineInc) {
				downscaleLine(pixels, cache1, downscaleKernel, reduceBy, pixel0, unscaled0, length, pointInc, newLength);
				convolveLine(cache1, cache2, gaussKernel, 0, newLength, 1, newLength-1, 0, 1);
				upscaleLine(cache2, pixels, upscaleKernel, reduceBy, pixel0, unscaled0, writeFrom, writeTo, pointInc);
			}
		} else {
			/* small radius: normal convolution */
			double[][] gaussKernel = makeGaussianKernel(sigma, accuracy, length);
			int kRadius = gaussKernel[0].length;
			double[] cache = new double[length];          //input for convolution, hopefully in CPU cache
			int readFrom = (writeFrom-kRadius < 0) ? 0 : writeFrom-kRadius;
			int readTo = (writeTo+kRadius > length) ? length : writeTo+kRadius;
			int pixel0 = lineFrom*lineInc;
			for (int line=lineFrom; line<lineTo; line++, pixel0+=lineInc) {
				int p = pixel0 + readFrom*pointInc;
				for (int i=readFrom; i<readTo; i++ ,p+=pointInc)
					cache[i] = pixels[p];
				convolveLine(cache, pixels, gaussKernel, readFrom, readTo, writeFrom, writeTo, pixel0, pointInc);
			}
		}
		return;
	}
	/* Create a 1-dimensional normalized Gaussian kernel with standard deviation sigma
	 *  and the running sum over the kernel
	 *  Note: this is one side of the kernel only, not the full kernel as used by the
	 *  Convolver class of ImageJ.
	 *  To avoid a step due to the cutoff at a finite value, the near-edge values are
	 *  replaced by a 2nd-order polynomial with its minimum=0 at the first out-of-kernel
	 *  pixel. Thus, the kernel function has a smooth 1st derivative in spite of finite
	 *  length.
	 *
	 * @param sigma     Standard deviation, i.e. radius of decay to 1/sqrt(e), in pixels.
	 * @param accuracy  Relative accuracy; for best results below 0.01 when processing
	 *                  8-bit images. For short or float images, values of 1e-3 to 1e-4
	 *                  are better (but increase the kernel size and thereby the
	 *                  processing time). Edge smoothing will fail with very poor
	 *                  accuracy (above approx. 0.02)
	 * @param maxRadius Maximum radius of the kernel: Limits kernel size in case of
	 *                  large sigma, should be set to image width or height. For small
	 *                  values of maxRadius, the kernel returned may have a larger
	 *                  radius, however.
	 * @return          A 2*n array. Array[0][n] is the kernel, decaying towards zero,
	 *                  which would be reached at kernel.length (unless kernel size is
	 *                  limited by maxRadius). Array[1][n] holds the sum over all kernel
	 *                  values > n, including non-calculated values in case the kernel
	 *                  size is limited by <code>maxRadius</code>.
	 */
	public double[][] makeGaussianKernel(double sigma, double accuracy, int maxRadius) {
		int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1;
		if (maxRadius < 50) maxRadius = 50;         // too small maxRadius would result in inaccurate sum.
		if (kRadius > maxRadius) kRadius = maxRadius;
		double[][] kernel = new double[2][kRadius];
		for (int i=0; i<kRadius; i++)               // Gaussian function
			kernel[0][i] = (Math.exp(-0.5*i*i/sigma/sigma));
		if (kRadius < maxRadius && kRadius > 3) {   // edge correction
			double sqrtSlope = Double.MAX_VALUE;
			int r = kRadius;
			while (r > kRadius/2) {
				r--;
				double a = Math.sqrt(kernel[0][r])/(kRadius-r);
				if (a < sqrtSlope)
					sqrtSlope = a;
				else
					break;
			}
			for (int r1 = r+2; r1 < kRadius; r1++)
				kernel[0][r1] = (kRadius-r1)*(kRadius-r1)*sqrtSlope*sqrtSlope;
		}
		double sum;                                 // sum over all kernel elements for normalization
		if (kRadius < maxRadius) {
			sum = kernel[0][0];
			for (int i=1; i<kRadius; i++)
				sum += 2*kernel[0][i];
		} else
			sum = sigma * Math.sqrt(2*Math.PI);

		double rsum = 0.5 + 0.5*kernel[0][0]/sum;
		for (int i=0; i<kRadius; i++) {
			double v = (kernel[0][i]/sum);
			kernel[0][i] = v;
			rsum -= v;
			kernel[1][i] = rsum;
			//IJ.log("k["+i+"]="+(float)v+" sum="+(float)rsum);
		}
		return kernel;
	}
	/* Scale a line (row or column of a FloatProcessor or part thereof)
	 * down by a factor <code>reduceBy</code> and write the result into
	 * <code>cache</code>.
	 * Input line pixel # <code>unscaled0</code> will correspond to output
	 * line pixel # 0. <code>unscaled0</code> may be negative. Out-of-line
	 * pixels of the input are replaced by the edge pixels.
	 */
	void downscaleLine(double[] pixels, double[] cache, double[] kernel,
			int reduceBy, int pixel0, int unscaled0, int length, int pointInc, int newLength) {
		if (pixel0 > pixels.length) {
			System.out.println("++++++ Error in DoubleGaussianBlur, pixel0="+pixel0+", pixels.length="+(pixels.length));
			return;
		}
		double first = pixels[pixel0];
		double last = pixels[pixel0 + pointInc*(length-1)];
		int xin = unscaled0 - reduceBy/2;
		int p = pixel0 + pointInc*xin;
		for (int xout=0; xout<newLength; xout++) {
			double v = 0;
			for (int x=0; x<reduceBy; x++, xin++, p+=pointInc) {
				v += kernel[x] * ((xin-reduceBy < 0) ? first : ((xin-reduceBy >= length) ? last : pixels[p-pointInc*reduceBy]));
				v += kernel[x+reduceBy] * ((xin < 0) ? first : ((xin >= length) ? last : pixels[p]));
				v += kernel[x+2*reduceBy] * ((xin+reduceBy < 0) ? first : ((xin+reduceBy >= length) ? last : pixels[p+pointInc*reduceBy]));
			}
			cache[xout] = v;
		}
	}

	/* Create a kernel for downscaling. The kernel function preserves
	 * norm and 1st moment (i.e., position) and has fixed 2nd moment,
	 * (in contrast to linear interpolation).
	 * In scaled space, the length of the kernel runs from -1.5 to +1.5,
	 * and the standard deviation is 1/2.
	 * Array index corresponding to the kernel center is
	 * unitLength*3/2
	 */
	double[] makeDownscaleKernel (int unitLength) {
		int mid = unitLength*3/2;
		double[] kernel = new double[3*unitLength];
		for (int i=0; i<=unitLength/2; i++) {
			double x = i/(double)unitLength;
			double v = (0.75-x*x)/unitLength;
			kernel[mid-i] = v;
			kernel[mid+i] = v;
		}
		for (int i=unitLength/2+1; i<(unitLength*3+1)/2; i++) {
			double x = i/(double)unitLength;
			double v = (0.125 + 0.5*(x-1)*(x-2))/unitLength;
			kernel[mid-i] = v;
			kernel[mid+i] = v;
		}
		return kernel;
	}

	/* Scale a line up by factor <code>reduceBy</code> and write as a row
	 * or column (or part thereof) to the pixels array of a FloatProcessor.
	 */
	void upscaleLine (double[] cache, double[] pixels, double[] kernel,
			int reduceBy, int pixel0, int unscaled0, int writeFrom, int writeTo, int pointInc) {
		int p = pixel0 + pointInc*writeFrom;
		for (int xout = writeFrom; xout < writeTo; xout++, p+=pointInc) {
			int xin = (xout-unscaled0+reduceBy-1)/reduceBy; //the corresponding point in the cache (if exact) or the one above
			int x = reduceBy - 1 - (xout-unscaled0+reduceBy-1)%reduceBy;
			pixels[p] = cache[xin-2]*kernel[x]
					+ cache[xin-1]*kernel[x+reduceBy]
							+ cache[xin]*kernel[x+2*reduceBy]
									+ cache[xin+1]*kernel[x+3*reduceBy];
		}
	}

	/* Create a kernel for upscaling. The kernel function is a convolution
	 *  of four unit squares, i.e., four uniform kernels with value +1
	 *  from -0.5 to +0.5 (in downscaled coordinates). The second derivative
	 *  of this kernel is smooth, the third is not. Its standard deviation
	 *  is 1/sqrt(3) in downscaled cordinates.
	 *  The kernel runs from [-2 to +2[, corresponding to array index
	 *  0 ... 4*unitLength (whereby the last point is not in the array any more).
	 */
	double[] makeUpscaleKernel (int unitLength) {
		double[] kernel = new double[4*unitLength];
		int mid = 2*unitLength;
		kernel[0] = 0;
		for (int i=0; i<unitLength; i++) {
			double x = i/(double)unitLength;
			double v = ((2./3. -x*x*(1-0.5*x)));
			kernel[mid+i] = v;
			kernel[mid-i] = v;
		}
		for (int i=unitLength; i<2*unitLength; i++) {
			double x = i/(double)unitLength;
			double v = (2.-x)*(2.-x)*(2.-x)/6.;
			kernel[mid+i] = v;
			kernel[mid-i] = v;
		}
		return kernel;
	}

	/* Convolve a line with a symmetric kernel and write to a separate array,
	 * possibly the pixels array of a FloatProcessor (as a row or column or part thereof)
	 *
	 * @param input     Input array containing the line
	 * @param pixels    Float array for output, can be the pixels of a FloatProcessor
	 * @param kernel    "One-sided" kernel array, kernel[0][n] must contain the kernel
	 *                  itself, kernel[1][n] must contain the running sum over all
	 *                  kernel elements from kernel[0][n+1] to the periphery.
	 *                  The kernel must be normalized, i.e. sum(kernel[0][n]) = 1
	 *                  where n runs from the kernel periphery (last element) to 0 and
	 *                  back. Normalization should include all kernel points, also these
	 *                  not calculated because they are not needed.
	 * @param readFrom  First array element of the line that must be read.
	 *                  <code>writeFrom-kernel.length</code> or 0.
	 * @param readTo    Last array element+1 of the line that must be read.
	 *                  <code>writeTo+kernel.length</code> or <code>input.length</code>
	 * @param writeFrom Index of the first point in the line that should be written
	 * @param writeTo   Index+1 of the last point in the line that should be written
	 * @param point0    Array index of first element of the 'line' in pixels (i.e., lineNumber * lineInc)
	 * @param pointInc  Increment of the pixels array index to the next point (for an ImageProcessor,
	 *                  it should be <code>1</code> for a row, <code>width</code> for a column)
	 */
	public void convolveLine(double[] input, double[] pixels, double[][] kernel, int readFrom,
			int readTo, int writeFrom, int writeTo, int point0, int pointInc) {
		int length = input.length;
		double first = input[0];                 //out-of-edge pixels are replaced by nearest edge pixels
		double last = input[length-1];
		double[] kern = kernel[0];               //the kernel itself
		double kern0 = kern[0];
		double[] kernSum = kernel[1];            //the running sum over the kernel
		int kRadius = kern.length;
		int firstPart = kRadius < length ? kRadius : length;
		int p = point0 + writeFrom*pointInc;
		int i = writeFrom;
		for (; i<firstPart; i++,p+=pointInc) {  //while the sum would include pixels < 0
			double result = input[i]*kern0;
			result += kernSum[i]*first;
			if (i+kRadius>length) result += kernSum[length-i-1]*last;
			for (int k=1; k<kRadius; k++) {
				double v = 0;
				if (i-k >= 0) v += input[i-k];
				if (i+k<length) v+= input[i+k];
				result += kern[k] * v;
			}
			pixels[p] = result;
		}
		int iEndInside = length-kRadius<writeTo ? length-kRadius : writeTo;
		for (;i<iEndInside;i++,p+=pointInc) {   //while only pixels within the line are be addressed (the easy case)
			double result = input[i]*kern0;
			for (int k=1; k<kRadius; k++)
				result += kern[k] * (input[i-k] + input[i+k]);
			pixels[p] = result;
		}
		for (; i<writeTo; i++,p+=pointInc) {    //while the sum would include pixels >= length
			double result = input[i]*kern0;
			if (i<kRadius) result += kernSum[i]*first;
			if (i+kRadius>=length) result += kernSum[length-i-1]*last;
			for (int k=1; k<kRadius; k++) {
				double v = 0;
				if (i-k >= 0) v += input[i-k];
				if (i+k<length) v+= input[i+k];
				result += kern[k] * v;
			}
			pixels[p] = result;
		}
	}



}