1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
package com.elphel.imagej.calibration;
/**
** -----------------------------------------------------------------------------**
** target_points.java
**
** Measures focus sharpnes at orthogonal directions, differenct colors,
** Displays results for manual focusing/image plane tilting.
** NOTE: Requires special targets !
**
** Copyright (C) 2010 Elphel, Inc.
**
** -----------------------------------------------------------------------------**
**
** target_points.java is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
** -----------------------------------------------------------------------------**
**
*/
import ij.*;
import ij.process.*;
import ij.gui.*;
import java.awt.*;
import java.awt.event.*;
import ij.plugin.frame.*;
import java.util.List;
import com.elphel.imagej.jp4.JP46_Reader_camera;
import java.util.ArrayList;
import ij.text.*;
import java.lang.Integer;
public class target_points extends PlugInFrame implements ActionListener {
private static final long serialVersionUID = -3057496866952930812L;
JP46_Reader_camera jp4_instance;
// MTF_Bayer MTF_Bayer_instance;
Panel panel;
static Frame instance;
public static int DEBUG_LEVEL = 1;
public static int MASTER_DEBUG_LEVEL = 1;
public static int FFTSize=64;
public static int FFTScanStep=8;
public static int test_x=FFTSize;
public static int test_y=FFTSize;
public static int displayWidth=800;
public static int displayHeight=600;
public static float [][] input_bayer=null;
public static float [][] convolved_bayer=null;
public static float [][] normalized_convolved_bayer=null;
public static float [] target_kernel=null;
public static int [][] clusterMaps=null;
public static double [][][] targetCoordinates;
public static double targetOuterDMin =38; // minimal outer diameter of the target image , in pixels
public static double targetOuterDMax =47; // maximal outer diameter of the target image , in pixels
public static int numTargetRings = 2; // number of target black rings (notg counting center black circle)
public static int pixelsSubdivide =10; // subdivide pixels by this number (each direction) when generating targets
public static double deconvInvert = 0.1; // when FFT component is lass than this fraction of the maximal value, replace 1/z with Z
public static double filteredRadius= 7.0; //pix - search maximums after convolution in (2*filteredRadius+1) squares
public static double backgroundRadius= 15.0; //pix - consider ring area between backgroundRadius and filteredRadius as reference
public static double clusterThreshold= 1.0; //1.2; // tested with 0.8 - many extras, but filtered out
public static int clusterSize= 20; // cluster size (will be expanded/shrank before finding centroid
public static int discrAngularFreq= 2 ; // pixels on FFT image of tragets converted polar (the smaller, the less angular variations)
/// these parameters are dependent on targets, use debug mode and manula fft for 64x64 polar coordinates target areas
public static int discrRadialMinFreq= 7 ; // pixels on FFT image of targets converted polar (radial component)
public static int discrRadialMaxFreq= 9 ; // pixels on FFT image of targets converted polar (radial component)
public static double discrThreshold= 0.1; // FFT energy fraction in selecter area should be > this threshold to pass the test
public static double maxChromaticDistance= 10.0; // Maximal distance between the same target on different color copmponents
public static double[][][] targets; // For each target {averageX, averageY, num_non_zero_components},{X1,Y1,Qulaity1},...,{X4,Y4,Qulaity4}
/**
discrRadialMinFreq=(size*(2* numTargetRings +1)/targetOuterDMax)-1
discrRadialMaxFreq=(size*(2* numTargetRings +1)/targetOuterDMin)+1
*/
private ImagePlus imp_src;
public ImageProcessor ip_display;
public ImagePlus imp_display;
public ImagePlus imp_camera=null;
Plot plotResult;
public target_points() {
super("target_points");
if (IJ.versionLessThan("1.39t")) return;
if (instance!=null) {
instance.toFront();
return;
}
instance = this;
addKeyListener(IJ.getInstance());
setLayout(new FlowLayout());
panel = new Panel();
addButton("Configure");
addButton("Split Bayer");
addButton("Create Target");
addButton("Split&Convolve");
add(panel);
pack();
GUI.center(this);
setVisible(true);
initHamming(FFTSize);
// initDisplay();
jp4_instance= new JP46_Reader_camera();
}
void addButton(String label) {
Button b = new Button(label);
b.addActionListener(this);
b.addKeyListener(IJ.getInstance());
panel.add(b);
}
public void actionPerformed(ActionEvent e) {
int i,j,ir2, size;
String label = e.getActionCommand();
if (label==null) return;
if (label.equals("Configure")) {
if (showDialog()) {
initHamming(FFTSize);
}
return;
}
if (label.equals("Create Target")) {
DEBUG_LEVEL=MASTER_DEBUG_LEVEL;
target_kernel=createTargetDialog ();
return;
}
imp_src = WindowManager.getCurrentImage();
String newTitle= imp_src.getTitle();
Rectangle r=new Rectangle(imp_src.getWidth(),imp_src.getHeight());
if (label.equals("Split Bayer")) {
DEBUG_LEVEL=MASTER_DEBUG_LEVEL;
input_bayer=splitBayer (imp_src);
showBayers(input_bayer, r.width>>1, r.height>>1, newTitle);
return;
}
if (label.equals("Split&Convolve")) {
DEBUG_LEVEL=MASTER_DEBUG_LEVEL;
input_bayer=splitBayer (imp_src);
if (DEBUG_LEVEL>5) showBayers(input_bayer, r.width>>1, r.height>>1, newTitle);
if (target_kernel==null) {
IJ.showMessage("Error","Target kernel does not exist, please generate one");
return;
}
size=(int) Math.sqrt(target_kernel.length);
//target_kernel
/* Convolve Bayer slices with prepared target template */
convolved_bayer=new float[input_bayer.length][];
for (i=0; i<input_bayer.length; i++) {
IJ.showStatus("Convolving Bayer "+i);
/* Double in convolution works twice faster than float!*/
convolved_bayer[i]=doubleConvolveWithTarget(input_bayer[i], target_kernel, r.width>>1, r.height>>1, size);
}
if (DEBUG_LEVEL>2) showBayers(convolved_bayer, r.width>>1, r.height>>1, newTitle+"_"+deconvInvert);
//
// filteredRadius =(int) gd.getNextNumber();
// backgroundRadius =(int) gd.getNextNumber();
/* normalize convolved Bayer slices */
/* prepare pixel mask for the normalization (ring) */
int filtSize= (int) filteredRadius;
boolean [][] mask=new boolean[2*filtSize+1][2*filtSize+1];
for (i=0;i<(2*filtSize+1);i++) for (j=0;j<(2*filtSize+1);j++) {
ir2=(i-filtSize)*(i-filtSize) + (j-filtSize)*(j-filtSize);
mask[i][j]=(ir2>(filteredRadius*filteredRadius)) && (ir2 < (backgroundRadius*backgroundRadius));
}
// public static float [][] normalized_convolved_bayer=null;
normalized_convolved_bayer=new float[input_bayer.length][];
for (i=0; i<input_bayer.length; i++) {
IJ.showStatus("Normalizing Bayer "+i);
normalized_convolved_bayer[i]=normalizeAtRing(convolved_bayer[i], r.width>>1, r.height>>1, mask);
}
if (DEBUG_LEVEL>1) showBayers(normalized_convolved_bayer, r.width>>1, r.height>>1, newTitle+"_"+deconvInvert+"_normalized");
// public static int [][] clusterMaps=null;
//clusterThreshold
clusterMaps= new int[4][];
targetCoordinates=new double[4][][];
for (i=0; i<input_bayer.length; i++) {
IJ.showStatus("Clusterizing Bayer "+i);
// clusterMaps[i]=clusteriseTargets(normalized_convolved_bayer[i], r.width>>1, r.height>>1,clusterThreshold,clusterSize);
targetCoordinates[i]=clusteriseTargets(normalized_convolved_bayer[i], r.width>>1, r.height>>1,clusterThreshold,clusterSize);
}
float[][]clusterPixels=new float[4][input_bayer[0].length];
if (DEBUG_LEVEL>2) {
// float[][]clusterPixels=new float[4][input_bayer[0].length];
for (i=0; i<clusterPixels.length; i++) {
for (j=0; j<clusterPixels[0].length; j++) clusterPixels[i][j]=0.0f;
for (j=0;j<targetCoordinates[i].length;j++) {
clusterPixels[i][((int)(Math.round(targetCoordinates[i][j][1])*(r.width>>1))) +((int)Math.round(targetCoordinates[i][j][0]))]=1.0f;
}
}
showBayers(clusterPixels, r.width>>1, r.height>>1, newTitle+"_"+deconvInvert+"_clusters");
}
float [] rectTarget;
ImageProcessor ip_dbg;
ImagePlus imp_dbg;
double likely;
double [] likelyness;
int numGoodTargets;
double [][] goodTargets; /// x/y/above Threshold
double r0=(targetOuterDMin+targetOuterDMax)/(2* numTargetRings +1)/8; /// copmpensate for the center circle twice wider than rings
/**
discrRadialMinFreq=(size*(2* numTargetRings +1)/targetOuterDMax)-1
discrRadialMaxFreq=(size*(2* numTargetRings +1)/targetOuterDMin)+1
*/
for (i=0; i<clusterPixels.length; i++) {
likelyness= new double[targetCoordinates[i].length];
numGoodTargets=0;
for (j=0;j<targetCoordinates[i].length;j++) {
rectTarget=circle2DoubleRect (input_bayer[i], r.width>>1, r.height>>1, size,targetCoordinates[i][j][0],targetCoordinates[i][j][1], r0);
likely=likelyTarget(rectTarget, size,discrAngularFreq,discrRadialMinFreq,discrRadialMaxFreq);
likelyness[j]=likely;
if (DEBUG_LEVEL>2) {
System.out.println("Cluster="+j+" x="+targetCoordinates[i][j][0]+" y="+targetCoordinates[i][j][1]+" likely="+likely);
}
if (DEBUG_LEVEL>3) {
if (i==0) { // just to reduce debug clutter
ip_dbg=new FloatProcessor(size,size);
ip_dbg.setPixels(rectTarget);
ip_dbg.resetMinAndMax();
imp_dbg= new ImagePlus(newTitle+"_rect_"+j, ip_dbg);
imp_dbg.show();
}
}
if (likely >=discrThreshold) numGoodTargets++;
}
goodTargets=new double[numGoodTargets][3];
numGoodTargets=0;
for (j=0;j<targetCoordinates[i].length;j++) {
if (likelyness[j]>=discrThreshold) {
goodTargets[numGoodTargets][2]=likelyness[j]/discrThreshold;
goodTargets[numGoodTargets][0]=2*targetCoordinates[i][j][0]+(i&1); // convert to full image, use Bayer shift
goodTargets[numGoodTargets][1]=2*targetCoordinates[i][j][1]+((i>>1)&1); // convert to full image, use Bayer shift
numGoodTargets++;
}
}
targetCoordinates[i]=goodTargets;
}
if (DEBUG_LEVEL>1) {
for (i=0; i<clusterPixels.length; i++) {
for (j=0; j<clusterPixels[0].length; j++) clusterPixels[i][j]=0.0f;
for (j=0;j<targetCoordinates[i].length;j++) {
clusterPixels[i][((int)(Math.round((targetCoordinates[i][j][1] - ((i>>1)&1))/2) *(r.width>>1))) +
((int)(Math.round((targetCoordinates[i][j][0] - ( i &1))/2)))]=1.0f;
System.out.println("Bayer="+i+" Target="+(j+1)+" x="+targetCoordinates[i][j][0]+" y="+targetCoordinates[i][j][1]+" quality="+targetCoordinates[i][j][2]);
}
}
showBayers(clusterPixels, r.width>>1, r.height>>1, newTitle+"_"+deconvInvert+"_clusters");
}
/* TODO: Verify that all Bayer components have the same targets (build composite table) */
targets= combineTargets(targetCoordinates, maxChromaticDistance);
showTargetsLocationTable(targets, newTitle, 2, (DEBUG_LEVEL>1));
return;
}
}
/* Combine target locations from 4 Bayer components */
double [][][] combineTargets(double[][][] targetCoord, ///[bayer][number][x,y,q>1]
double maxDistance) { /// maximal distance between the same target in different Bayer components
int [][] targetNumbers=new int[targetCoord.length][];
int i,i1,j,k,n,l,maxLen, bNum, numTargets;
double d2=maxDistance*maxDistance;
double [][][] targets;
double avX,avY;
maxLen=0;
bNum=-1;
for (i=0;i<targetCoord.length;i++) {
l=targetCoord[i].length;
targetNumbers[i]=new int [l];
for (j=0;j<l;j++) targetNumbers[i][j]=0;
if (maxLen<l){
maxLen=l;
bNum=i;
}
}
/* assign target number according to the component that has most of the targets (does not mean others do not have that this one is missing */
for (j=0;j<maxLen;j++) targetNumbers[bNum][j]=j+1;
numTargets=maxLen; // may increase later
/* compare all other color components with the coordinates in the seslected one (not too many to bother with good guess) */
for (i=0;i<targetNumbers.length;i++) if (i!=bNum) {
for (j=0;j<targetNumbers[i].length;j++) if (targetNumbers[i][j]==0){
for (k=0;k<targetNumbers[bNum].length;k++) {
if (((targetCoord[bNum][k][0]-targetCoord[i][j][0])*(targetCoord[bNum][k][0]-targetCoord[i][j][0])+
(targetCoord[bNum][k][1]-targetCoord[i][j][1])*(targetCoord[bNum][k][1]-targetCoord[i][j][1]))<=d2) {
targetNumbers[i][j]=targetNumbers[bNum][k];
break;
}
}
}
}
/* See if any targets are missing, add them */
for (i=0;i<targetNumbers.length;i++) if (i!=bNum) {
for (j=0;j<targetNumbers[i].length;j++) if (targetNumbers[i][j]==0){
numTargets++;
targetNumbers[i][j]=numTargets;
for (i1=i+1;i1<targetNumbers.length;i1++) if (i1!=bNum) {
for (k=0;k<targetNumbers[i1].length;k++) if (targetNumbers[i1][k]==0) {
targetNumbers[i1][k]=numTargets;
}
}
}
}
if (DEBUG_LEVEL>2) {
System.out.println("numTargets="+numTargets);
for (i=0;i<targetCoord.length;i++) for (j=0;j<targetCoord[i].length;j++) {
System.out.println("["+targetNumbers[i][j]+"] "+i+":"+j+" "+targetCoord[i][j][0]+","+targetCoord[i][j][1]+" :"+targetCoord[i][j][2]);
}
}
targets = new double [numTargets][targetNumbers.length+1][3];
for (i=0;i<numTargets;i++) for (j=0;j<targets[i].length;j++) for (k=0;k<3;k++) targets [i][j][k]=0.0;
for (i=0;i<targetNumbers.length;i++) for (j=0;j<targetNumbers[i].length;j++) if (targetNumbers[i][j]!=0){ // should be always non-zero
k=targetNumbers[i][j]-1;
targets[k][i+1][0]=targetCoord[i][j][0]; // x
targets[k][i+1][1]=targetCoord[i][j][1]; // y
targets[k][i+1][2]=targetCoord[i][j][2]; // quality >1.0
}
/* Calculate average values*/
for (i=0;i<numTargets;i++) {
avX=0.0;
avY=0.0;
n=0;
for (j=1;j< targets[i].length; j++) if (targets[i][j][2]>0){
avX+=targets[i][j][0];
avY+=targets[i][j][1];
n++;
}
if (n>0) {
targets[i][0][0]=avX/n;
targets[i][0][1]=avY/n;
targets[i][0][2]=n;
}
}
if (DEBUG_LEVEL>2) {
System.out.println("targets");
for (i=0;i<targets.length;i++) {
System.out.println(i+" | "+targets[i][0][0]+","+targets[i][0][1]+" :"+targets[i][0][2]+
" | "+targets[i][1][0]+","+targets[i][1][1]+" :"+targets[i][1][2]+
" | "+targets[i][2][0]+","+targets[i][2][1]+" :"+targets[i][2][2]+
" | "+targets[i][3][0]+","+targets[i][3][1]+" :"+targets[i][3][2]+
" | "+targets[i][4][0]+","+targets[i][4][1]+" :"+targets[i][4][2]);
}
}
return targets;
}
public void showTargetsLocationTable(double[][][] targets, String title, int precision, boolean showQuality) {
int i,n;
String header="#\tX\tY";
for (i=1;i<targets[0].length;i++) header+="\tdX"+i+"\tdY"+i+(showQuality?("\tQ"+i):"");
StringBuffer sb = new StringBuffer();
for (n=0;n<targets.length;n++) {
sb.append((n+1)+
"\t"+IJ.d2s(targets[n][0][0],precision)+ // Average X
"\t"+IJ.d2s(targets[n][0][1],precision)); // Average Y
for (i=1;i<targets[0].length;i++) {
if (targets[n][i][2]>0) {
sb.append( "\t"+(((targets[n][i][0]-targets[n][0][0])>0)?"+":"")+IJ.d2s(targets[n][i][0]-targets[n][0][0],precision)+ // X
"\t"+(((targets[n][i][1]-targets[n][0][1])>0)?"+":"")+IJ.d2s(targets[n][i][1]-targets[n][0][1],precision)); // Y
} else {
sb.append( "\t---\t---");
}
if (showQuality) sb.append("\t"+((targets[n][0][2]>0)?IJ.d2s(targets[n][i][2],precision):"---"));
}
sb.append( "\n");
}
new TextWindow(title+"_Target_Locations_Table", header, sb.toString(), showQuality?900:700,500);
}
/* determines if it was likely a target of concentric circles, after convertion to polar coordinates expect nearly horizontal b/w bands */
double likelyTarget(float[] pixels, // pixel array
int size, // image size (should be square for FFT
int hor, // horizontal selection area (half width)
int vertMin,
int vertMax) // vertical selection area (half height > half width for horizointal bands)
{
ImageProcessor ip;
FHT fht;
double[][][] fft;
double s1,s2,e;
int i,j;
ip=new FloatProcessor(size,size);
ip.setPixels(pixels);
fht = new FHT(ip);
// Swapping quadrants, so the center will be 0,0
fht.swapQuadrants();
// get to frequency
fht.transform();
// Convert from FHT to complex FFT
fft= FHT2FFTHalf (fht);
s1=0;
s2=0;
for (i=0;i<(size/2+1);i++) for (j=0;j<size;j++) {
if ((i>0) || (j>0)) { // skip DC
e=fft[i][j][0]*fft[i][j][0]+fft[i][j][1]*fft[i][j][1];
if ((i>=vertMin) && (i<=vertMax) && ((j<=hor) || (j>=size-hor))) s1+=e;
else s2+=e;
}
}
return s1/(s1+s2); // fraction inside selected area, use as likelyhood of the needed target
}
float [] circle2DoubleRect (float [] pixels, int width, int height, int size, double x0, double y0, double r0) {
float [] outPixels=new float[size*size];
int x,y;
double a,r;
int px,py;
for (y=0;y<size;y++) for (x=0;x<size;x++) {
if ((y>(size>>1)) || ((y==(size>>1)) && (x>=(size>>1)))){
r=y-(size>>1); // +0.5?
a=size-x-1;
} else {
r=(size>>1)-y; // -0.5?
a=size+x;
}
r+=r0; /// to match periodic pattern on both sides of zero (center circle is twice wider)
a*=Math.PI/size;
px=((int)Math.round(x0+r*Math.cos(a)) + width ) % width;
py=((int)Math.round(y0+r*Math.sin(a)) + height) % height;
outPixels[y*size+x]=pixels[py*width+px];
}
return outPixels;
}
double [][] clusteriseTargets(float [] pixels,int width, int height, double threshold, int clusterSize) {
if ((width*height) != pixels.length) {
IJ.showMessage("Error in clasteriseTargets","pixels.length ("+pixels.length+") does not match width ("+width+") x height ("+height+") = "+(width*height));
return null;
}
int x,y,i,j;
Integer Index, NewIndex, NextIndex;
int clusterNumber=1;
int []clusterMap=new int[width*height];
List <Integer> pixelList=new ArrayList<Integer>(100);
int [] dirs={1,-width+1,-width,-width-1,-1,+width-1,width,width+1};
int listIndex;
float f;
boolean first;
double cx,cy,cm; // for centroid calculation;
int ix,iy;
Double [] cxy=null;
for (i=0;i<clusterMap.length;i++) clusterMap[i]=0; /// 0 - unused, -1 - "do not use"
List <Double[]> Centroids=new ArrayList<Double[]>(100);
for (y=0;y<height;y++) for (x=0;x<width;x++) {
if ((pixels[y*width+x]>=threshold) && (clusterMap[y*width+x]==0)) {
/// mark all connected pixels above the threshold
Index=y*width+x;
pixelList.clear();
pixelList.add (Index);
clusterMap[Index]=clusterNumber;
listIndex=0;
while (listIndex<pixelList.size() ) {
Index=pixelList.get(listIndex++);
for (i=0;i<dirs.length;i++) {
NewIndex=Index+dirs[i];
if ((NewIndex>=0) && (NewIndex<clusterMap.length) && (clusterMap[NewIndex]==0) && (pixels[NewIndex]>=threshold)) {
pixelList.add (NewIndex);
clusterMap[NewIndex]=clusterNumber;
}
}
} // while (!pixelList.isEmpty() )
if (DEBUG_LEVEL>2) {
System.out.println("Cluster="+clusterNumber+", n="+pixelList.size()+" x="+x+" y="+y);
}
if (clusterSize>0) { // 0 - leave as is
if (pixelList.size()>clusterSize) { // shrink
while (pixelList.size()>clusterSize) {
i=0;
f=pixels[pixelList.get(i)];
for (j=1;j<pixelList.size();j++) if (pixels[pixelList.get(j)]<f){
i=j;
f=pixels[pixelList.get(j)];
}
clusterMap[pixelList.get(i)]=-1; // Do not use looking for the next cluster
pixelList.remove(i);
}
} else if (pixelList.size()<clusterSize) { // expand
while (pixelList.size()<clusterSize) {
first=true;
f=0.0f;
NextIndex=0;
for (j=0;j<pixelList.size();j++) {
Index= pixelList.get(j);
for (i=0;i<dirs.length;i++){
NewIndex=Index+dirs[i];
if ((NewIndex>=0) && (NewIndex<clusterMap.length) && (clusterMap[NewIndex]==0) && (first || (pixels[NewIndex]>f))) {
f=pixels[NewIndex];
NextIndex=NewIndex;
first=false;
}
}
}
pixelList.add (NextIndex);
clusterMap[NextIndex]=clusterNumber;
}
}
/* calculate centroid */
cx=0.0; cy=0.0; cm=0.0;
for (i=0;i<pixelList.size();i++) {
j=pixelList.get(i);
iy=j/width;
ix=j-width*iy;
// System.out.println("j="+j+" x="+ix+" y="+iy);
f=pixels[j];
cm+=f;
cx+=f*ix;
cy+=f*iy;
}
cx/=cm;
cy/=cm;
cxy=new Double[2];
cxy[0]=cx;
cxy[1]=cy;
Centroids.add(cxy);
// System.out.println("New cluster size="+pixelList.size()+" x="+cx+" y="+cy);
}
clusterNumber++;
}
}
double[][] coordList=new double[Centroids.size()][2];
for (i=0;i<coordList.length;i++) {
coordList[i][0]=Centroids.get(i)[0];
coordList[i][1]=Centroids.get(i)[1];
}
// Double[][] coordList= (Double[][]) Centroids.toArray();
if (DEBUG_LEVEL>2) {
for (i=0;i<coordList.length;i++) System.out.println(i+": x="+coordList[i][0]+" y="+coordList[i][1]);
}
// return clusterMap;
return coordList;
}
//// System.out.println("measureTargets(), N="+N);
/* Normalize pixels values as ratios of difference to average in the surrounding ring to variation in the ring*/
/* TODO: don't roll over, limit */
/// BUG: Seems something wrong - if convolution kernel had DC component - generated all "1.0"
float [] normalizeAtRing(float [] pixels, int width, int height, boolean[][] mask ) {
if ((width*height) != pixels.length) {
IJ.showMessage("Error in normalizeAtRing","pixels.length ("+pixels.length+") does not match width ("+width+") x height ("+height+") = "+(width*height));
return null;
}
int i,j,x,y,x1,y1,x2,y2, pre_x,pre_y;
int nFiltPix=0;
float [] result=new float [width*height];
double s,s2,d, mean,sigma, meang,sigmag;
double min=0.0;
double max=0.0;
boolean first;
int ir=(mask.length-1)>>1;
for (i=0;i<mask.length; i++) for (j=0;j<mask[0].length;j++) if (mask[i][j]) nFiltPix++;
s= 0.0;
s2=0.0;
for (y=0;y<height;y++) for (x=0;x<width;x++) {
d=pixels[y*width+x];
s+=d;
s2+=d*d;
}
meang= s/(width+height);
sigmag=Math.sqrt(s2/(width+height)-meang*meang);
for (y=0;y<height;y++) for (x=0;x<width;x++) {
s= 0.0;
s2=0.0;
pre_y=y+ir+height; // preparing for "%", making sure it will be positive
pre_x=x+ir+width; // preparing for "%", making sure it will be positive
first=true;
for (y1=0;y1 < mask.length; y1++) {
y2=(pre_y-y1)%height;
for (x1=0;x1<mask[0].length;x1++) if (mask[y1][x1]) {
x2=(pre_x-x1)%width;
d=pixels[y2*width+x2];
if (first) {
min=d;
max=d;
first=false;
}
if (d>max) max=d;
if (d<min) min=d;
s+=d;
s2+=d*d;
}
}
mean= s/nFiltPix;
sigma=Math.sqrt(s2/nFiltPix-mean*mean);
sigma=Math.sqrt(sigma*sigmag); // average with image-global sigma
// mean=max;
// sigma=max-min;
d=pixels[y*width+x];
if (sigma>0) { // should always be so
result[y*width+x]= (float) ((d-mean)/sigma);
} else {
result[y*width+x]=1.0f; // any number?
}
}
return result;
}
/* Convolve image (one Bayer slice) with the inverted target kernel
Center should be at size/2, size/2 - will convolve only (size-1)*(size-1) */
/**Which is faster - double or float? Double i TWICE faster!*/
float [] doubleConvolveWithTarget(float [] pixels, float [] kernel_full, int width, int height, int size) {
int hsize=size/2;
double [] kernel;
if ((width*height) != pixels.length) {
IJ.showMessage("Error","pixels.length ("+pixels.length+") does not match width ("+width+") x height ("+height+") = "+(width*height));
return null;
}
if ((size*size) != kernel_full.length) {
IJ.showMessage("Error","kernel.length ("+kernel_full.length+") does not match size ("+size+") ^2 = "+(size*size));
return null;
}
int i,j;
double d; // is float faster than double? or opposite (then it makes sesne to convert everything to double first
/* if kernel has even dimensions - ignore first (0) row and first (0) column */
if ((size & 1)!=0) {
kernel= new double[size*size];
for (i=0;i<kernel.length;i++) kernel[i]=kernel_full[i];
} else {
size-=1;
hsize-=1;
d=0.0f;
kernel= new double[size*size];
for (i=0;i<size;i++) for (j=0;j<size;j++) {
kernel[i*size+j]=kernel_full[(i+1)*(size+1)+(j+1)];
d+=kernel[i*size+j];
}
d/=size*size;
// System.out.println("Subtracting average value ("+d+") from the convolution kernel");
for (i=0;i<kernel.length;i++) kernel[i]-=d;
}
double [] dPixels=new double[pixels.length];
for (i=0;i<pixels.length;i++) dPixels[i]=pixels[i];
if (DEBUG_LEVEL>10) IJ.showMessage("Debug doubleConvolveWithTarget","pixels.length="+pixels.length+"\nwidth="+width+"\nheight="+height+"\nkernel.length="+kernel.length+"\nsize="+size);
float [] result=new float [width*height]; /* this is still float - one conversion on tghe output*/
int x,y,x1,y1, x2, y2, pre_y,pre_x;
// double d;
boolean yMiddle=false;
int index_kernel, index_source;
for (y=0;y<height;y++) {
/**/
yMiddle= (y>=hsize) && (y<(height-hsize));
if (yMiddle) { // calculate faster when no need to care about borders
for (x=hsize;x<width-hsize;x++) {
d=0;
index_kernel=0;
index_source=(y+hsize)*width+x+hsize;
for (y1=0;y1<size;y1++) {
for (x1=0;x1<size;x1++) {
// if (index_source<0) System.out.println("index_source="+index_source+" index_kernel="+index_kernel+" x="+x+" y="+y+" x1="+x1+" y1="+y1);
d+=dPixels[index_source--]*kernel[index_kernel++]; ///out of bounds: -834
}
index_source-=width-size;
}
result[y*width+x]= (float) d;
}
}
/**/
/* now finish beginnings/ends of the middle lines and process complete first/last lines*/
pre_y=y+hsize+height; // preparing for "%", making sure it will be positive
for (x=0;x<width;x++) if ((x<hsize) || (x>=(width-hsize)) || !yMiddle){
d=0;
pre_x=x+hsize+width; // preparing for "%", making sure it will be positive
for (y1=0;y1<size;y1++) {
y2=(pre_y-y1)%height;
for (x1=0;x1<size;x1++) {
x2=(pre_x-x1)%width;
d+=dPixels[y2*width+x2]*kernel[y1*size+x1];
}
result[y*width+x]= (float) d;
}
}
}
return result;
}
public void processWindowEvent(WindowEvent e) {
super.processWindowEvent(e);
if (e.getID()==WindowEvent.WINDOW_CLOSING) {
instance = null;
}
}
public boolean showDialog() {
int i;
GenericDialog gd = new GenericDialog("Target Points parameters");
gd.addStringField ("Filename prefix: ", jp4_instance.getTitle(), 20);
gd.addNumericField("FFT_Size: ", FFTSize, 0);
// gd.addNumericField("Target minimal outer diameter (pix)", targetOuterDMin, 2);
// gd.addNumericField("Target maximal outer diameter (pix)", targetOuterDMax, 2);
// gd.addNumericField("Number of target rings ", numTargetRings, 0);
// gd.addNumericField("Subdivide pixels for target generation ", pixelsSubdivide, 0);
gd.addNumericField("Filtered radius (pix) ", filteredRadius, 2); //3; //pix - search maximums after convolution in (2*filteredRadius+1) squares
gd.addNumericField("Background radius (pix) ", backgroundRadius, 3); //25; //pix - consider ring area between backgroundRadius and filteredRadius as reference
gd.addNumericField("Cluster threshold ", clusterThreshold, 3); //1.5
gd.addNumericField("Cluster size (pix) ", clusterSize, 0); //20
gd.addNumericField("Target discriminator angular freq. ", discrAngularFreq, 0); //2 ; // pixels on FFT image of tragets converted polar (the smaller, the less angular variations)
gd.addNumericField("Target discriminator radial min freq ", discrRadialMinFreq, 0); //10 ; // pixels on FFT image of tragets converted polar (radial component)
gd.addNumericField("Target discriminator radial max freq ", discrRadialMaxFreq, 0); //10 ; // pixels on FFT image of tragets converted polar (radial component)
gd.addNumericField("Target discriminator threshold ", discrThreshold, 3); //0.3; // FFT energy fraction in selecter area should be > this threshold to pass the test
gd.addNumericField("Max chromatic aberration (pix) ", maxChromaticDistance, 1); //10.0; // Maximal distance between the same target on different color copmponents
gd.addNumericField("Debug Level: ", MASTER_DEBUG_LEVEL, 0);
gd.showDialog();
if (gd.wasCanceled()) return false;
jp4_instance.setTitle(gd.getNextString());
FFTSize=1;
for (i= (int) gd.getNextNumber(); i >1; i>>=1) FFTSize <<=1; /* make FFTSize to be power of 2*/
// targetOuterDMin = gd.getNextNumber(); // minimal outer diameter of the target image , in pixels
// targetOuterDMax = gd.getNextNumber(); // maximal outer diameter of the target image , in pixels
// numTargetRings = (int) gd.getNextNumber(); // number of target black rings (notg counting center black circle)
// pixelsSubdivide = (int) gd.getNextNumber(); // Subdivide pixels for target generation
filteredRadius = gd.getNextNumber();
backgroundRadius = gd.getNextNumber();
clusterThreshold= gd.getNextNumber();
clusterSize= (int) gd.getNextNumber();
discrAngularFreq= (int) gd.getNextNumber();
discrRadialMinFreq= (int) gd.getNextNumber();
discrRadialMaxFreq= (int) gd.getNextNumber();
discrThreshold= gd.getNextNumber();
maxChromaticDistance= gd.getNextNumber();
MASTER_DEBUG_LEVEL= (int) gd.getNextNumber();
return true;
}
public float []createTargetDialog() {
int i;
GenericDialog gd = new GenericDialog("Target template parameters");
gd.addNumericField("FFT_Size: ", FFTSize, 0);
gd.addNumericField("Target minimal outer diameter (pix)", targetOuterDMin, 2);
gd.addNumericField("Target maximal outer diameter (pix)", targetOuterDMax, 2);
gd.addNumericField("Number of target rings ", numTargetRings, 0);
gd.addNumericField("Subdivide pixels for target generation ", pixelsSubdivide, 0);
gd.addNumericField("Invert deconvolution if less than", deconvInvert, 3);
// gd.addNumericField("Debug Level: ", MASTER_DEBUG_LEVEL, 0);
gd.showDialog();
if (gd.wasCanceled()) return null;
FFTSize=1;
for (i= (int) gd.getNextNumber(); i >1; i>>=1) FFTSize <<=1; /* make FFTSize to be power of 2*/
targetOuterDMin = gd.getNextNumber(); // minimal outer diameter of the target image , in pixels
targetOuterDMax = gd.getNextNumber(); // maximal outer diameter of the target image , in pixels
numTargetRings = (int) gd.getNextNumber(); // number of target black rings (notg counting center black circle)
pixelsSubdivide = (int) gd.getNextNumber(); // Subdivide pixels for target generation
deconvInvert= gd.getNextNumber(); //0.05; // when FFT component is lass than this fraction of the maximal value, replace 1/z with Z
// MASTER_DEBUG_LEVEL= (int) gd.getNextNumber();
return createTarget(FFTSize,pixelsSubdivide,targetOuterDMin,targetOuterDMax,numTargetRings,deconvInvert);
}
public float [] createTarget(int size, int subdiv, double DMin, double DMax, int nRings, double deconvInvert) {
ImageProcessor ip_target;
FHT fht_target;
double[][][] fft_target;
int hsizeP1= (size>>1)+1;
double [][] dpixels=new double [hsizeP1][hsizeP1];
double [] rMinIn= new double[nRings+1];
double [] rMaxIn= new double[nRings+1];
double [] rMinOut= new double[nRings+1];
double [] rMaxOut= new double[nRings+1];
int i,j,i1,j1,n;
double x,y,r,ks,ke;
double subFraction=1.0/(subdiv*subdiv);
double DCLevel=0.0;
double a,k,r2,k2;
if (DMin>DMax) {
x=DMin;
DMin=DMax;
DMax=x;
}
for (n=0;n<=nRings;n++) {
rMinIn[n]= DMin*(n*2 )/(2*(2*nRings+1));
rMinOut[n]=DMin*(n*2+1)/(2*(2*nRings+1));
rMaxIn[n]= DMax*(n*2 )/(2*(2*nRings+1));
rMaxOut[n]=DMax*(n*2+1)/(2*(2*nRings+1));
}
for (i=0;i<hsizeP1; i++) for (j=0;j<hsizeP1; j++) {
dpixels[i][j]=0.0;
for (i1=0;i1<subdiv; i1++) for (j1=0;j1<subdiv; j1++) {
x=j+0.1*j1;
y=i+0.1*i1;
r=Math.sqrt(x*x+y*y);
for (n=0;n<=nRings;n++) if ((rMinIn[n] <= r)&& (rMaxOut[n]>r)){
if (rMaxIn[n]>r) ke=(r-rMinIn[n])/(rMaxIn[n]-rMinIn[n]);
else ke=1.0;
if (rMinOut[n]<=r) ks=(r-rMinOut[n])/(rMaxOut[n]-rMinOut[n]);
else ks=0.0;
/// dpixels[i][j]+=subFraction*(ke-ks);
dpixels[i][j]-=subFraction*(ke-ks);
}
}
r=dpixels[i][j];
// some piuxels will appear once, some - twice, most - four times
if ((i>0) &&(i<(size>>1))) r*=2.0;
if ((j>0) &&(j<(size>>1))) r*=2.0;
DCLevel+=r;
}
DCLevel/=(size*size);
for (i=0;i<hsizeP1; i++) for (j=0;j<hsizeP1; j++) dpixels[i][j]-=DCLevel;
ip_target = new FloatProcessor(FFTSize,FFTSize);
for (i=0;i<size; i++) for (j=0;j<size; j++) {
// ip_target.putPixelValue(j,i, (float) dpixels[(i>=hsizeP1)?(size-i):i][(j>=hsizeP1)?(size-j):j]);
ip_target.putPixelValue(j ^ (size>>1),i ^ (size>>1), (float) dpixels[(i>=hsizeP1)?(size-i):i][(j>=hsizeP1)?(size-j):j]);
}
ip_target.resetMinAndMax();
if (DEBUG_LEVEL>5) {
ImagePlus imp_target= new ImagePlus("Target_direct_"+deconvInvert, ip_target);
imp_target.show();
}
fht_target = new FHT(ip_target);
// Swapping quadrants, so the center will be 0,0
fht_target.swapQuadrants();
// get to frequency
fht_target.transform();
float [] fht_target_pixels=(float []) fht_target.getPixels();
if (DEBUG_LEVEL>5) {
ImageProcessor ip_fht_target = new FloatProcessor(size,size);
ip_fht_target.setPixels(fht_target_pixels);
ip_fht_target.resetMinAndMax();
ImagePlus imp_fht_target= new ImagePlus("FHT_"+deconvInvert, ip_fht_target);
imp_fht_target.show();
}
// Convert from FHT to complex FFT
fft_target= FHT2FFTHalf (fht_target);
/* */
/// deconvInvert
/// Now tricky thing. Invert Z for large values, but make them Z - for small ones. So it will be a mixture of correlation and deconvolution
// here the targets are round, but what will the the correct way fo assymmetrical ones?
/// First - find maximal value
// double[][][] fft_target;
double fft_max=0;
for (i=0;i<fft_target.length; i++) for (j=0;j<fft_target[0].length;j++) {
r2=fft_target[i][j][0]*fft_target[i][j][0]+fft_target[i][j][1]*fft_target[i][j][1];
if (r2>fft_max) fft_max=r2;
}
k=Math.sqrt(fft_max)*deconvInvert;
k2=k*k;
for (i=0;i<fft_target.length; i++) for (j=0;j<fft_target[0].length;j++) {
r=Math.sqrt(fft_target[i][j][0]*fft_target[i][j][0]+fft_target[i][j][1]*fft_target[i][j][1]);
a=-Math.atan2(fft_target[i][j][1],fft_target[i][j][0]); /// will be zero for these targets)
r=r/(r*r+k2);
fft_target[i][j][0]=r*Math.cos(a);
fft_target[i][j][1]=r*Math.sin(a);
}
// Convert fft array back to fht array
/**/
fht_target_pixels= FFTHalf2FHT (fft_target);
// set fht_target pixels with new values
fht_target.setPixels (fht_target_pixels);
/// optionally show the result
if (DEBUG_LEVEL>5) {
ImageProcessor ip_fht_target1 = new FloatProcessor(size,size);
ip_fht_target1.setPixels(fht_target_pixels);
ip_fht_target1.resetMinAndMax();
ImagePlus imp_fht_target1= new ImagePlus("Inverted_FHT_"+deconvInvert, ip_fht_target1);
imp_fht_target1.show();
}
/// transform
fht_target.inverseTransform();
fht_target.swapQuadrants();
fht_target.resetMinAndMax();
// ImagePlus imp= new ImagePlus(title, ip_fht);
if (DEBUG_LEVEL>1) {
ImagePlus imp_target_inverted= new ImagePlus("Inverted_"+deconvInvert, fht_target);
imp_target_inverted.show();
}
// return direct_target;
return (float[])fht_target.getPixels();
}
/* ignore ROI, use whole image */
public float[][] splitBayer (ImagePlus imp) {
ImageProcessor ip=imp.getProcessor();
Rectangle r=new Rectangle(imp.getWidth(),imp.getHeight());
float [] pixels;
pixels=(float[])ip.getPixels();
if (DEBUG_LEVEL>10) IJ.showMessage("splitBayer","r.width="+r.width+
"\nr.height="+r.height+
"\nlength="+pixels.length);
float [][] bayer_pixels=new float[4][pixels.length>>2];
int x,y,base,base_b,bv;
int half_height=r.height>>1;
int half_width=r.width>>1;
for (y=0; y<half_height; y++) for (bv=0;bv<2;bv++){
base=r.width*((y<<1)+bv);
base_b=half_width*y;
if (bv==0) for (x=0; x<half_width; x++) {
bayer_pixels[0][base_b]= pixels[base++];
bayer_pixels[1][base_b++]=pixels[base++];
} else for (x=0; x<half_width; x++) {
bayer_pixels[2][base_b]= pixels[base++];
bayer_pixels[3][base_b++]=pixels[base++];
}
}
return bayer_pixels;
}
public void showBayers(float[][] bayer_pixels, int width, int height, String title) {
int i;
if (DEBUG_LEVEL>10) IJ.showMessage("showBayers","width="+width+
"\nheight="+height+
"\nlength="+bayer_pixels[0].length);
ImageProcessor[] ip= new ImageProcessor[4];
ImagePlus[] imp=new ImagePlus[4];
for (i=0;i<4;i++) {
ip[i]=new FloatProcessor(width,height);
ip[i].setPixels(bayer_pixels[i]);
ip[i].resetMinAndMax();
imp[i]= new ImagePlus(title+"_"+i, ip[i]);
imp[i].show();
}
}
public float[] initHamming(int size) {
float [] hamming =new float [size*size];
float [] hamming_line=new float [size];
int i,j;
for (i=0; i<size; i++) hamming_line[i]=(float) (0.54-0.46*Math.cos((i*2.0*Math.PI)/size));
for (i=0; i<size; i++) for (j=0; j<size; j++){
hamming[size*i+j]=hamming_line[i]*hamming_line[j];
}
return hamming;
}
public void initDisplay() {
if ((imp_display==null) || (imp_display.getWidth()!=displayWidth) || (imp_display.getHeight()!=displayHeight)) {
if (imp_display!=null) imp_display.close();
ip_display= new ColorProcessor (displayWidth,displayHeight);
imp_display= new ImagePlus("Target Points", ip_display);
imp_display.show();
}
}
/* converts FHT results (frequency space) to complex numbers of [FFTSize/2+1][FFTSize] */
private double[][][] FHT2FFTHalf (FHT fht) {
float[] fht_pixels=(float[])fht.getPixels();
double[][][] fftHalf=new double[(FFTSize>>1)+1][FFTSize][2];
int row1,row2,col1,col2;
for (row1=0;row1<=(FFTSize>>1);row1++) {
row2=(FFTSize-row1) %FFTSize;
for (col1=0;col1<FFTSize;col1++) {
col2=(FFTSize-col1) %FFTSize;
fftHalf[row1][col1][0]= 0.5*(fht_pixels[row1*FFTSize+col1] + fht_pixels[row2*FFTSize+col2]);
fftHalf[row1][col1][1]= 0.5*(fht_pixels[row2*FFTSize+col2] - fht_pixels[row1*FFTSize+col1]);
}
}
return fftHalf;
}
/* converts FFT arrays of complex numbers of [FFTSize/2+1][FFTSize] to FHT arrays */
private float[] FFTHalf2FHT (double [][][] fft) {
float[] fht_pixels=new float [FFTSize*FFTSize];
int row1,row2,col1,col2;
for (row1=0;row1<=(FFTSize>>1);row1++) {
row2=(FFTSize-row1) %FFTSize;
for (col1=0;col1 < FFTSize;col1++) {
col2=(FFTSize-col1) %FFTSize;
/* out of bounds */
fht_pixels[row1*FFTSize+col1]=(float)(fft[row1][col1][0]+fft[row1][col1][1]);
fht_pixels[row2*FFTSize+col2]=(float)(fft[row1][col1][0]-fft[row1][col1][1]);
}
}
return fht_pixels;
}
/**
* Main method for debugging.
*
* For debugging, it is convenient to have a method that starts ImageJ, loads an
* image and calls the plugin, e.g. after setting breakpoints.
* Grabbed from https://github.com/imagej/minimal-ij1-plugin
* @param args unused
*/
public static void main(String[] args) {
// set the plugins.dir property to make the plugin appear in the Plugins menu
Class<?> clazz = Aberration_Calibration.class;
String url = clazz.getResource("/" + clazz.getName().replace('.', '/') + ".class").toString();
String pluginsDir = url.substring(5, url.length() - clazz.getName().length() - 6);
System.setProperty("plugins.dir", pluginsDir);
// start ImageJ
new ImageJ();
// run the plugin
IJ.runPlugIn(clazz.getName(), "");
}
}