PostProcessing.java 115 KB
Newer Older
Andrey Filippov's avatar
Andrey Filippov committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/**
** -----------------------------------------------------------------------------**
** PostProcessing.java
**
** Experimenting with different postprocessing methods 
** 
**
** Copyright (C) 2012 Elphel, Inc.
**
** -----------------------------------------------------------------------------**
**  
**  PostProcessing.java is free software: you can redistribute it and/or modify
**  it under the terms of the GNU General Public License as published by
**  the Free Software Foundation, either version 3 of the License, or
**  (at your option) any later version.
**
**  This program is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU General Public License for more details.
**
**  You should have received a copy of the GNU General Public License
**  along with this program.  If not, see <http://www.gnu.org/licenses/>.
** -----------------------------------------------------------------------------**
**
*/

//import java.awt.Rectangle;
import java.awt.Rectangle;
import java.io.File;
//import java.io.IOException;
//import java.util.ArrayList;
//import java.util.List;
import java.util.Properties;
//import java.util.concurrent.atomic.AtomicInteger;

//import javax.swing.SwingUtilities;

//import loci.common.services.DependencyException;
//import loci.common.services.ServiceException;
//import loci.formats.FormatException;

//import Jama.Matrix;
//import PixelMapping.InterSensor;
import ij.IJ;
import ij.ImagePlus;
//import ij.ImageStack;
import ij.Prefs;
import ij.gui.GenericDialog;
//import ij.io.FileSaver;
import ij.io.Opener;
//import ij.process.ColorProcessor;
//import ij.text.TextWindow;



public class PostProcessing {
	public int debugLevel=1;
	public PostProcessingParameters       postProcessingParameters= new PostProcessingParameters();
	public LinearFeaturesParameters       linearFeaturesParameters=new LinearFeaturesParameters();
	public DisparityCorrelationParameters disparityCorrelationParameters=new DisparityCorrelationParameters();
//	public PixelMapping pixelMapping=new PixelMapping(null,true,debugLevel);
	public PixelMapping                   pixelMapping=new PixelMapping(debugLevel); // just to access PixelMapping.InterSensor
//	public double [][][] aYCbCr=null;
	public int [] channels;
	private showDoubleFloatArrays sdfaInstance=new showDoubleFloatArrays(); // just for debugging?
	public PixelMapping.InterSensor       interSensor=null;
	public void setProperties(String prefix,Properties properties){ // currently prefix ==""
    	this.postProcessingParameters.setProperties(prefix+"POST_PROCESSING_PARAMETERS.", properties);
    	this.linearFeaturesParameters.setProperties(prefix+"LINEAR_FEATURES_PARAMETERS.", properties);
    	this.disparityCorrelationParameters.setProperties(prefix+"DISPARITY_CORRELATION_PARAMETERS.", properties);
	}
	public void getProperties(String prefix,Properties properties){ // currently prefix ==""
    	this.postProcessingParameters.getProperties(prefix+"POST_PROCESSING_PARAMETERS.", properties);
    	this.linearFeaturesParameters.getProperties(prefix+"LINEAR_FEATURES_PARAMETERS.", properties);
    	this.disparityCorrelationParameters.getProperties(prefix+"DISPARITY_CORRELATION_PARAMETERS.", properties);
	}
	public void convertSourceFiles(int debugLevel){
   		String mapsPath=postProcessingParameters.equirectangularDirectory+
		Prefs.getFileSeparator()+postProcessingParameters.planeMapPrefix+postProcessingParameters.planeMapSuffix;
	
		Opener opener=new Opener();
		ImagePlus impMap=opener.openImage("", mapsPath);
    	if (impMap==null) {
    		String msg="Failed to read inter-sensor overlap map file "+mapsPath;
    		IJ.showMessage("Error",msg);
    		throw new IllegalArgumentException (msg);
    	}
		if (debugLevel>0) System.out.println("Read "+mapsPath+" as an inter-sensor overlap map");
    	(new JP46_Reader_camera(false)).decodeProperiesFromInfo(impMap);
    	this.interSensor=pixelMapping.new InterSensor(impMap,debugLevel);
		System.out.println("Converting source files");
		this.debugLevel= debugLevel;
		this.pixelMapping.debugLevel= debugLevel;
		if (postProcessingParameters.sourcePaths==null) {
			System.out.println("No files selected");
			return;
		}
		this.channels=new int [postProcessingParameters.sourcePaths.length];
		interSensor.overlapImages=new double [4*this.interSensor.numOverlapChannels][];
		for (int i=0;i<interSensor.overlapImages.length;i++) interSensor.overlapImages[i]=null;
		double [][] aYCbCr=null;
		int width=0,height=0;
		for (int iFile=0;iFile<postProcessingParameters.sourcePaths.length;iFile++){
			String path=this.postProcessingParameters.sourcePaths[iFile];
			this.channels[iFile]=postProcessingParameters.getChannelFromSourceTiff(path);
			if (debugLevel>0) System.out.println(iFile+": processing "+path+", channel="+this.channels[iFile]);
			  ImagePlus imp_src=new ImagePlus(path);
			  aYCbCr=argb24ToAYCbCr(imp_src);
			  for (int i=0;i<aYCbCr.length;i++){
				  interSensor.overlapImages[4*this.channels[iFile]+i]=aYCbCr[i];
			  }
			  width=imp_src.getWidth();
			  height=imp_src.getHeight();
		
		}
		if (debugLevel>1) {
			String [] titles0={"Alpha","Y","Cb","Cr"};
			String [] titles=new String[interSensor.overlapImages.length];
			for (int i=0;i<titles.length;i++){
				titles[i]=titles0[i%titles0.length]+(i/titles0.length);
			}
			this.sdfaInstance.showArrays(
					interSensor.overlapImages,
					width,
					height,
					true,
					"aYCbCr",
					titles);
		}

	}
	//public double [][][][][] 
	PixelMapping.InterSensor.DisparityTiles getDisparityTiles(
			String externalTitle,
			double [][] externalData, // if not null - process instead of channel data
			int channelMask,
			int disparitySteps,
			Rectangle resultWindow,
			int threadsMax,
			boolean updateStatus,
			int debugLevel){
		  Runtime runtime = Runtime.getRuntime();
		  long 	  startTime=System.nanoTime();
		
//		this.disparityCorrelationParameters.xx
		int size=this.disparityCorrelationParameters.corrFFTSize;
		int numSensors=this.interSensor.channel.length;
		// cover the whole image with tiles, result window will just select active ones from all
		// this.interSensor.mapWidth
		int width= this.interSensor.mapWidth;
		int height=this.interSensor.mapHeight;
		int overlapStep=size/this.disparityCorrelationParameters.tileOverlapFraction;
		int numTilesX=width/overlapStep;  if (width>numTilesX*overlapStep) numTilesX++;
		int numTilesY=height/overlapStep; if (height>numTilesY*overlapStep) numTilesY++;
		int tileXMin=resultWindow.x/overlapStep;                        // tile including leftmost pixel
		int tileXMax=(resultWindow.x+resultWindow.width-1)/overlapStep; // tile including rightmost pixel
		int tileYMin=resultWindow.y/overlapStep;                        // tile including top pixel
		int tileYMax=(resultWindow.y+resultWindow.height-1)/overlapStep; // tile including bottom pixel
		// create list of image pairs
		int [][] otherImage = new int [numSensors][numSensors-1]; // here we need both {1,2} and {2,1}
		for (int i=0;i< numSensors;i++)  for (int j=0;j<(numSensors-1);j++) otherImage[i][j]=(j<i)?j:(j+1);
		// for each image pair create a list of displacements (in discrete tiles) needed for calculation of disparity sections over the specified range.
		// This list is needed to maintain a cache of direct FHT tiles deleting those that will not be needed anymore to reduce needed memory
		int [][][][] displacementTilesList = new int [numSensors][numSensors-1][][];
		// these show how far FFT tiles are needed . Or should we save more memory and group per each target image?
		int [] minDispalcementTileY=new int [numSensors]; 
		int [] maxDispalcementTileY=new int [numSensors]; 
		int [] minDispalcementTileX=new int [numSensors]; 
		int [] maxDispalcementTileX=new int [numSensors];
		for (int i=0;i<numSensors;i++){
			minDispalcementTileY[i]=0; 
			maxDispalcementTileY[i]=0; 
			minDispalcementTileX[i]=0; 
			maxDispalcementTileX[i]=0;
			
		}
		int extraPixels=this.disparityCorrelationParameters.interpolationSize/2;
		int [][][][][][] correlationMap=new int [numSensors][][][][][]; // [image number][other image index][pixelY][pixelX]{{tiledX,tilledY,pixelIndex}, ...}
//		int [][][][] bilinearPixelIndex=new int [numSensors][][][];     // [image number][other image index]{{pixelX,pixelY},...}

		for (int i=0;i< numSensors;i++)  {
			correlationMap[i]=    new int [otherImage[i].length][][][][];
//			bilinearPixelIndex[i]=new int [otherImage[i].length][][];
//			int [][] tileDirs8={{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}};
//			int [][] tileDirs9={{0,0},{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}};
			int [][] tileDirs={{0,0},{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}}; // includes center
			for (int j=0;j<otherImage[i].length;j++) {
				int other=otherImage[i][j]; // number of image in a pair
				double maxDX=this.disparityCorrelationParameters.disparityRange*
				(this.disparityCorrelationParameters.disparityScales[other][0]-this.disparityCorrelationParameters.disparityScales[i][0]);
				double maxDY=this.disparityCorrelationParameters.disparityRange*
				(this.disparityCorrelationParameters.disparityScales[other][1]-this.disparityCorrelationParameters.disparityScales[i][1]);
				int maxDist = (int) Math.ceil(Math.sqrt(maxDX*maxDX+maxDY*maxDY)/overlapStep);
				maxDist++; // needed more?
				if (debugLevel>1){
					System.out.println("this="+i+" other="+other+" maxDX="+maxDX+" maxDY="+maxDY+" maxDist="+maxDist);
				}

				boolean [][] neededTilesMap=new boolean[2*maxDist+1][2*maxDist+1]; // zero displacement in the center, [maxDist][maxDist]
				for (int idy=0;idy<neededTilesMap.length;idy++) for (int idx=0;idx<neededTilesMap[0].length;idx++) neededTilesMap[idy][idx]=false;
				for (int di=0;di<=this.disparityCorrelationParameters.disparitySteps;di++){
					double dy=(maxDY*di)/this.disparityCorrelationParameters.disparitySteps;
					double dx=(maxDX*di)/this.disparityCorrelationParameters.disparitySteps;
					int dxtMin=(int) Math.floor((dx-extraPixels)/overlapStep);
					int dxtMax=(int) Math.ceil ((dx+extraPixels)/overlapStep);
					int dytMin=(int) Math.floor((dy-extraPixels)/overlapStep);
					int dytMax=(int) Math.ceil ((dy+extraPixels)/overlapStep);
					if (dxtMin==dxtMax){
						dxtMin--;
						dxtMax++;
					}
					if (dytMin==dytMax){
						dytMin--;
						dytMax++;
					}
					for (int dyt=dytMin;dyt<=dytMax;dyt++) for (int dxt=dxtMin;dxt<=dxtMax;dxt++) neededTilesMap[maxDist+dyt][maxDist+dxt]=true;
				}
				int numNeeded=0;
				for (int idy=0;idy<neededTilesMap.length;idy++) for (int idx=0;idx<neededTilesMap[0].length;idx++) if (neededTilesMap[idy][idx]) numNeeded++;
				int indexNeeded=0;
				displacementTilesList[i][j]=new int [numNeeded][2];
				for (int idy=0;idy<neededTilesMap.length;idy++) for (int idx=0;idx<neededTilesMap[0].length;idx++) if (neededTilesMap[idy][idx]){
					int dx=idx-maxDist;
					int dy=idy-maxDist;
					displacementTilesList[i][j][indexNeeded][0]=dx;
					displacementTilesList[i][j][indexNeeded][1]=dy;
					if (dy<minDispalcementTileY[other]) minDispalcementTileY[other]=dy;
					if (dy>maxDispalcementTileY[other]) maxDispalcementTileY[other]=dy;
					if (dx<minDispalcementTileX[other]) minDispalcementTileX[other]=dx;
					if (dx>maxDispalcementTileX[other]) maxDispalcementTileX[other]=dx;
					indexNeeded++;
				}
				 if (debugLevel>2){
				for (int idy=0;idy<neededTilesMap.length;idy++) {
					for (int idx=0;idx<neededTilesMap[0].length;idx++){
						if ((idy==maxDist) && (idx==maxDist)) System.out.print("* "); 
						else System.out.print(neededTilesMap[idy][idx]?"+ ":"  ");
					}
					System.out.println();
				}
				 }
				correlationMap[i][j]=new int [neededTilesMap.length*overlapStep][neededTilesMap[0].length*overlapStep][][];
				for (int py=0;py<correlationMap[i][j].length;py++) for (int px=0;px<correlationMap[i][j][py].length;px++) correlationMap[i][j][py][px]=null;
				for (int tileY=0;tileY<neededTilesMap.length;tileY++){
					for (int tileX=0;tileX<neededTilesMap[tileY].length;tileX++) if (neededTilesMap[tileY][tileX]){
						int numNeib=0;
						for (int iDir=0;iDir<tileDirs.length;iDir++){
							int tileXn=tileX+tileDirs[iDir][0];
							int tileYn=tileY+tileDirs[iDir][1];
							if ((tileXn>=0) && (tileXn<neededTilesMap[0].length) && (tileYn>=0) && (tileYn<neededTilesMap.length) && neededTilesMap[tileYn][tileXn]) numNeib++;
						}
						for (int pdY=0;pdY<overlapStep;pdY++) {
							int pY=tileY*overlapStep+pdY;
							for (int pdX=0;pdX<overlapStep;pdX++) {
								int pX=tileX*overlapStep+pdX;
								correlationMap[i][j][pY][pX]=new int [numNeib][3];
								int indexNeib=0;
								int marginCenter=(size-overlapStep)/2;
								for (int iDir=0;iDir<tileDirs.length;iDir++){
									int tileXn=tileX+tileDirs[iDir][0];
									int tileYn=tileY+tileDirs[iDir][1];
									if ((tileXn>=0) && (tileXn<neededTilesMap[0].length) && (tileYn>=0) && (tileYn<neededTilesMap.length) && neededTilesMap[tileYn][tileXn]) {
										correlationMap[i][j][pY][pX][indexNeib][0]=tileDirs[iDir][0]; // tileDX
										correlationMap[i][j][pY][pX][indexNeib][0]=tileDirs[iDir][1]; // tileDY
										correlationMap[i][j][pY][pX][indexNeib][0]=marginCenter*(size+1)-overlapStep*(tileDirs[iDir][0]+tileDirs[iDir][1]*size); // tilePixelIndex
										indexNeib++;					
									}
								}
							}
						}
					}
				}

			}	
		}
		// debug show correlationMap, 	bilinearPixelIndex
		if (debugLevel>1){
			System.out.println("getDisparityTiles(): needed FHT tiles from each image:");
			for (int i=0;i<numSensors;i++){
				System.out.println("Image "+i+
						" minDispalcementTileY="+minDispalcementTileY[i]+
						" maxDispalcementTileY="+maxDispalcementTileY[i]+
						" minDispalcementTileX="+minDispalcementTileX[i]+
						" maxDispalcementTileX="+maxDispalcementTileX[i] );
			}
		}
       	double [][][][][] disparityTilesDouble= interSensor.calculateDisparityTiles(
    			externalTitle,
    			externalData, // if not null - process instead of channel data
    			channelMask,
    			otherImage,
    			displacementTilesList,
    			disparitySteps,
    			this.disparityCorrelationParameters.disparityRange,
    			this.disparityCorrelationParameters.disparityScales,
    			this.disparityCorrelationParameters.interpolationSize,
    			this.disparityCorrelationParameters.interpolationUpSample,
    			correlationMap, // =new int [numSensors][][][][][]; // [image number][other image index][pixelY][pixelX]{{tiledX,tilledY,pixelIndex}, ...}
 //   			bilinearPixelIndex, //=new int [numSensors][][][];     // [image number][other image index]{{pixelX,pixelY},...}
    			minDispalcementTileX, 
    			maxDispalcementTileX,
    			minDispalcementTileY, 
    			maxDispalcementTileY,
    			this.disparityCorrelationParameters.corrPhaseFraction,
    			this.disparityCorrelationParameters.correlationHighPassSigma,
    			this.disparityCorrelationParameters.correlationLowPassSigma,
    			this.disparityCorrelationParameters.corrCbWeight,
    			this.disparityCorrelationParameters.corrCrWeight,
    			this.disparityCorrelationParameters.subpixAMax,
    			this.disparityCorrelationParameters.subpixRMax,
    			this.disparityCorrelationParameters.subpixNMax,  
    			this.disparityCorrelationParameters.corrFFTSize,
				overlapStep,
				numTilesX,
				numTilesY,
				tileXMin,
				tileXMax,
				tileYMin,
				tileYMax,
    			threadsMax,
    			updateStatus,
				debugLevel);
       	
		  runtime.gc();
		  if (debugLevel>0) System.out.println("getDisparityTiles() done at "+IJ.d2s(0.000000001*(System.nanoTime()-startTime),3)+
				  " seconds  Free memory="+IJ.d2s(runtime.freeMemory()/(1024.0*1024.0*1024.0),3)+" GB (of "+
				  IJ.d2s(runtime.totalMemory()/(1024.0*1024.0*1024.0),3)+" GB), used "+
				  IJ.d2s((runtime.totalMemory()-runtime.freeMemory())/(1024.0*1024.0*1024.0),3)+" GB");

		  // 			if (this.disparityCorrelationParameters.showCorrelationToImage){
		  String title;
		  title=(externalData==null)?"Encoded_disparity":((externalTitle==null)?"external":externalTitle);
		  title+="_"+this.disparityCorrelationParameters.corrFFTSize+"-"+overlapStep+".corr-tiff";

		  PixelMapping.InterSensor.DisparityTiles dispatityTiles=interSensor.new DisparityTiles (
				  this.disparityCorrelationParameters.disparityScales,
				  this.disparityCorrelationParameters.corrFFTSize,
				  overlapStep, // to properties
				  this.disparityCorrelationParameters.disparityRange/disparitySteps, //disparity increment (in pix) per array element
				  title,
				  disparityTilesDouble,
				  this.disparityCorrelationParameters.showCorrelationToImage);
		  return dispatityTiles; //Double; // just temporarily
	}
	/*
	public void  setupZMap(
			Rectangle zMapWOI,
			double zMapMinFirst,
			double zMapMinAbsolute,
			double zMapMinRelative,
			double zMapMergeMax,
			int zMapMaxNumber,
			int zMapOverlap,
    		int threadsMax, //final int          threadsMax,  // maximal number of threads to launch
    		boolean updateStatus,
    		int debugLevel){
		 //int debugLevel
	}
*/

	public void matchTest(
			double blurVarianceSigma,
			int refineTilePeriod,
			double refinePhaseCoeff,
			double refineHighPassSigma,
			double refineLowPassSigma,
			double refineCorrMaxDistance,
			double refineCorrThreshold,
			int refineSubPixel,
			double [][] externalData,
			double disparity, //POST_PROCESSING.disparityCorrelationParameters.corrShift,
			double xc, //POST_PROCESSING.disparityCorrelationParameters.corrXC,
			double yc, //POST_PROCESSING.disparityCorrelationParameters.corrYC,
			int channelMask,
			int firstImageNumber,
			int secondImageNumber,
			boolean doubleSizeOutput,
			int size0,
			int debugLevel){
		DoubleGaussianBlur gb=new DoubleGaussianBlur();
		double dX=disparity*(this.disparityCorrelationParameters.disparityScales[secondImageNumber][0]-
				this.disparityCorrelationParameters.disparityScales[firstImageNumber][0]);
		double dY=disparity*(this.disparityCorrelationParameters.disparityScales[secondImageNumber][1]-
				this.disparityCorrelationParameters.disparityScales[firstImageNumber][1]);
		double dXYlen=Math.sqrt(dX*dX+dY*dY);
		double [] udXY={dX/dXYlen,dY/dXYlen};
		double [][] slices=interSensor.getShiftedSlices(
				(int) Math.round(xc),
				(int) Math.round(yc),
				size0,
				firstImageNumber, //int first,
				secondImageNumber, //int second,
				dX, //double dxA,
				dY, //double dyA,
				channelMask,
				externalData,
				doubleSizeOutput,
				null, // double [] window, // should be 4*size*size long;
				null, //DoubleFHT doubleFHT, // to reuse tables
				debugLevel);
//
		int [] img= {firstImageNumber,secondImageNumber};
		int numImg=img.length;
		String [] channelNames={"Y","Cb","Cr","Ext"};
	    String [] resultNames={"corr","bdiff","diff","inv_diff2","var","bdiff/var","diff-dX","diff-dY"};
		int numLayers=0;
		for (int chm=channelMask; chm!=0; chm>>=1) if ((chm & 1)!=0) numLayers++;
		if (externalData!=null) numLayers++;
//		int [] img= {first,second};
		int [] channels=new int [numLayers];
		int c=0;
		int l=0;
		for (int chm=channelMask; chm!=0; chm>>=1) {
			if ((chm & 1)!=0) channels[l++]=c;
			c++;
		}
		if (externalData!=null) channels[l]=3;
		int length=slices[0].length;
		int size=(int) Math.sqrt(length);
		String [] titlesSlices=new String[2*numLayers];
		String titleSlices="SH";
		for (int i=0;i<numImg;i++) titleSlices+="-"+img[i];
		double dd=Math.sqrt(dX*dX+dY*dY);
		titleSlices+="_D"+IJ.d2s(dd,2)+"_X"+IJ.d2s(dX,2)+"_Y"+IJ.d2s(dY,2);
		for (int i=0;i<titlesSlices.length;i++){
			titlesSlices[i]=img[i%img.length]+channelNames[channels[i/img.length]];
		}
		if (debugLevel>1){
			(new showDoubleFloatArrays()).showArrays(
					slices,
					size,
					size,
					true,
					titleSlices,
					titlesSlices);
		}
		double [][] results=new double[(slices.length/numImg)*resultNames.length][slices[0].length];
		String [] titles= new String[results.length];
		int [] dirs1={1,size+1,size,size-1,-1,-size-1,-size,-size+1,0};
		int [][] dirsDxy={
				{1,   -1,   size+1, size-1,-size+1,-size-1},
				{size,-size,size+1,-size+1, size-1,-size-1}};
		double [] weightsDxy={0.25,-0.25,0.125,-0.125,0.125,-0.125};
		int refineTilePerRow=size/2/refineTilePeriod;
		double [] refineWindow=new double [4*refineTilePeriod*refineTilePeriod];
		refineWindow[0]=Double.NaN; // mark that it needs to be initialized
//		double [] udXY={dX/dXYlen,dY/dXYlen};
		double [][] disparityArrays=new double[refineTilePerRow*refineTilePerRow][];
		DoubleFHT refineFHT= new DoubleFHT();
		
		for (int chn=0;chn<slices.length/numImg;chn++){
			double [][] pair ={slices[numImg*chn],slices[numImg*chn+1]};
			int indexCorr=    chn*resultNames.length+0;
			int indexBDiff=   chn*resultNames.length+1;
			int indexDiff=    chn*resultNames.length+2;
			int indexInvDiff= chn*resultNames.length+3;
			int indexVar=     chn*resultNames.length+4;
			int indexDiffVar= chn*resultNames.length+5;
			int indexDiffDx=  chn*resultNames.length+6;
			int indexDiffDy=  chn*resultNames.length+7;
			
			double [] refineSmooth=interSensor.refineCorrelation(
					refineFHT, // DoubleFHT doubleFHT, // will generate if null, can be used to reuse initialization
					pair, //double [][] data,   // difines size
					refineWindow, //double [] window, // defines tile size 
					udXY, // double [] dXY,    // unity vector defines disparity direction
					refinePhaseCoeff, //phaseCoeff, // phase correlation fraction (0 - normal, 1.0 - pure phase)
					refineHighPassSigma,
					refineLowPassSigma,
					disparityArrays, // double [][] disparityArrays, // top level should be initialized
					refineCorrMaxDistance, //double corrMaxDist, // distance from rhe center to look for the correlation maximum for disparity correction 
					refineCorrThreshold, //double corrThreshold, // relative correlation contrast to correct disparity
					refineSubPixel, //int subPixel,       // subdivide pixels when updating disparity
	    			true, //boolean generateSmooth,
	    			debugLevel
	    			);
			for (int nTyp=0;nTyp<resultNames.length;nTyp++){
				int index=chn*resultNames.length+nTyp;
				titles[index]=resultNames[nTyp]+"-"+channelNames[channels[chn]];
				switch (nTyp){
				case 0:	// corr
					for (int i=0;i<length;i++) results[indexCorr][i]=refineSmooth[i];
					break;

				case 1:	// diff
				//	for (int i=0;i<length;i++) results[indexDiff][i]=pair[1][i]-pair[0][i];
				// bestDiff	
					for (int i=0;i<length;i++) {
						boolean less=false;
						boolean more=false;
						double bdiff=0;
						for (int d=0;d<dirs1.length;d++){
							int i1=(i+dirs1[d]+length)%length;
							double df=pair[1][i1]-pair[0][i1];
							less |= df<=0;
							more |= df>=0;
							df=Math.abs(df);
							if ((d==0) || (df<d)) bdiff=df;
							if (more && less){
								bdiff=0;
								break;
							}
						}
						results[indexBDiff][i]=bdiff;
					}
					break;
				case 2:	// diff
						for (int i=0;i<length;i++) results[indexDiff][i]=pair[1][i]-pair[0][i];
						break;
				case 3:	// 1/diff2
//					for (int i=0;i<length;i++) results[index][i]=1.0/(results[indexDiff][i]*results[indexDiff][i]);
					for (int i=0;i<length;i++) results[indexInvDiff][i]=Math.abs(results[indexDiff][i]);
					break;
				case 4:	// variance
					for (int i=0;i<length;i++) {
						double [] S1={0.0,0.0};
						double [] S2=S1.clone();
						double  v2=0;
						for (int n=0;n<2;n++) {
							for (int d=0;d<dirs1.length;d++){
								int i1=(i+dirs1[d]+length)%length;
								S1[n]+=pair[n][i1];
								S2[n]+=(pair[n][i1]*pair[n][i1]);
							}
							v2+=(S2[n]-(S1[n]*S1[n])/dirs1.length)/dirs1.length;
						}
						results[indexVar][i]=Math.sqrt(v2);
					}
					if (blurVarianceSigma>0.0){
			        	   gb.blurDouble(
			        			   results[indexVar],
			        			   size,
			        			   size,
			        			   blurVarianceSigma,
			        			   blurVarianceSigma,
			        			   0.01);
					}
					break;
				case 5:	// variance/|diff| (squared?)
//					for (int i=0;i<length;i++) results[indexDiffVar][i]=results[indexVar][i]/Math.abs(results[indexDiff][i]); // use square?
//					for (int i=0;i<length;i++) results[indexDiffVar][i]=Math.abs(results[indexDiff][i])/results[indexVar][i]; // use square?
					for (int i=0;i<length;i++) results[indexDiffVar][i]=results[indexBDiff][i]/results[indexVar][i]; // 
					break;
				case 6:	// diff/(d/dx)
					for (int i=0;i<length;i++) {
						double ddx=0;
						for (int n=0;n<2;n++) {
							for (int d=0;d<dirsDxy[0].length;d++){
								int i1=(i+dirsDxy[0][d]+length)%length;
								ddx+=weightsDxy[d]*pair[n][i1];
							}
						}
						ddx*=0.5; // was a sum for 2 images, need average
						results[indexDiffDx][i]=results[indexDiff][i]/ddx;
					}
					break;
				case 7:	// diff/(d/dy)
					for (int i=0;i<length;i++) {
						double ddy=0;
						for (int n=0;n<2;n++) {
							for (int d=0;d<dirsDxy[1].length;d++){
								int i1=(i+dirsDxy[1][d]+length)%length;
								ddy+=weightsDxy[d]*pair[n][i1];
							}
						}
						ddy*=0.5; // was a sum for 2 images, need average
						results[indexDiffDy][i]=results[indexDiff][i]/ddy;
					}
					break;
				}
				
			}
			
		}
		if (debugLevel>0){
			String title="DSH";
			for (int i=0;i<numImg;i++) titleSlices+="-"+img[i];
			titleSlices+="_D"+IJ.d2s(dd,2)+"_X"+IJ.d2s(dX,2)+"_Y"+IJ.d2s(dY,2);
			(new showDoubleFloatArrays()).showArrays(
					results,
					size,
					size,
					true,
					title,
					titles);
		}
	}
	
	public double [][] correlationTest(
			double disparity,
			double xc,
			double yc,
			int threadsMax,
			int debugLevel){
		if (this.disparityCorrelationParameters.disparityScales==null){
			System.out.println ("disparityCorrelationParameters.disparityScales==null");
			return null;
		}
		int [][] iCenterXY=new int [this.disparityCorrelationParameters.disparityScales.length][];
		
//    		    int [] zeroShift={0,0};
//	    int [][] iShifts=new int [iShifts0.length][];
//	    for (int i=0;i<iShifts.length;i++) iShifts[i]= (autoCorrelation || (iShifts0[i]==null))?zeroShift.clone():iShifts0[i].clone();
		
		
		// Calculate rounded integer shifts per channel
		
		
		for (int i=0;i<iCenterXY.length;i++){
			if (this.disparityCorrelationParameters.disparityScales[i]!=null){
				iCenterXY[i]=new int[2];
				iCenterXY[i][0]= (int) Math.round(xc+disparity*this.disparityCorrelationParameters.disparityScales[i][0]);
				iCenterXY[i][1]= (int) Math.round(yc+disparity*this.disparityCorrelationParameters.disparityScales[i][1]);
			} else iCenterXY[i]=null;
		}
		
//		int numSensors=this.interSensor.channel.length;
//		int numLayers=this.interSensor.overlapImages.length/numSensors;
		double [][] corr=interSensor.correlate(
    			iCenterXY, // for each image - centerX, centerY 
    			this.disparityCorrelationParameters.autocorrelation,
    			this.disparityCorrelationParameters.corrFFTSize,
    			this.disparityCorrelationParameters.corrPhaseFraction,
    			this.disparityCorrelationParameters.corrCbWeight,
    			this.disparityCorrelationParameters.corrCrWeight,
    			this.disparityCorrelationParameters.correlationHighPassSigma,
    			this.disparityCorrelationParameters.correlationLowPassSigma,
    			this.disparityCorrelationParameters.noiseNormalizationSignaY,
    			this.disparityCorrelationParameters.noiseNormalizationSignaCbCr,
    			this.disparityCorrelationParameters.contrastThreshold,
    			this.disparityCorrelationParameters.useBinaryAlpha,
				threadsMax,
				debugLevel);
		
//		int numPairs=corr.length/numLayers;
	  return corr;	
		
		
		
	}
	
	public void linearFeatures(
			int threadsMax,
			int debugLevel){
		if (pixelMapping==null) {
			String msg="pixelMapping is not initialized";
			System.out.println(msg);
			IJ.showMessage(msg);
		}
		if ((interSensor==null) || (interSensor.overlapImages==null)) {
			String msg="Inter-sensor data is not initialized (use \"Source PP\" command";
			System.out.println(msg);
			IJ.showMessage(msg);
		}
//		boolean multiplyByCellUsage=    gd.getNextBoolean();
//		double cellUsageShift=          gd.getNextNumber();
//		if (!multiplyByCellUsage) cellUsageShift=Double.NaN;
		
		if (interSensor.linearFeatures==null) {
			interSensor.linearFeatures=new double [this.interSensor.numOverlapChannels][][][];
			for (int i=0;i<interSensor.linearFeatures.length;i++) interSensor.linearFeatures[i]=null;
		}
		long startTime = System.nanoTime();
		//this.interSensor.numOverlapChannels
		for (int numImage=0;numImage<this.interSensor.numOverlapChannels;numImage++) if (interSensor.overlapImages[4*numImage]!=null) {
			boolean reExtract=this.linearFeaturesParameters.extractFeatures || (interSensor.linearFeatures[numImage]==null);
//			/this.overlapImages[i]
			if (debugLevel>1){
				for (int i=0;i<interSensor.overlapImages.length;i++){
					System.out.println ("overlapImages["+i+"] is "+((interSensor.overlapImages[i]==null)?"null":"not null"));
					
				}
			}
			if (reExtract) interSensor.linearFeatures[numImage]= interSensor.detectLinearFeatures(
					numImage, //(side>0),
					this.linearFeaturesParameters.corrFFTSize,
					this.linearFeaturesParameters.overlapFraction, // default 8
					this.linearFeaturesParameters.alphaThreshold, // minFracArea
					this.linearFeaturesParameters.useBinaryAlpha,
					this.linearFeaturesParameters.correlationHighPassSigma,
					this.linearFeaturesParameters.correlationLowPassSigma,
					this.linearFeaturesParameters.phaseIntegrationWidth,
					this.linearFeaturesParameters.resultHighPass, //cutting "ribbon" near zero frequency - influences length of the detected line (used only for strength calculation)
					this.linearFeaturesParameters.dispertionCost,
					this.linearFeaturesParameters.featureFilter,
					this.linearFeaturesParameters.minRMSFrac,
					this.linearFeaturesParameters.minAbs,
					this.linearFeaturesParameters.maxPhaseMismatch,
					this.linearFeaturesParameters.calculateStrength,
					this.linearFeaturesParameters.debugRow,
					this.linearFeaturesParameters.debugColumn,
	        		threadsMax,
					debugLevel);
			if (debugLevel>1) System.out.println("Linear Features for "+numImage+" finished at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
			// startTime	
		}
		// startTime
//		double [][] null2 = {null,null};
//		double [][] null4 = {null,null,null,null};
		
		double [][] linearFeatures = new double [((this.linearFeaturesParameters.displayUsageScale>0)?2:1)*this.interSensor.numOverlapChannels][];
		
		for (int numImage=0;numImage<this.interSensor.numOverlapChannels;numImage++) if (interSensor.overlapImages[4*numImage]!=null){
			linearFeatures[numImage<<((this.linearFeaturesParameters.displayUsageScale>0)?1:0)]=interSensor.reconstructImageFeature(
					this.linearFeaturesParameters.corrFFTSize,
					this.linearFeaturesParameters.overlapFraction, // default 8
					this.interSensor.linearFeatures[numImage],
					this.linearFeaturesParameters.ignorePhase,
					this.linearFeaturesParameters.preserveDC,
					this.linearFeaturesParameters.strengthMode, // 0.0 - absolute, 1.0 - relative, 0.5 - "balanced", "-1" - use phaseStrength instead 
					this.linearFeaturesParameters.phaseIntegrationWidth, // use the same as during extraction?
					this.linearFeaturesParameters.resultHighPass, //cutting "ribbon" near zero frequency - influences length of the detected line
					this.linearFeaturesParameters.debugRow,
					this.linearFeaturesParameters.debugColumn,
					threadsMax,
					debugLevel);
				if (this.linearFeaturesParameters.displayUsageScale>0){
					linearFeatures[(numImage<<1)+1]=interSensor.displayUsage(
							interSensor.linearFeatures[numImage],
							this.linearFeaturesParameters.corrFFTSize,
							this.linearFeaturesParameters.overlapFraction, // default 8
							this.linearFeaturesParameters.displayUsageScale);
				}
				if (debugLevel>1) System.out.println("Linear Features simulated for "+(numImage)+" finished at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
			
		}			
//TODO: just show linearFeatures array and measure time			
//		String [] titlesLR={"Left","Right"};
//		String [] titlesLRU={"Left","Usage Left","Right","Usage Right"};
//		String [] titles=(this.linearFeaturesParameters.displayUsageScale>0)?titlesLRU:titlesLR;
		//			double displayUsageScale=       gd.getNextNumber();
		
		String [] titles = new String[((this.linearFeaturesParameters.displayUsageScale>0)?2:1)*this.interSensor.numOverlapChannels];
		if (this.linearFeaturesParameters.displayUsageScale>0){
			for( int i=0;i<this.interSensor.numOverlapChannels;i++){
				titles[2*i]="Chn "+i;
				titles[2*i+1]="Usage "+i;
			}
		} else {
			for( int i=0;i<this.interSensor.numOverlapChannels;i++){
				titles[i]="Chn "+i;
			}
		}

		this.sdfaInstance.showArrays(
				linearFeatures,
				interSensor.mapWidth,
				interSensor.mapHeight,
				true,
				"Linear features",
				titles);
//		double [][] linearFeatures = new double [((displayUsageScale>0)?2:1)*this.interSensor.numOverlapChannels][];
//		double [][][][] filteredFeatures={null,null};
//		double [][] filteredFeaturesImage =(displayUsageScale>0)?null4:null2;;
		double [][][][] filteredFeatures=new double [this.interSensor.numOverlapChannels][][][];
		double [][] filteredFeaturesImage =  new double [((this.linearFeaturesParameters.displayUsageScale>0)?2:1)*this.interSensor.numOverlapChannels][];
		for (int i=0;i<filteredFeatures.length;i++)filteredFeatures[i]=null;
		for (int i=0;i<filteredFeaturesImage.length;i++)filteredFeaturesImage[i]=null;
//		for (int side=0;side<2;side++) if ((sides & (1<<side))!=0) {
			for (int numImage=0;numImage<this.interSensor.numOverlapChannels;numImage++) if (interSensor.overlapImages[4*numImage]!=null){
			filteredFeatures[numImage]=interSensor.mergeLinearFeatures(
					this.linearFeaturesParameters.corrFFTSize,
					this.linearFeaturesParameters.overlapFraction, // default 8
	    			this.interSensor.linearFeatures[numImage],
	    			this.linearFeaturesParameters.strengthMode, // 0.0 - absolute, 1.0 - relative, 0.5 - "balanced", "-1" - use phaseStrength instead 
	    			this.linearFeaturesParameters.directionTolerance,
	    			this.linearFeaturesParameters.normalDistanceTolerance,
	    			this.linearFeaturesParameters.tangentialDistanceTolerance,
	    			this.linearFeaturesParameters.hostsTolerance,
	    			this.linearFeaturesParameters.directionFracSigma, // make a fixed fraction of directionTolerance?
	    			this.linearFeaturesParameters.normalDistanceFracSigma, // make a fixed fraction of distanceTolerance?
	    			this.linearFeaturesParameters.tangentialDistanceFracSigma, // make a fixed fraction of distanceTolerance?
	    			this.linearFeaturesParameters.minMerged,
	    			this.linearFeaturesParameters.multiplyByCellUsage?this.linearFeaturesParameters.cellUsageShift:Double.NaN,
	    			this.linearFeaturesParameters.scaleDistances,
	    			this.linearFeaturesParameters.swapTangentialTolerance,
	    			this.linearFeaturesParameters.swapSearchRange,
	    			this.linearFeaturesParameters.debugRow,
	    			this.linearFeaturesParameters.debugColumn,
	    			debugLevel);
			if (interSensor.linearFeatures[numImage]!=null){
				filteredFeaturesImage[numImage<<((this.linearFeaturesParameters.displayUsageScale>0)?1:0)]=interSensor.reconstructImageFeature(
						this.linearFeaturesParameters.corrFFTSize,
						this.linearFeaturesParameters.overlapFraction, // default 8
						filteredFeatures[numImage],
						this.linearFeaturesParameters.ignorePhase,
						this.linearFeaturesParameters.preserveDC,
						this.linearFeaturesParameters.strengthMode, // 0.0 - absolute, 1.0 - relative, 0.5 - "balanced", "-1" - use phaseStrength instead 
						this.linearFeaturesParameters.phaseIntegrationWidth, // use the same as during extraction?
						this.linearFeaturesParameters.resultHighPass, //cutting "ribbon" near zero frequency - influences length of the detected line
						this.linearFeaturesParameters.debugRow,
						this.linearFeaturesParameters.debugColumn,
						threadsMax,
						debugLevel);
				if (this.linearFeaturesParameters.displayUsageScale>0){
					filteredFeaturesImage[(numImage<<1)+1]=interSensor.displayUsage(
							filteredFeatures[numImage],
							this.linearFeaturesParameters.corrFFTSize,
							this.linearFeaturesParameters.overlapFraction, // default 8
							this.linearFeaturesParameters.displayUsageScale);
				}

				if (debugLevel>1) System.out.println("Filtered linear Features simulated for "+(numImage)+" finished at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
			}
		}			
//TODO: just show linearFeatures array and measure time			
		this.sdfaInstance.showArrays(
				filteredFeaturesImage,
				interSensor.mapWidth,
				interSensor.mapHeight,
				true,
				"Filtered Linear features",
				titles);
		return;

		
	}
	
	public double [][] argb24ToAYCbCr(
			ImagePlus imp){
		int [] iPixels = (int []) imp.getProcessor().getPixels();
		double KR=0.299, KB=0.114;
		double KG=1.0-KR-KB;
		double K255=1.0/255;
		double KPB=0.5/(1-KB);
		double KPR=0.5/(1-KR);
		double [][] aYCbCr=new double [4][iPixels.length];
		for (int i=0;i<iPixels.length;i++){
			aYCbCr[0][i]=K255*((iPixels[i]>>24) & 0xff); // alpha channel
			double r=K255*((iPixels[i]>>16) & 0xff);
			double g=K255*((iPixels[i]>> 8) & 0xff);
			double b=K255*( iPixels[i]      & 0xff);
			double y=KR*r+KG*g+KB*b;
			aYCbCr[1][i]=y;
			aYCbCr[2][i]=KPB*(b-y);
			aYCbCr[3][i]=KPR*(r-y);
		}
		return aYCbCr;
	}
	

	
	public class PostProcessingParameters{
  		public boolean saveSettings =          true;
		public String [] sourcePaths={};
		public String sourceDirectory="";
		public String sourcePrefix="";
		public String sourceSuffix=".tiff"; //".jp4"
    	public String equirectangularDirectory="";
    	public String planeMapPrefix="";
    	public String planeMapSuffix=".plane-proj-tiff";
    	public String resultsDirectory="";
	   	
    	public void setProperties(String prefix,Properties properties){
  			properties.setProperty(prefix+"saveSettings",this.saveSettings+"");
    		properties.setProperty(prefix+"sourceDirectory",this.sourceDirectory);
    		properties.setProperty(prefix+"sourcePrefix",this.sourcePrefix);
    		properties.setProperty(prefix+"sourceSuffix",this.sourceSuffix);
    		properties.setProperty(prefix+"equirectangularDirectory",this.equirectangularDirectory);
    		properties.setProperty(prefix+"planeMapPrefix",this.planeMapPrefix+"");
    		properties.setProperty(prefix+"planeMapSuffix",this.planeMapSuffix+"");

    		properties.setProperty(prefix+"resultsDirectory",this.resultsDirectory);
    		if (this.sourcePaths!=null) {
        		properties.setProperty(prefix+"sourcePaths",this.sourcePaths.length+"");
        		for (int i=0;i<this.sourcePaths.length;i++){
        			properties.setProperty(prefix+"sourcePath"+i,this.sourcePaths[i]);
        		}
    		}
    		
    	}

    	public void getProperties(String prefix,Properties properties){
  		    if (properties.getProperty(prefix+"saveSettings")!=null) this.saveSettings=Boolean.parseBoolean(properties.getProperty(prefix+"saveSettings"));
			if (properties.getProperty(prefix+"sourceDirectory")!=      null) this.sourceDirectory=properties.getProperty(prefix+"sourceDirectory");
			if (properties.getProperty(prefix+"sourcePrefix")!=         null) this.sourcePrefix=properties.getProperty(prefix+"sourcePrefix");
			if (properties.getProperty(prefix+"sourceSuffix")!=         null) this.sourceSuffix=properties.getProperty(prefix+"sourceSuffix");
			if (properties.getProperty(prefix+"equirectangularDirectory")!=null) this.equirectangularDirectory=properties.getProperty(prefix+"equirectangularDirectory");
			if (properties.getProperty(prefix+"planeMapPrefix")!=null) this.planeMapPrefix=properties.getProperty(prefix+"planeMapPrefix");
			if (properties.getProperty(prefix+"planeMapSuffix")!=null) this.planeMapSuffix=properties.getProperty(prefix+"planeMapSuffix");

			if (properties.getProperty(prefix+"resultsDirectory")!=     null) this.resultsDirectory=properties.getProperty(prefix+"resultsDirectory");
			if (properties.getProperty(prefix+"sourcePaths")!=   null){
				int numFiles=Integer.parseInt(properties.getProperty(prefix+"sourcePaths"));
				this.sourcePaths=new String[numFiles];
				for (int i=0;i<this.sourcePaths.length;i++){
					this.sourcePaths[i]=properties.getProperty(prefix+"sourcePath"+i);
        		}
			}
    	}

    	public boolean showDialog(String title) { 
    		GenericDialog gd = new GenericDialog(title);
    		gd.addCheckbox ("Save current settings with results",  this.saveSettings);
    		gd.addStringField("Source files directory",            this.sourceDirectory, 60);
    		gd.addCheckbox("Select source directory",              false);
    		gd.addStringField("Pixel maps directory",              this.equirectangularDirectory, 60);
    		gd.addCheckbox("Select pixel maps directory",          false);
    		gd.addStringField("Results directory",                 this.resultsDirectory, 40);
    		gd.addCheckbox("Select results directory",             false);
    		gd.addStringField("Source files prefix",               this.sourcePrefix, 40);
    		gd.addStringField("Source files suffix",               this.sourceSuffix, 40);
    		gd.addStringField("Plane maps prefix",                 this.planeMapPrefix, 40);
    		gd.addStringField("Plane maps suffix",                 this.planeMapSuffix, 40);

    		
    		
    		WindowTools.addScrollBars(gd);
    		gd.showDialog();
    		if (gd.wasCanceled()) return false;
    		this.saveSettings=              gd.getNextBoolean();
    		this.sourceDirectory=           gd.getNextString(); if (gd.getNextBoolean()) selectSourceDirectory(false, false);
    		this.equirectangularDirectory=  gd.getNextString(); if (gd.getNextBoolean()) selectMapsDirectory(false, false); 
    		this.resultsDirectory=          gd.getNextString(); if (gd.getNextBoolean()) selectResultsDirectory(false, true); 
    		this.sourcePrefix=              gd.getNextString();
    		this.sourceSuffix=              gd.getNextString();
    		this.planeMapPrefix=  gd.getNextString();
    		this.planeMapSuffix=  gd.getNextString();

    		return true;
    	}

    	
// TODO: extract timestamnp from JP4 or, at least combine movie timestamp+frame into a single filename string
    	public String [] getSourcePaths(){
    		String [] empty={};
    		return (this.sourcePaths!=null)?this.sourcePaths:empty;
    	}
    	public String selectSourceDirectory(boolean smart, boolean newAllowed) { // normally newAllowed=false
    		String dir= CalibrationFileManagement.selectDirectory(
    				smart,
    				newAllowed, // save  
    				"Source (\"de-warped\") image directory", // title
    				"Select source directory", // button
    				null, // filter
    				this.sourceDirectory); // this.sourceDirectory);
    		if (dir!=null) this.sourceDirectory=dir;
    		return dir;
    	}
    	public String selectMapsDirectory(boolean smart, boolean newAllowed) {
    		String dir= CalibrationFileManagement.selectDirectory(
    				smart,
    				newAllowed, // save  
    				"Maps directory", // title
    				"Select maps directory", // button
    				null, // filter
    				this.equirectangularDirectory);
    		if (dir!=null) this.equirectangularDirectory=dir;
    		return dir;
    	}

    	public String selectResultsDirectory(boolean smart, boolean newAllowed) {
    		String dir= CalibrationFileManagement.selectDirectory(
    				smart,
    				newAllowed, // save  
    				"Results directory", // title
    				"Select results directory", // button
    				null, // filter
    				this.resultsDirectory); //this.sourceDirectory);
    		if (dir!=null) this.resultsDirectory=dir;
    		return dir;
    	}
    	public boolean selectSourceFiles(boolean allFiles) {
    		return selectSourceFiles(allFiles, 1); // debug level 1 - modify here
    	}
    	public boolean selectSourceFiles(boolean allFiles, int debugLevel) {
    		String [] defaultPaths=this.sourcePaths;
    		if ((defaultPaths==null) || (defaultPaths.length==0)){
    			defaultPaths = new String[1];
    			if ((this.sourceDirectory==null) || (this.sourceDirectory.length()==0)){
    				defaultPaths[0]="";
    			} else {
    				defaultPaths[0]=this.sourceDirectory+Prefs.getFileSeparator();
    			}
    		}
    		String [] extensions={this.sourceSuffix};
			CalibrationFileManagement.MultipleExtensionsFileFilter sourceFilter =
				new CalibrationFileManagement.MultipleExtensionsFileFilter(this.sourcePrefix,extensions,"Source files");
			String [] sourceFiles=null;
    		if (allFiles){
				File dir= new File (this.sourceDirectory);
				if (debugLevel>1) System.out.println("selectSourceFiles, dir="+this.sourceDirectory);
				if (!dir.exists()) {
					String error="Source directory "+this.sourceDirectory+" does not exist.";
					if (debugLevel>1) System.out.println("selectSourceFiles() ERROR:"+error);
					if (debugLevel>1) IJ.showMessage("No files selected");
					return false;
				}
				File [] fileList=dir.listFiles(sourceFilter);
				if (debugLevel>1) System.out.println("Source directory "+this.sourceDirectory+" has "+fileList.length+" files.");
				sourceFiles = new String[fileList.length];
				for (int i=0;i<sourceFiles.length;i++) sourceFiles[i]=fileList[i].getPath();
    		} else {
    			sourceFiles=CalibrationFileManagement.selectFiles(false,
    					"Select Source files, saved as TIFF",
    					"Select",
    					sourceFilter,
    					defaultPaths); // String [] defaultPaths); //this.sourceDirectory // null
    	       	if ((sourceFiles==null) || (sourceFiles.length==0)) {
					if (debugLevel>1) System.out.println("selectSourceFiles() ERROR: No files selected");
					if (debugLevel>1) IJ.showMessage("No files selected");
            		return false;
            	}
    		}
    		this.sourcePaths=sourceFiles;
    		if ((this.sourcePaths!=null) && (this.sourcePaths.length>0)){
    			this.sourceDirectory=this.sourcePaths[0].substring(0, this.sourcePaths[0].lastIndexOf(Prefs.getFileSeparator()));
    			//sourceNames
    		}
			return true;
    	}
    	public int getChannelFromSourceTiff(String path){ return getChannelFromTiff(path, this.sourceSuffix);	}
    	public int getChannelFromTiff(String path, String suffix){
    		int indexSuffix=path.length()-suffix.length();
    		int indexLastDash=indexSuffix-1; // in jp4 it will be underscore, not dash? Or should we change that?
    		while ((indexLastDash>0) &&
    				(indexLastDash>(indexSuffix-3)) && 
    				(path.charAt(indexLastDash)!='_') && 
    				(path.charAt(indexLastDash)!='-')) indexLastDash--;
    		return Integer.parseInt(path.substring(indexLastDash+1,indexSuffix));

    	}


	}
	public class DisparityCorrelationParameters{
1028
    	public double [][] disparityScales=       null; // for each channel - a pair of {scaleX, scaleY} or null if undefined (interSensor has the same)
Andrey Filippov's avatar
Andrey Filippov committed
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    	public boolean autocorrelation=           false;
    	public int corrFFTSize=                 128;
    	public double corrXC=                  1280.0;
    	public double corrYC=                   960.0;
    	public double corrShift=                 30.0; // was int corrShift->disparity
    	public int    firstImage=                 0;
    	public int    secondImage=                1;

    	public double corrPhaseFraction=          0.5;
    	public double corrCbWeight=               0.5;
    	public double corrCrWeight=               0.5;
    	public double correlationHighPassSigma=   1.5;
    	public double correlationLowPassSigma=    0.6;
    	public int    normalizeCorrelation=         1; // 0 - none, 1 - "old", 2 - new
    	public double noiseNormalizationSignaY=   3.0;
    	public double noiseNormalizationSignaCbCr=5.0;
    	public double contrastThreshold=          1.5;
    	public boolean useBinaryAlpha=            true;
    	
    	public int    tileOverlapFraction=        4; // calculate FHT tiles with corrFFTSize/tileOverlapFraction overlap
    	public double disparityRange=           100.0;  // maximal allowed disparity in pixels
    	public int    disparitySteps=           100;    // calculate Z with disparitySteps [disparitySteps] over disparityRange
    	public boolean useFullWindow=             true;
    	public Rectangle resultWindow= new Rectangle(0,0,2592,1936); // only process for the result pixels in the specified rectangle
    	public int    channelMask=                1; // 1 - process Y, +2 process Cb, +4 - process Cr
    	public boolean useFileData=             false; // use multi-slice TIFF file (1 layer per image) instead of channels (alfa will still be from channels)
    	public String  dataPathName=              "";  // external data image path
    	public String  corrPathName=              "";  // external data image path
    	
    	public int    interpolationSize=          8;     // use interpolationSizexinterpolationSize square to up-sample center 2x2 pixel area
    	public int    interpolationUpSample=     16;    // subdivide pixels near local maximums on correlation vs. disparity
    	public double[]  subpixAMax=null;
    	public double subpixRMax=                 0.05;
    	public int    subpixNMax=                 4;
    	public boolean showCorrelationToImage=  true;
    	public boolean saveCorrelationToImage=  true;
    	public DisparityCorrelationParameters(){
    		this.subpixAMax=new double[4];
    		this.subpixAMax[0]=0.0;
    		this.subpixAMax[1]=0.0;
    		this.subpixAMax[2]=0.0;
    		this.subpixAMax[3]=0.0;
    	}
    	public double bgFraction=              0.5; // try the background plane if it is not less than this fraction of maximal correlation plane
    	public double blurVarianceSigma=       2.0;
    	public int    refineTilePeriod=        4;
    	public double refinePhaseCoeff=        0.5;
    	public double refineHighPassSigma=     1.5;
    	public double refineLowPassSigma=      0.6;
    	public double refineCorrMaxDistance=   1.5;
    	public double refineCorrThreshold=     1.0; //??
    	public int    refineSubPixel=          8;
 // during setup   	
    	public Rectangle  zMapWOI=             null;
    	public int    zMapMaxNumber=           3;
    	public double zMapMinFirst  =          0.015;
    	public double zMapMinAbsolute  =       0.002;
    	public double zMapMinRelative  =       0.15;
    	public double zMapMergeMax  =          1.5;
    	public int    zMapOverlap  =           2;
    	public double zMapFatZero=             0.05; // actually - for combining to center
// during re-run/filter
    	public double zMapMinForeground =      0.001;
    	public int    zMapVarMask=             7; // +1 - Y, +2 - Cb, +4 - Cr, +8 - Ext
    	public double [] zMapVarThresholds=    {2.5,2.5,2.5,2.5};
    	public double [] zMapVarWeights=       {1.0,0.5,0.5,0.5};//
    	public int    auxVarMode=              0; // 0 multiply all, add pairs
    	public int    zMapCorrMask=            7; // +1 - Y, +2 - Cb, +4 - Cr, +8 - Ext
    	public double [] zMapCorrThresholds=   {0.0,0.0,0.0,0.0}; // 0 - positive correlation, >+1.0 - strong, negative - loosen
    	public double [] zMapCorrThresholdsRel={0.5,0.5,0.5,0.5}; // cross correlation to sqrt(auto1*auto2) ratio
    	public double [] zMapCorrWeights=      {1.0,0.5,0.5,0.5};//
    	public double fillFgGapMin=            0.001;
    	public double fillFgGapDiff=           1.5;
    	public int    fillFgGapNeib=           3;
    	
    	public double    filter2DisparityMax =100.0;
    	public double    filter2DisaprityMin = 50.0;
    	public boolean   filter2UpdateMax=     true;
    	public double    filter2MinAbsolute=    0.01;
    	public double    filter2MinRelative=    0.1;
    	public boolean   filter2ByForeground= true; // apply known certain masks
    	public double    filter2ByForegroundMargin=2.0;
    	public boolean   filter2ByDisabled=   true;
    	public double    filter2DisparityTolearnce=1.0;
    	public double    filter2MaskBlurSigma=   2.0;
    	public double    filter2corrHighPassSigma=2.0; // subtract blurred version to minimize correlation caused by masks
    	
    	//photometric
    	public double    photometricIgnoreFraction=        0.001;
    	public int       photometricSubdivAverage=       256; 
    	public int       photometricSubdivHalfDifference=128;
    	public double    photometricSmoothVarianceSigma=  10.0;
    	public double    photometricScaleVariance=         3.0;
    	
    	public double    matchStatVarianceBlurScale=1.0;
    	public double    matchStatKLocal=          0.5; // 0 use global variance, 1.0 - local
    	public int       matchStatMode=              0; // 0 - multiply likelyhood for all pairs, 1 - add, 2 - min, 3 - max 

    	
		public int debugRow=                   -10;   // "Debug row"
		public int debugColumn=                -10;   // "Debug column"

 //   	public boolean enableNegativeDisparity=   false; 
    	public void setProperties(String prefix,Properties properties){
  			properties.setProperty(prefix+"autocorrelation",this.autocorrelation+"");
  			properties.setProperty(prefix+"corrFFTSize",this.corrFFTSize+"");
  			properties.setProperty(prefix+"corrXC",this.corrXC+"");
  			properties.setProperty(prefix+"corrYC",this.corrYC+"");
  			properties.setProperty(prefix+"corrShift",this.corrShift+"");
  			properties.setProperty(prefix+"firstImage",this.firstImage+"");
  			properties.setProperty(prefix+"secondImage",this.secondImage+"");
  			properties.setProperty(prefix+"corrPhaseFraction",this.corrPhaseFraction+"");
  			properties.setProperty(prefix+"corrCbWeight",this.corrCbWeight+"");
  			properties.setProperty(prefix+"corrCrWeight",this.corrCrWeight+"");
  			properties.setProperty(prefix+"correlationHighPassSigma",this.correlationHighPassSigma+"");
  			properties.setProperty(prefix+"correlationLowPassSigma",this.correlationLowPassSigma+"");
  			properties.setProperty(prefix+"normalizeCorrelation",this.normalizeCorrelation+"");
  			properties.setProperty(prefix+"noiseNormalizationSignaY",this.noiseNormalizationSignaY+"");
  			properties.setProperty(prefix+"noiseNormalizationSignaCbCr",this.noiseNormalizationSignaCbCr+"");
  			properties.setProperty(prefix+"contrastThreshold",this.contrastThreshold+"");
  			properties.setProperty(prefix+"useBinaryAlpha",this.useBinaryAlpha+"");
  			if (disparityScales!=null) {
  	  			properties.setProperty(prefix+"disparityScales",this.disparityScales.length+"");
  				for (int i=0;i<this.disparityScales.length;i++) if (this.disparityScales[i]!=null){
  		  			properties.setProperty(prefix+"disparityScales_"+i+"_X",this.disparityScales[i][0]+"");
  		  			properties.setProperty(prefix+"disparityScales_"+i+"_Y",this.disparityScales[i][1]+"");
  				}
  			}
  			properties.setProperty(prefix+"tileOverlapFraction",this.tileOverlapFraction+"");
  			properties.setProperty(prefix+"disparityRange",this.disparityRange+"");
  			properties.setProperty(prefix+"disparitySteps",this.disparitySteps+"");
  			properties.setProperty(prefix+"useFullWindow",this.useFullWindow+"");
  			properties.setProperty(prefix+"resultWindow_x",this.resultWindow.x+"");
  			properties.setProperty(prefix+"resultWindow_y",this.resultWindow.y+"");
  			properties.setProperty(prefix+"resultWindow_width",this.resultWindow.width+"");
  			properties.setProperty(prefix+"resultWindow_height",this.resultWindow.height+"");
  			properties.setProperty(prefix+"channelMask",this.channelMask+"");
  			properties.setProperty(prefix+"useFileData",this.useFileData+"");
  			properties.setProperty(prefix+"dataPathName",this.dataPathName);
  			properties.setProperty(prefix+"corrPathName",this.corrPathName);
  			properties.setProperty(prefix+"interpolationSize",this.interpolationSize+"");
  			properties.setProperty(prefix+"interpolationUpSample",this.interpolationUpSample+"");
  			properties.setProperty(prefix+"subpixAMax_Y",this.subpixAMax[0]+"");
  			properties.setProperty(prefix+"subpixAMax_Cb",this.subpixAMax[1]+"");
  			properties.setProperty(prefix+"subpixAMax_Cr",this.subpixAMax[2]+"");
  			properties.setProperty(prefix+"subpixAMax_Ext",this.subpixAMax[3]+"");
  			properties.setProperty(prefix+"subpixRMax",this.subpixRMax+"");
  			properties.setProperty(prefix+"subpixNMax",this.subpixNMax+"");
  			properties.setProperty(prefix+"showCorrelationToImage",this.showCorrelationToImage+"");
  			properties.setProperty(prefix+"saveCorrelationToImage",this.saveCorrelationToImage+"");
  			
  			properties.setProperty(prefix+"bgFraction",this.bgFraction+"");
  			properties.setProperty(prefix+"blurVarianceSigma",this.blurVarianceSigma+"");
  			properties.setProperty(prefix+"refineTilePeriod",this.refineTilePeriod+"");
  			properties.setProperty(prefix+"refinePhaseCoeff",this.refinePhaseCoeff+"");
  			properties.setProperty(prefix+"refineHighPassSigma",this.refineHighPassSigma+"");
  			properties.setProperty(prefix+"refineLowPassSigma",this.refineLowPassSigma+"");
  			properties.setProperty(prefix+"refineCorrMaxDistance",this.refineCorrMaxDistance+"");
  			properties.setProperty(prefix+"refineCorrThreshold",this.refineCorrThreshold+"");
  			properties.setProperty(prefix+"refineSubPixel",this.refineSubPixel+"");
  			
  			if (this.zMapWOI!=null) {
  				properties.setProperty(prefix+"zMapWOI_x",this.zMapWOI.x+"");
  				properties.setProperty(prefix+"zMapWOI_y",this.zMapWOI.y+"");
  				properties.setProperty(prefix+"zMapWOI_width",this.zMapWOI.width+"");
  				properties.setProperty(prefix+"zMapWOI_height",this.zMapWOI.height+"");
  			}
  			properties.setProperty(prefix+"zMapMaxNumber",this.zMapMaxNumber+"");
  			properties.setProperty(prefix+"zMapMinFirst",this.zMapMinFirst+"");
  			properties.setProperty(prefix+"zMapMinAbsolute",this.zMapMinAbsolute+"");
  			properties.setProperty(prefix+"zMapMinRelative",this.zMapMinRelative+"");
  			properties.setProperty(prefix+"zMapMergeMax",this.zMapMergeMax+"");
  			properties.setProperty(prefix+"zMapOverlap",this.zMapOverlap+"");
  			properties.setProperty(prefix+"zMapFatZero",this.zMapFatZero+"");

  			properties.setProperty(prefix+"zMapMinForeground",this.zMapMinForeground+"");
  			properties.setProperty(prefix+"zMapVarMask",this.zMapVarMask+"");
  			properties.setProperty(prefix+"zMapVarThresholds_length",this.zMapVarThresholds.length+"");
  			for (int i=0;i<zMapVarThresholds.length;i++){
  				properties.setProperty(prefix+"zMapVarThresholds_"+i,this.zMapVarThresholds[i]+"");
  			}
  			properties.setProperty(prefix+"auxVarMode",this.auxVarMode+"");
  			
  			properties.setProperty(prefix+"zMapVarWeights_length",this.zMapVarWeights.length+"");
  			for (int i=0;i<zMapVarWeights.length;i++){
  				properties.setProperty(prefix+"zMapVarWeights_"+i,this.zMapVarWeights[i]+"");
  			}
  			properties.setProperty(prefix+"zMapCorrMask",this.zMapCorrMask+"");
  			properties.setProperty(prefix+"zMapCorrThresholds_length",this.zMapCorrThresholds.length+"");
  			for (int i=0;i<zMapCorrThresholds.length;i++){
  				properties.setProperty(prefix+"zMapCorrThresholds_"+i,this.zMapCorrThresholds[i]+"");
  			}
  			properties.setProperty(prefix+"zMapCorrThresholdsRel_length",this.zMapCorrThresholdsRel.length+"");
  			for (int i=0;i<zMapCorrThresholdsRel.length;i++){
  				properties.setProperty(prefix+"zMapCorrThresholdsRel_"+i,this.zMapCorrThresholdsRel[i]+"");
  			}
  			properties.setProperty(prefix+"zMapCorrWeights_length",this.zMapCorrWeights.length+"");
  			for (int i=0;i<zMapCorrWeights.length;i++){
  				properties.setProperty(prefix+"zMapCorrWeights_"+i,this.zMapCorrWeights[i]+"");
  			}
  			properties.setProperty(prefix+"fillFgGapMin",this.fillFgGapMin+"");
  			properties.setProperty(prefix+"fillFgGapDiff",this.fillFgGapDiff+"");
  			properties.setProperty(prefix+"fillFgGapNeib",this.fillFgGapNeib+"");
  			
  			properties.setProperty(prefix+"filter2DisparityMax",this.filter2DisparityMax+"");
  			properties.setProperty(prefix+"filter2DisaprityMin",this.filter2DisaprityMin+"");
  			properties.setProperty(prefix+"filter2UpdateMax",this.filter2UpdateMax+"");
  			properties.setProperty(prefix+"filter2MinAbsolute",this.filter2MinAbsolute+"");
  			properties.setProperty(prefix+"filter2MinRelative",this.filter2MinRelative+"");
  			properties.setProperty(prefix+"filter2ByForeground",this.filter2ByForeground+"");
  			properties.setProperty(prefix+"filter2ByForegroundMargin",this.filter2ByForegroundMargin+"");
  			properties.setProperty(prefix+"filter2ByDisabled",this.filter2ByDisabled+"");
  			properties.setProperty(prefix+"filter2DisparityTolearnce",this.filter2DisparityTolearnce+"");
  			properties.setProperty(prefix+"filter2MaskBlurSigma",this.filter2MaskBlurSigma+"");
  			properties.setProperty(prefix+"filter2corrHighPassSigma",this.filter2corrHighPassSigma+"");

  			properties.setProperty(prefix+"photometricIgnoreFraction",this.photometricIgnoreFraction+"");
  			properties.setProperty(prefix+"photometricSubdivAverage",this.photometricSubdivAverage+"");
  			properties.setProperty(prefix+"photometricSubdivHalfDifference",this.photometricSubdivHalfDifference+"");
  			properties.setProperty(prefix+"photometricSmoothVarianceSigma",this.photometricSmoothVarianceSigma+"");
  			properties.setProperty(prefix+"photometricScaleVariance",this.photometricScaleVariance+"");

  			properties.setProperty(prefix+"matchStatVarianceBlurScale",this.matchStatVarianceBlurScale+"");
  			properties.setProperty(prefix+"matchStatKLocal",this.matchStatKLocal+"");
  			properties.setProperty(prefix+"matchStatMode",this.matchStatMode+"");
  			
    		properties.setProperty(prefix+"debugRow",this.debugRow+"");
    		properties.setProperty(prefix+"debugColumn",this.debugColumn+"");

    	}
    	public void getProperties(String prefix,Properties properties){
    		if (this.resultWindow==null) this.resultWindow=new Rectangle();

    		if (properties.getProperty(prefix+"autocorrelation")!=null)             this.autocorrelation=Boolean.parseBoolean(properties.getProperty(prefix+"autocorrelation"));
  		    if (properties.getProperty(prefix+"corrFFTSize")!=null)                 this.corrFFTSize=Integer.parseInt(properties.getProperty(prefix+"corrFFTSize"));
  		    if (properties.getProperty(prefix+"corrXC")!=null)                      this.corrXC=Double.parseDouble(properties.getProperty(prefix+"corrXC"));
  		    if (properties.getProperty(prefix+"corrYC")!=null)                      this.corrYC=Double.parseDouble(properties.getProperty(prefix+"corrYC"));
  		    if (properties.getProperty(prefix+"corrShift")!=null)                   this.corrShift=Double.parseDouble(properties.getProperty(prefix+"corrShift"));
  		    if (properties.getProperty(prefix+"firstImage")!=null)                  this.firstImage=Integer.parseInt(properties.getProperty(prefix+"firstImage"));
  		    if (properties.getProperty(prefix+"secondImage")!=null)                 this.secondImage=Integer.parseInt(properties.getProperty(prefix+"secondImage"));
  		    if (properties.getProperty(prefix+"corrPhaseFraction")!=null)           this.corrPhaseFraction=Double.parseDouble(properties.getProperty(prefix+"corrPhaseFraction"));
  		    if (properties.getProperty(prefix+"corrCbWeight")!=null)                this.corrCbWeight=Double.parseDouble(properties.getProperty(prefix+"corrCbWeight"));
  		    if (properties.getProperty(prefix+"corrCrWeight")!=null)                this.corrCrWeight=Double.parseDouble(properties.getProperty(prefix+"corrCrWeight"));
  		    if (properties.getProperty(prefix+"correlationHighPassSigma")!=null)    this.correlationHighPassSigma=Double.parseDouble(properties.getProperty(prefix+"correlationHighPassSigma"));
  		    if (properties.getProperty(prefix+"correlationLowPassSigma")!=null)     this.correlationLowPassSigma=Double.parseDouble(properties.getProperty(prefix+"correlationLowPassSigma"));
    		if (properties.getProperty(prefix+"normalizeCorrelation")!=null)        this.normalizeCorrelation=Integer.parseInt(properties.getProperty(prefix+"normalizeCorrelation"));
  		    if (properties.getProperty(prefix+"noiseNormalizationSignaY")!=null)    this.noiseNormalizationSignaY=Double.parseDouble(properties.getProperty(prefix+"noiseNormalizationSignaY"));
  		    if (properties.getProperty(prefix+"noiseNormalizationSignaCbCr")!=null) this.noiseNormalizationSignaCbCr=Double.parseDouble(properties.getProperty(prefix+"noiseNormalizationSignaCbCr"));
  		    if (properties.getProperty(prefix+"contrastThreshold")!=null)           this.contrastThreshold=Double.parseDouble(properties.getProperty(prefix+"contrastThreshold"));
    		if (properties.getProperty(prefix+"useBinaryAlpha")!=null)              this.useBinaryAlpha=Boolean.parseBoolean(properties.getProperty(prefix+"useBinaryAlpha"));
    		if (properties.getProperty(prefix+"disparityScales")!=null){
    			this.disparityScales=new double [Integer.parseInt(properties.getProperty(prefix+"disparityScales"))][];
    			for (int i=0;i<this.disparityScales.length;i++) {
    				if ((properties.getProperty(prefix+"disparityScales_"+i+"_X")!=null) && (properties.getProperty(prefix+"disparityScales_"+i+"_Y")!=null)){
    					this.disparityScales[i]=new double[2];
    					this.disparityScales[i][0]=Double.parseDouble(properties.getProperty(prefix+"disparityScales_"+i+"_X"));
    					this.disparityScales[i][1]=Double.parseDouble(properties.getProperty(prefix+"disparityScales_"+i+"_Y"));
    				} else this.disparityScales[i]=null;
    			}
    		}
  		    if (properties.getProperty(prefix+"tileOverlapFraction")!=null)  this.tileOverlapFraction=Integer.parseInt(properties.getProperty(prefix+"tileOverlapFraction"));
  		    if (properties.getProperty(prefix+"disparityRange")!=null)       this.disparityRange=Double.parseDouble(properties.getProperty(prefix+"disparityRange"));
  		    if (properties.getProperty(prefix+"disparitySteps")!=null)       this.disparitySteps=Integer.parseInt(properties.getProperty(prefix+"disparitySteps"));
    		if (properties.getProperty(prefix+"useFullWindow")!=null)        this.useFullWindow=Boolean.parseBoolean(properties.getProperty(prefix+"useFullWindow"));
  		    if (properties.getProperty(prefix+"resultWindow_x")!=null)       this.resultWindow.x=Integer.parseInt(properties.getProperty(prefix+"resultWindow_x"));
  		    if (properties.getProperty(prefix+"resultWindow_y")!=null)       this.resultWindow.y=Integer.parseInt(properties.getProperty(prefix+"resultWindow_y"));
  		    if (properties.getProperty(prefix+"resultWindow_width")!=null)   this.resultWindow.width= Integer.parseInt(properties.getProperty(prefix+"resultWindow_width"));
  		    if (properties.getProperty(prefix+"resultWindow_height")!=null)  this.resultWindow.height=Integer.parseInt(properties.getProperty(prefix+"resultWindow_height"));
		    if (properties.getProperty(prefix+"channelMask")!=null) this.channelMask=Integer.parseInt(properties.getProperty(prefix+"channelMask"));
    		if (properties.getProperty(prefix+"useFileData")!=null)          this.useFileData=Boolean.parseBoolean(properties.getProperty(prefix+"useFileData"));
    		if (properties.getProperty(prefix+"dataPathName")!=null)         this.dataPathName=(String) (properties.getProperty(prefix+"dataPathName"));
    		if (properties.getProperty(prefix+"corrPathName")!=null)         this.corrPathName=(String) (properties.getProperty(prefix+"corrPathName"));
		    if (properties.getProperty(prefix+"interpolationSize")!=null)    this.interpolationSize=Integer.parseInt(properties.getProperty(prefix+"interpolationSize"));
		    if (properties.getProperty(prefix+"interpolationUpSample")!=null)this.interpolationUpSample=Integer.parseInt(properties.getProperty(prefix+"interpolationUpSample"));
  		    if (properties.getProperty(prefix+"subpixAMax_Y")!=null)         this.subpixAMax[0]=Double.parseDouble(properties.getProperty(prefix+"subpixAMax_Y"));
  		    if (properties.getProperty(prefix+"subpixAMax_Cb")!=null)        this.subpixAMax[1]=Double.parseDouble(properties.getProperty(prefix+"subpixAMax_Cb"));
  		    if (properties.getProperty(prefix+"subpixAMax_Cr")!=null)        this.subpixAMax[2]=Double.parseDouble(properties.getProperty(prefix+"subpixAMax_Cr"));
  		    if (properties.getProperty(prefix+"subpixAMax_Ext")!=null)       this.subpixAMax[3]=Double.parseDouble(properties.getProperty(prefix+"subpixAMax_Ext"));
  		    if (properties.getProperty(prefix+"subpixRMax")!=null)           this.subpixRMax=Double.parseDouble(properties.getProperty(prefix+"subpixRMax"));
		    if (properties.getProperty(prefix+"subpixNMax")!=null)           this.subpixNMax=Integer.parseInt(properties.getProperty(prefix+"subpixNMax"));
    		if (properties.getProperty(prefix+"showCorrelationToImage")!=null)this.showCorrelationToImage=Boolean.parseBoolean(properties.getProperty(prefix+"showCorrelationToImage"));
    		if (properties.getProperty(prefix+"saveCorrelationToImage")!=null)this.saveCorrelationToImage=Boolean.parseBoolean(properties.getProperty(prefix+"saveCorrelationToImage"));
    		
    		if (properties.getProperty(prefix+"bgFraction")!=null)           this.bgFraction=Double.parseDouble(properties.getProperty(prefix+"bgFraction"));
    		if (properties.getProperty(prefix+"blurVarianceSigma")!=null)    this.blurVarianceSigma=Double.parseDouble(properties.getProperty(prefix+"blurVarianceSigma"));
		    if (properties.getProperty(prefix+"refineTilePeriod")!=null)     this.refineTilePeriod=Integer.parseInt(properties.getProperty(prefix+"refineTilePeriod"));
  		    if (properties.getProperty(prefix+"refinePhaseCoeff")!=null)     this.refinePhaseCoeff=Double.parseDouble(properties.getProperty(prefix+"refinePhaseCoeff"));
  		    if (properties.getProperty(prefix+"refineHighPassSigma")!=null)  this.refineHighPassSigma=Double.parseDouble(properties.getProperty(prefix+"refineHighPassSigma"));
  		    if (properties.getProperty(prefix+"refineLowPassSigma")!=null)   this.refineLowPassSigma=Double.parseDouble(properties.getProperty(prefix+"refineLowPassSigma"));
  		    if (properties.getProperty(prefix+"refineCorrMaxDistance")!=null)this.refineCorrMaxDistance=Double.parseDouble(properties.getProperty(prefix+"refineCorrMaxDistance"));
  		    if (properties.getProperty(prefix+"refineCorrThreshold")!=null)  this.refineCorrThreshold=Double.parseDouble(properties.getProperty(prefix+"refineCorrThreshold"));
		    if (properties.getProperty(prefix+"refineSubPixel")!=null)       this.refineSubPixel=Integer.parseInt(properties.getProperty(prefix+"refineSubPixel"));
		    if (properties.getProperty(prefix+"zMapWOI_x")!=null) { // should be defined all or none
		    	this.zMapWOI=new Rectangle();
		    	this.zMapWOI.x=Integer.parseInt(properties.getProperty(prefix+"zMapWOI_x"));
		    	this.zMapWOI.y=Integer.parseInt(properties.getProperty(prefix+"zMapWOI_y"));
		    	this.zMapWOI.width= Integer.parseInt(properties.getProperty(prefix+"zMapWOI_width"));
		    	this.zMapWOI.height=Integer.parseInt(properties.getProperty(prefix+"zMapWOI_height"));
		    }
		    if (properties.getProperty(prefix+"zMapMaxNumber")!=null) this.zMapMaxNumber=Integer.parseInt(properties.getProperty(prefix+"zMapMaxNumber"));
  		    if (properties.getProperty(prefix+"zMapMinFirst")!=null) this.zMapMinFirst=Double.parseDouble(properties.getProperty(prefix+"zMapMinFirst"));
  		    if (properties.getProperty(prefix+"zMapMinAbsolute")!=null) this.zMapMinAbsolute=Double.parseDouble(properties.getProperty(prefix+"zMapMinAbsolute"));
  		    if (properties.getProperty(prefix+"zMapMinRelative")!=null) this.zMapMinRelative=Double.parseDouble(properties.getProperty(prefix+"zMapMinRelative"));
  		    if (properties.getProperty(prefix+"zMapMergeMax")!=null) this.zMapMergeMax=Double.parseDouble(properties.getProperty(prefix+"zMapMergeMax"));
		    if (properties.getProperty(prefix+"zMapOverlap")!=null) this.zMapOverlap=Integer.parseInt(properties.getProperty(prefix+"zMapOverlap"));
  		    if (properties.getProperty(prefix+"zMapFatZero")!=null) this.zMapFatZero=Double.parseDouble(properties.getProperty(prefix+"zMapFatZero"));
  		    

  		    if (properties.getProperty(prefix+"zMapMinForeground")!=null) this.zMapMinForeground=Double.parseDouble(properties.getProperty(prefix+"zMapMinForeground"));
		    if (properties.getProperty(prefix+"zMapVarMask")!=null) this.zMapVarMask=Integer.parseInt(properties.getProperty(prefix+"zMapVarMask"));
		    if (properties.getProperty(prefix+"zMapVarThresholds_length")!=null){
		    	this.zMapVarThresholds= new double[Integer.parseInt(properties.getProperty(prefix+"zMapVarThresholds_length"))];
	  			for (int i=0;i<zMapVarThresholds.length;i++){
	  	  		    if (properties.getProperty(prefix+"zMapVarThresholds_"+i)!=null) this.zMapVarThresholds[i]=Double.parseDouble(properties.getProperty(prefix+"zMapVarThresholds_"+i));
	  			}
		    }
		    if (properties.getProperty(prefix+"auxVarMode")!=null) this.auxVarMode=Integer.parseInt(properties.getProperty(prefix+"auxVarMode"));
  		    
		    if (properties.getProperty(prefix+"zMapVarWeights_length")!=null){
		    	this.zMapVarWeights= new double[Integer.parseInt(properties.getProperty(prefix+"zMapVarWeights_length"))];
	  			for (int i=0;i<zMapVarWeights.length;i++){
	  	  		    if (properties.getProperty(prefix+"zMapVarWeights_"+i)!=null) this.zMapVarWeights[i]=Double.parseDouble(properties.getProperty(prefix+"zMapVarWeights_"+i));
	  			}
		    }

		    if (properties.getProperty(prefix+"zMapCorrMask")!=null) this.zMapCorrMask=Integer.parseInt(properties.getProperty(prefix+"zMapCorrMask"));
		    if (properties.getProperty(prefix+"zMapCorrThresholds_length")!=null){
		    	this.zMapCorrThresholds= new double[Integer.parseInt(properties.getProperty(prefix+"zMapCorrThresholds_length"))];
	  			for (int i=0;i<zMapCorrThresholds.length;i++){
	  	  		    if (properties.getProperty(prefix+"zMapCorrThresholds_"+i)!=null) this.zMapCorrThresholds[i]=Double.parseDouble(properties.getProperty(prefix+"zMapCorrThresholds_"+i));
	  			}
		    }
		    if (properties.getProperty(prefix+"zMapCorrThresholdsRel_length")!=null){
		    	this.zMapCorrThresholdsRel= new double[Integer.parseInt(properties.getProperty(prefix+"zMapCorrThresholdsRel_length"))];
	  			for (int i=0;i<zMapCorrThresholdsRel.length;i++){
	  	  		    if (properties.getProperty(prefix+"zMapCorrThresholdsRel_"+i)!=null) this.zMapCorrThresholdsRel[i]=Double.parseDouble(properties.getProperty(prefix+"zMapCorrThresholdsRel_"+i));
	  			}
		    }
		    if (properties.getProperty(prefix+"zMapCorrWeights_length")!=null){
		    	this.zMapCorrWeights= new double[Integer.parseInt(properties.getProperty(prefix+"zMapCorrWeights_length"))];
	  			for (int i=0;i<zMapCorrWeights.length;i++){
	  	  		    if (properties.getProperty(prefix+"zMapCorrWeights_"+i)!=null) this.zMapCorrWeights[i]=Double.parseDouble(properties.getProperty(prefix+"zMapCorrWeights_"+i));
	  			}
		    }
  		    if (properties.getProperty(prefix+"fillFgGapMin")!=null)  this.fillFgGapMin=Double.parseDouble(properties.getProperty(prefix+"fillFgGapMin"));
  		    if (properties.getProperty(prefix+"fillFgGapDiff")!=null) this.fillFgGapDiff=Double.parseDouble(properties.getProperty(prefix+"fillFgGapDiff"));
		    if (properties.getProperty(prefix+"fillFgGapNeib")!=null) this.fillFgGapNeib=Integer.parseInt(properties.getProperty(prefix+"fillFgGapNeib"));
		    
		    if (properties.getProperty(prefix+"filter2DisparityMax")!=null) this.filter2DisparityMax=Double.parseDouble(properties.getProperty(prefix+"filter2DisparityMax"));
  		    if (properties.getProperty(prefix+"filter2DisaprityMin")!=null) this.filter2DisaprityMin=Double.parseDouble(properties.getProperty(prefix+"filter2DisaprityMin"));
    		if (properties.getProperty(prefix+"filter2UpdateMax")!=null)this.filter2UpdateMax=Boolean.parseBoolean(properties.getProperty(prefix+"filter2UpdateMax"));
  		    if (properties.getProperty(prefix+"filter2MinAbsolute")!=null) this.filter2MinAbsolute=Double.parseDouble(properties.getProperty(prefix+"filter2MinAbsolute"));
  		    if (properties.getProperty(prefix+"filter2MinRelative")!=null) this.filter2MinRelative=Double.parseDouble(properties.getProperty(prefix+"filter2MinRelative"));
    		if (properties.getProperty(prefix+"filter2ByForeground")!=null)this.filter2ByForeground=Boolean.parseBoolean(properties.getProperty(prefix+"filter2ByForeground"));
  		    if (properties.getProperty(prefix+"filter2ByForegroundMargin")!=null) this.filter2ByForegroundMargin=Double.parseDouble(properties.getProperty(prefix+"filter2ByForegroundMargin"));
    		if (properties.getProperty(prefix+"filter2ByDisabled")!=null)this.filter2ByDisabled=Boolean.parseBoolean(properties.getProperty(prefix+"filter2ByDisabled"));
  		    if (properties.getProperty(prefix+"filter2DisparityTolearnce")!=null) this.filter2DisparityTolearnce=Double.parseDouble(properties.getProperty(prefix+"filter2DisparityTolearnce"));
  		    if (properties.getProperty(prefix+"filter2MaskBlurSigma")!=null) this.filter2MaskBlurSigma=Double.parseDouble(properties.getProperty(prefix+"filter2MaskBlurSigma"));
  		    if (properties.getProperty(prefix+"filter2corrHighPassSigma")!=null) this.filter2corrHighPassSigma=Double.parseDouble(properties.getProperty(prefix+"filter2corrHighPassSigma"));
		    
  		    if (properties.getProperty(prefix+"photometricIgnoreFraction")!=null) this.photometricIgnoreFraction=Double.parseDouble(properties.getProperty(prefix+"photometricIgnoreFraction"));
		    if (properties.getProperty(prefix+"photometricSubdivAverage")!=null) this.photometricSubdivAverage=Integer.parseInt(properties.getProperty(prefix+"photometricSubdivAverage"));
		    if (properties.getProperty(prefix+"photometricSubdivHalfDifference")!=null) this.photometricSubdivHalfDifference=Integer.parseInt(properties.getProperty(prefix+"photometricSubdivHalfDifference"));
  		    if (properties.getProperty(prefix+"photometricSmoothVarianceSigma")!=null) this.photometricSmoothVarianceSigma=Double.parseDouble(properties.getProperty(prefix+"photometricSmoothVarianceSigma"));
  		    if (properties.getProperty(prefix+"photometricScaleVariance")!=null) this.photometricScaleVariance=Double.parseDouble(properties.getProperty(prefix+"photometricScaleVariance"));

  		    if (properties.getProperty(prefix+"matchStatVarianceBlurScale")!=null) this.matchStatVarianceBlurScale=Double.parseDouble(properties.getProperty(prefix+"matchStatVarianceBlurScale"));
  		    if (properties.getProperty(prefix+"matchStatKLocal")!=null) this.matchStatKLocal=Double.parseDouble(properties.getProperty(prefix+"matchStatKLocal"));
		    if (properties.getProperty(prefix+"matchStatMode")!=null) this.matchStatMode=Integer.parseInt(properties.getProperty(prefix+"matchStatMode"));
  		  
  		    if (properties.getProperty(prefix+"debugRow")!=null) this.debugRow=Integer.parseInt(properties.getProperty(prefix+"debugRow"));
  		    if (properties.getProperty(prefix+"debugColumn")!=null) this.debugColumn=Integer.parseInt(properties.getProperty(prefix+"debugColumn"));

    	}
    	public void combineDisparityScales(double [][] actualScales, boolean newPriority){
    		if (actualScales==null) return; // do nothing
    		if ((this.disparityScales==null) || (this.disparityScales.length!=actualScales.length)){
    			this.disparityScales=actualScales.clone(); // only top level
    			return;
    		}
    		for (int i=0;i<this.disparityScales.length;i++){
    			if (((this.disparityScales[i]==null) || newPriority) && (actualScales[i]!=null)){
    				this.disparityScales[i]=actualScales[i];
    			} else if (((actualScales[i]==null) || !newPriority) && (this.disparityScales[i]!=null)){
    				actualScales[i]=this.disparityScales[i];
    			}
    		}
    	}

    	boolean showDialog(String title, double [][] actualScales, int mode, int fullWidth, int fullHeight){
    		if (actualScales!=null) combineDisparityScales(actualScales, true);
			GenericDialog gd=new GenericDialog("title");
			if ((mode & 1)!=0) gd.addCheckbox    ("Autocorrelation",                   this.autocorrelation); // false
			gd.addNumericField("Correlation area size (power of 2)",this.corrFFTSize,0); // 256
			if ((mode & 16)!=0) gd.addNumericField("Tile overlap fraction",this.tileOverlapFraction,0,2,""); //4
			if ((mode & 1)!=0) gd.addNumericField("Selection area center horizontal/right (XC)",this.corrXC,2,6,"pix"); //1280
			if ((mode & 1)!=0) gd.addNumericField("Selection area center vertical/down  (YC)",this.corrYC,2,6,"pix"); // 960
			if ((mode & 1)!=0) gd.addNumericField("Shift from the center",this.corrShift,2,6,"pix"); // 30.0 - was int 28
			
			if ((mode & 8)!=0)gd.addNumericField("First image in a pair (0-2)",this.firstImage,0); // 0
			if ((mode & 8)!=0)gd.addNumericField("Second image in a pair (0-2)",this.secondImage,0); // 1
			String [] componentNames={"Y","Cb","Cr","Aux."};
			gd.addNumericField("Use phase correlation (0.0 - pure normal correlation, 1.0 - pure phase one)",this.corrPhaseFraction,3,5,"");// 0.5?
			gd.addNumericField("Weight of Cb (relative to Y) in correlation",this.corrCbWeight,3,5,""); //0.5
			gd.addNumericField("Weight of Cr (relative to Y) in correlation",this.corrCrWeight,3,5,""); //0.5
			gd.addNumericField("correlationHighPassSigma, - pixels in frequency domain",this.correlationHighPassSigma,3,5,""); // 1.5
			gd.addNumericField("correlationLowPassSigma, - fraction of the frequency range",this.correlationLowPassSigma,3,5,""); // 0.6
			gd.addNumericField("Noise normalization sigma for Y-component",this.noiseNormalizationSignaY,2,5,"pix"); // 3.0
			gd.addNumericField("Noise normalization sigma for Cb, Cr components",this.noiseNormalizationSignaCbCr,2,5,"pix"); // 5.0
			gd.addNumericField("Contrast threshold",this.contrastThreshold,1,5,""); //1.5
			gd.addCheckbox    ("Use binary alpha)", this.useBinaryAlpha); // true;
1440
//   	public double [][] disparityScales=       null; // for each channel - a pair of {scaleX, scaleY} or null if undefined (interSensor has the same)
Andrey Filippov's avatar
Andrey Filippov committed
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
			if (this.disparityScales!=null) {
				double [] disparityZero={0.0,0.0};
				double [][] disparityPair={{-0.5,0.0},{0.5,0.0}};
				double [][] disparityTriplet={{0.0,Math.sqrt(3)/3}, {-0.5,-Math.sqrt(3)/6},{0.5,-Math.sqrt(3)/6}};
				gd.addMessage("Channel shift X,Y per unit of disparity (distance between images in a pair)");
				for (int nChn=0;nChn<this.disparityScales.length;nChn++){
					if (this.disparityScales[nChn]==null){
						if      (this.disparityScales.length==2) this.disparityScales[nChn]=disparityPair[nChn].clone(); 
						else if (this.disparityScales.length==3) this.disparityScales[nChn]=disparityTriplet[nChn].clone();
						else this.disparityScales[nChn]=disparityZero.clone();
					}
					gd.addMessage("Channel "+nChn+":");
					gd.addNumericField("   Channel "+nChn+" shift X (right)",this.disparityScales[nChn][0],6,8,"x");
					gd.addNumericField("   Channel "+nChn+" shift Y (down)",this.disparityScales[nChn][1],6,8,"x");
				}
			}
			if ((mode & 2)!=0) {
				gd.addNumericField("Disparity range",this.disparityRange,2,6,"pix"); //100.0
				gd.addNumericField("Disparity steps (over the range)",this.disparitySteps,0,3,""); //100
				gd.addNumericField("Size of square used for sub-pixel disparity interpolation near local maximums",this.interpolationSize,0,8,"pix"); //8
				gd.addNumericField("Subdivide pixels fraction near correlation local maximums",this.interpolationUpSample,0,3,""); //16
				gd.addMessage("Full image width: "+fullWidth+" pix");
				gd.addMessage("Full image height: "+fullHeight+" pix");
				gd.addCheckbox    ("Use full image window (overwrite next fields)", this.useFullWindow); // true;
				gd.addNumericField("Result window left margin",this.resultWindow.x,0,4,""); //0
				gd.addNumericField("Result window top  margin",this.resultWindow.y,0,4,""); //0
				gd.addNumericField("Result window width", this.resultWindow.width,0,4,""); //2592
				gd.addNumericField("Result window height",this.resultWindow.height,0,4,""); //1936
			}
			if ((mode & 4)!=0) {
				gd.addCheckbox    ("Process Y  channel", ((this.channelMask & 1)!=0)); // true;
				gd.addCheckbox    ("Process Cb channel", ((this.channelMask & 2)!=0)); // true;
				gd.addCheckbox    ("Process Cr channel", ((this.channelMask & 4)!=0)); // true;
				gd.addCheckbox    ("Use external data file (plus/instead of YCbCr)", this.useFileData); // false;
				gd.addStringField ("External data file path (if selected plus/instead of YCbCr)",this.dataPathName,100);
				gd.addStringField ("Calculated correlation vs. disparity data file",this.corrPathName,100);
			}
			if ((mode & 2)!=0) {
				gd.addNumericField("Absolute correlation maximum threshold for subpixel resolution, Y",this.subpixAMax[0],3,7,"");
				gd.addNumericField("Absolute correlation maximum threshold for subpixel resolution, Cb",this.subpixAMax[1],3,7,"");
				gd.addNumericField("Absolute correlation maximum threshold for subpixel resolution, Cr",this.subpixAMax[2],3,7,"");
				gd.addNumericField("Absolute correlation maximum threshold for subpixel resolution, External file",this.subpixAMax[3],3,7,"");
				gd.addNumericField("Relative correlation maximum threshold for subpixel resolution, all channels",100*this.subpixRMax,2,6,"%");
				gd.addNumericField("Number of correlation maximums to enable subpixel resolution, all channels",this.subpixNMax,0,2,"");
				gd.addCheckbox    ("Show correlation results as a multi-slice image", this.showCorrelationToImage); // true;
				gd.addCheckbox    ("Save correlation results as a multi-slice image", this.saveCorrelationToImage); // true;

			}	
			if ((mode & 32)!=0){
				gd.addNumericField("Try background plane not less that this fraction of maximal correlation plane",100*this.bgFraction,1,5,"%");
				gd.addNumericField("Blur variance sigma",this.blurVarianceSigma,2,5,"pix");
				gd.addNumericField("Tile period for correlation refinement (power of 2)",this.refineTilePeriod,0,2,"pix"); // 4
				gd.addNumericField("Refine correlation phase correlation coefficient (0.0 - correlation, 1.0 - phase correlation)",this.refinePhaseCoeff,2,4,"");
				gd.addNumericField("refineHighPassSigma, - pixels in frequency domain",this.refineHighPassSigma,3,5,"pix"); // 1.5
				gd.addNumericField("refineLowPassSigma, - fraction of the frequency range",this.refineLowPassSigma,3,5,""); // 0.6
				gd.addNumericField("Maximal distance from the center to correlation maximum to refine disparity",this.refineCorrMaxDistance,2,5,"pix");
				gd.addNumericField("Relative correlation strength to enable disparity refinement",this.refineCorrThreshold,2,5,"");
				gd.addNumericField("Subdivide pixels to calculate disparity correction (power of 2)",this.refineSubPixel,0,2,"");
			}
			if ((mode & 64)!=0){
				if (this.zMapWOI==null) this.zMapWOI=new Rectangle(0,0,fullWidth,fullHeight);
				gd.addNumericField("Minimal absolute correlation strength for strongest maximum",this.zMapMinFirst,4,6,"");
				gd.addNumericField("Minimal absolute correlation strength for any maximum",this.zMapMinAbsolute,4,6,"");
				gd.addNumericField("Minimal correlation strength as a fraction of the strongest",100*this.zMapMinRelative,2,6,"%");
				gd.addNumericField("Merge maximums with disparity difference less than",this.zMapMergeMax,2,5,"pix");
				gd.addNumericField("Maximal number of z-planes to consider",this.zMapMaxNumber,0,2,"");
				gd.addNumericField("Store overlap padding to z-tiles, on each side",this.zMapOverlap,0,3,"pix");
				gd.addNumericField("Render window left margin",this.zMapWOI.x,0,4,"");
				gd.addNumericField("Result window top  margin",this.zMapWOI.y,0,4,"");
				gd.addNumericField("Result window width", this.zMapWOI.width,0,4,""); 
				gd.addNumericField("Result window height",this.zMapWOI.height,0,4,"");
				gd.addNumericField("Fat zero for combining to center",this.zMapFatZero,4,6,"");
			}
			if ((mode & 128)!=0){
				gd.addNumericField("Minimal absolute correlation strength for the foreground",this.zMapMinForeground,4,6,"");
				gd.addMessage(" -------------- filter foreground by tone matching --------------");
				for (int i=0;i<componentNames.length;i++){
					gd.addCheckbox    ("Filter by "+componentNames[i]+" component matching", (this.zMapVarMask & (1<<i))!=0); // true;
					gd.addNumericField("Threshold for "+componentNames[i]+" component relative difference",this.zMapVarThresholds[i],4,6,"");
					gd.addNumericField("Weight of  "+componentNames[i]+" component",this.zMapVarWeights[i],4,6,"");
				}
				gd.addNumericField("Aux channel variance mode (0 - all multiply, 1 - add pairs)",this.auxVarMode,0,1,"");
				gd.addMessage(" -------------- filter foreground by local correlation --------------");
				gd.addNumericField    ("Normalize correlation mode ", this.normalizeCorrelation,0,1,""); // true;
				for (int i=0;i<componentNames.length;i++){
					gd.addCheckbox    ("Filter by "+componentNames[i]+" component correlation", (this.zMapCorrMask & (1<<i))!=0); // true;
					gd.addNumericField("Threshold for "+componentNames[i]+" component correlation (0.0 - just positive, >1.0 - strong, <0 - loosen",this.zMapCorrThresholds[i],4,6,"");
					gd.addNumericField("Relative (to autocorrelation) threshold for "+componentNames[i]+" component correlation (0.0 - just positive, >1.0 - strong, <0 - loosen",100*this.zMapCorrThresholdsRel[i],4,6,"%");
					gd.addNumericField("Weight of  "+componentNames[i]+" component",this.zMapCorrWeights[i],4,6,"");
				}
			}
			if ((mode & 256)!=0){
				gd.addNumericField("Minimal absolute correlation for the new foreground",this.fillFgGapMin,4,6,"");
				gd.addNumericField("Maximal difference between the new foreground disparity and that of the surrounding tiles",this.fillFgGapDiff,2,5,"pix");
				gd.addNumericField("Minimal number of neighboring tiles (of 8) having the similar disparity as the new foreground",this.fillFgGapNeib,0,1,"");
			}			
			if ((mode & 512)!=0){
				gd.addMessage(" -------------- filter2 parameters --------------");
				gd.addNumericField("Maximal disparity to process",this.filter2DisparityMax,2,6,"pix");
				gd.addNumericField("Minimal disparity to process",this.filter2DisaprityMin,2,6,"pix");
				gd.addCheckbox    ("Update abolute/relative maximums", this.filter2UpdateMax); // true;
				gd.addNumericField("Absolute threshold for correlation vs. disparity maximums",this.filter2MinAbsolute,4,5,"");
				gd.addNumericField("Relative threshold for correlation vs. disparity maximums",100*this.filter2MinRelative,2,6,"%");
				gd.addCheckbox    ("Filter by occluding foreground (closer than this) planes", this.filter2ByForeground); // true;
				gd.addNumericField("Minimal disparity difference to closer occluding objects",this.filter2ByForegroundMargin,2,5,"");
				gd.addCheckbox    ("Filter by disabled pixels at the same distance", this.filter2ByDisabled); // true;
				gd.addNumericField("Disparity tolerance to consider objects to be at the same distance",this.filter2DisparityTolearnce,2,5,"");
				gd.addNumericField("Blur enabling masks with this Gaussian sigma ",this.filter2MaskBlurSigma,2,5,"pix");
				gd.addNumericField("HIgh-pass image data before multiplying by the enabling masks",this.filter2corrHighPassSigma,2,5,"pix");
			}			
			
			if ((mode & 1024)!=0){
				gd.addMessage(" -------------- photometric parameters --------------");
				gd.addNumericField("Ignore fraction of high/low pixels",100*this.photometricIgnoreFraction,4,8,"%");
				gd.addNumericField("Number of intensity value columns in the table",this.photometricSubdivAverage,0,4,"samples");
				gd.addNumericField("Half number of intensity difference rows in the table",this.photometricSubdivHalfDifference,0,4,"samples");
				gd.addNumericField("Blur variance between different value samples",this.photometricSmoothVarianceSigma,2,6,"samples");
				gd.addNumericField("Scale measured variance to create result probability data",this.photometricScaleVariance,2,6,"x");
			}
			if ((mode & 2048)!=0){
				gd.addMessage(" -------------- tone-matching statistical parameters --------------");
				gd.addNumericField("Use scaled varinace as a gaussian sigma for a 2-d histogram",this.matchStatVarianceBlurScale,1,4,"");
				gd.addNumericField("Normalize differences by global variance (0.0) or local (1.0)",100.0*this.matchStatKLocal,1,5,"%");
				gd.addNumericField("Likelyhood mode (0 - mul, 1 - add, 2 - min, 3 - max)",this.matchStatMode,0,1,"");
				
			}
//			/matchStatVarianceBlurScale
			gd.addNumericField("Debug row",this.debugRow,0);
			gd.addNumericField("Debug column",this.debugColumn,0);

			WindowTools.addScrollBars(gd);
			gd.showDialog();
			if (gd.wasCanceled()) return false;
			if ((mode & 1)!=0) this.autocorrelation=gd.getNextBoolean();
			this.corrFFTSize=       (int) gd.getNextNumber();
			if ((mode & 16)!=0) this.tileOverlapFraction=  (int) gd.getNextNumber(); //4
			if ((mode & 1)!=0) this.corrXC=                 gd.getNextNumber();
			if ((mode & 1)!=0) this.corrYC=                 gd.getNextNumber();
			if ((mode & 1)!=0) this.corrShift=              gd.getNextNumber();
			if ((mode & 8)!=0) this.firstImage=       (int) gd.getNextNumber();
			if ((mode & 8)!=0)this.secondImage=       (int) gd.getNextNumber();
			this.corrPhaseFraction=          gd.getNextNumber();
			this.corrCbWeight=               gd.getNextNumber();
			this.corrCrWeight=               gd.getNextNumber();
			this.correlationHighPassSigma=   gd.getNextNumber();
			this.correlationLowPassSigma=    gd.getNextNumber();
			this.noiseNormalizationSignaY=   gd.getNextNumber();
			this.noiseNormalizationSignaCbCr=gd.getNextNumber();
			this.contrastThreshold=gd.getNextNumber();
			this.useBinaryAlpha=gd.getNextBoolean();
    		if (actualScales!=null) combineDisparityScales(actualScales, false);
			if (this.disparityScales!=null) {
				for (int nChn=0;nChn<this.disparityScales.length;nChn++){
					this.disparityScales[nChn][0]=gd.getNextNumber();
					this.disparityScales[nChn][1]=gd.getNextNumber();
				}
			}
			if ((mode & 2)!=0) {
				this.disparityRange=             gd.getNextNumber();
				this.disparitySteps=       (int) gd.getNextNumber();
				this.interpolationSize=    (int) gd.getNextNumber();
				this.interpolationUpSample=(int) gd.getNextNumber();
				this.resultWindow=new Rectangle();
				this.useFullWindow=              gd.getNextBoolean();
				this.resultWindow.x=       (int) gd.getNextNumber();
				this.resultWindow.y=       (int) gd.getNextNumber();
				this.resultWindow.width=   (int) gd.getNextNumber();
				this.resultWindow.height=  (int) gd.getNextNumber();
				if (this.useFullWindow){
					this.resultWindow.x=       0;
					this.resultWindow.y=       0;
					this.resultWindow.width=   fullWidth;
					this.resultWindow.height=  fullHeight;
				}
			}
			if ((mode & 4)!=0) {
				this.channelMask=0;
				if (gd.getNextBoolean()) this.channelMask+=1;
				if (gd.getNextBoolean()) this.channelMask+=2;
				if (gd.getNextBoolean()) this.channelMask+=4;
				this.useFileData=               gd.getNextBoolean();
				this.dataPathName=              gd.getNextString();
				this.corrPathName=              gd.getNextString();
			}
			if ((mode & 2)!=0) {
				this.subpixAMax[0]=             gd.getNextNumber();
				this.subpixAMax[1]=             gd.getNextNumber();
				this.subpixAMax[2]=             gd.getNextNumber();
				this.subpixAMax[3]=             gd.getNextNumber();
				this.subpixRMax=           0.01*gd.getNextNumber();
				this.subpixNMax=          (int) gd.getNextNumber();
				this.showCorrelationToImage=    gd.getNextBoolean();
				this.saveCorrelationToImage=    gd.getNextBoolean();
			}
			if ((mode & 32)!=0){
				this.bgFraction=           0.01*gd.getNextNumber();
				this.blurVarianceSigma=         gd.getNextNumber();
				this.refineTilePeriod=    (int) gd.getNextNumber();
				this.refinePhaseCoeff=          gd.getNextNumber();
				this.refineHighPassSigma=       gd.getNextNumber();
				this.refineLowPassSigma=        gd.getNextNumber();
				this.refineCorrMaxDistance=     gd.getNextNumber();
				this.refineCorrThreshold=       gd.getNextNumber();
				this.refineSubPixel=      (int) gd.getNextNumber();
			}
			if ((mode & 64)!=0){
				this.zMapMinFirst=              gd.getNextNumber();
				this.zMapMinAbsolute=           gd.getNextNumber();
				this.zMapMinRelative=      0.01*gd.getNextNumber();
				this.zMapMergeMax=              gd.getNextNumber();
				this.zMapMaxNumber=       (int) gd.getNextNumber();
				this.zMapOverlap=         (int) gd.getNextNumber();
				this.zMapWOI.x=           (int) gd.getNextNumber();
				this.zMapWOI.y=           (int) gd.getNextNumber();
				this.zMapWOI.width=       (int) gd.getNextNumber(); 
				this.zMapWOI.height=      (int) gd.getNextNumber();
				this.zMapFatZero=               gd.getNextNumber();
			}
			if ((mode & 128)!=0){
				this.zMapMinForeground=               gd.getNextNumber();
				this.zMapVarMask=0;
				for (int i=0;i<componentNames.length;i++){
					if (gd.getNextBoolean()) this.zMapVarMask |= (1<<i);
					this.zMapVarThresholds[i]=               gd.getNextNumber();
					this.zMapVarWeights[i]=                  gd.getNextNumber();
				}
				this.auxVarMode=          (int) gd.getNextNumber();
				this.normalizeCorrelation=(int) gd.getNextNumber();
				this.zMapCorrMask=0;
				for (int i=0;i<componentNames.length;i++){
					if (gd.getNextBoolean()) this.zMapCorrMask |= (1<<i);
					this.zMapCorrThresholds[i]=              gd.getNextNumber();
					this.zMapCorrThresholdsRel[i]=      0.01*gd.getNextNumber();
					this.zMapCorrWeights[i]=                 gd.getNextNumber();
				}
			}
			if ((mode & 256)!=0){
				this.fillFgGapMin=              gd.getNextNumber();
				this.fillFgGapDiff=             gd.getNextNumber();
				this.fillFgGapNeib=       (int) gd.getNextNumber();
			}
			if ((mode & 512)!=0){
				this.filter2DisparityMax=       gd.getNextNumber();
				this.filter2DisaprityMin=       gd.getNextNumber();
				this.filter2UpdateMax=          gd.getNextBoolean();
				this.filter2MinAbsolute=        gd.getNextNumber();
				this.filter2MinRelative=   0.01*gd.getNextNumber();
				this.filter2ByForeground=       gd.getNextBoolean();
				this.filter2ByForegroundMargin= gd.getNextNumber();
				this.filter2ByDisabled=         gd.getNextBoolean();
				this.filter2DisparityTolearnce= gd.getNextNumber();
				this.filter2MaskBlurSigma=      gd.getNextNumber();
				this.filter2corrHighPassSigma=  gd.getNextNumber();
			}			
			if ((mode & 1024)!=0){
				this.photometricIgnoreFraction=       0.01*gd.getNextNumber();
				this.photometricSubdivAverage=       (int) gd.getNextNumber();
				this.photometricSubdivHalfDifference=(int) gd.getNextNumber();
				this.photometricSmoothVarianceSigma=       gd.getNextNumber();
				this.photometricScaleVariance=             gd.getNextNumber();
			}
			if ((mode & 2048)!=0){
				this.matchStatVarianceBlurScale=           gd.getNextNumber();
				this.matchStatKLocal=                 0.01*gd.getNextNumber();
				this.matchStatMode=                  (int) gd.getNextNumber();
			}

			this.debugRow=                (int) gd.getNextNumber();
			this.debugColumn=             (int) gd.getNextNumber();
			return true;
    	}
	}
	
	public class LinearFeaturesParameters{
		public boolean extractFeatures=        true;  // "(Re)-extract linear features"
		public boolean ignorePhase=            false; // "Ignore feature phase"
		public boolean preserveDC=             false; // "Preserve DC when reconstructing features"
		public double strengthMode=            0.5;   // "Scale features mode: -2.0 - no scale, -1.0 - phase strength, 0.0 - absolute strength, 1.0 - relative strength"
		public int corrFFTSize=                32;    // "Tile size (power of 2)"
		public int overlapFraction=            8;     // "Overlap as fraction of the tile width (FFT size)"
		public double alphaThreshold=          0.5;   // "Minimal fractional tile to use"
		public boolean useBinaryAlpha=         false; // "Use binary alpha (all >0.0 treat as 1.0)"
		public double correlationHighPassSigma=1.5;   // "correlationHighPassSigma, - pixels in frequency domain"
		public double correlationLowPassSigma= 0.6;   // "correlationLowPassSigma, - fraction of the frequency range"
		public double phaseIntegrationWidth=   3.5;   // "Phase integration width in frequency samples"
		public double resultHighPass=          1.0;   // "Result high-pass filter, frequency samples"
		public int featureFilter=              0;     // "Feature filter 0 - any, +1 white lines, +2 - black lines, + 4 black-to-white in the direction, 8 - white-to-black
		// seems 1 - white, 4 black, 2,8 - step
		public double minRMSFrac=              2.0;   // "Minimal frequency sample value relative to RMS to be considered when looking for the linear phase feature (0.0 - skip test) "
		public double minAbs=                  0.0;   // "Minimal frequency sample absolute value to be considered when looking for the linear phase feature  (0.0 - skip test)"
		public double maxPhaseMismatch=        45.0*Math.PI/180.0;  // "Maximal phase mismatch (between diagonals in a 2x2 sqaure) to use frequaency sample",45.0,3,5,"degrees"
		public double dispertionCost=          0.5;   // "Phase dispersion cost when finding direction (0.0 - only amplitudes) ",0.5
		public boolean calculateStrength=      true;  // "Calculate features strengths"
		public double directionTolerance=      20.0*Math.PI/180.0;  // "Direction tolerance, degrees"
		public double normalDistanceTolerance= 2.0;   // "Normal distance  tolerance, pixels"
		public double tangentialDistanceTolerance= 4.0; // "Tangential distance  tolerance, pixels"
		public double hostsTolerance=          1.0;   //"Hosts cells tolerance (if two neighbors claim same point as it's own, pixels"
		public double directionFracSigma=      0.6;   // "Direction sigma - fraction of direction tolerance"
		public double normalDistanceFracSigma= 0.6;   // "Normal distance  sigma - fraction of normal distance  tolerance"
		public double tangentialDistanceFracSigma= 0.6; // "Tangential distance  sigma - fraction of normal distance  tolerance"
		public int    minMerged=               2;     // "Minimal number of merged (0 - including single with off-cell features, 1 - including same cell no-merge, >1 - merged)"
		public double scaleDistances=          1.0;   // 
		public double swapTangentialTolerance= 4.0;   // "Maximal tangential shift while moving features to the closer cells"
		public int    swapSearchRange=         3;     // "Number of cells around feature center to search for the new host cell",3,0,5," cells each direction"
		public boolean multiplyByCellUsage=    true;  // "Multiply by cell usage"
		public double cellUsageShift=          1.0;   // "Cell usage shift"
		public boolean enableDisplayUsage=     false; // "Show cell usage"
		public double displayUsageScale=       0.1;   // "Cell usage display scale (if enabled))"
		public int debugRow=                   -10;   // "Debug row"
		public int debugColumn=                -10;   // "Debug column"

    	public void setProperties(String prefix,Properties properties){
  			properties.setProperty(prefix+"extractFeatures",this.extractFeatures+"");
    		properties.setProperty(prefix+"ignorePhase",this.ignorePhase+"");
    		properties.setProperty(prefix+"preserveDC", this.preserveDC+"");
    		properties.setProperty(prefix+"strengthMode",this.strengthMode+"");
    		properties.setProperty(prefix+"corrFFTSize",this.corrFFTSize+"");
    		properties.setProperty(prefix+"overlapFraction",this.overlapFraction+"");
    		properties.setProperty(prefix+"alphaThreshold",this.alphaThreshold+"");
    		properties.setProperty(prefix+"useBinaryAlpha",this.useBinaryAlpha+"");
    		properties.setProperty(prefix+"correlationHighPassSigma",this.correlationHighPassSigma+"");
    		properties.setProperty(prefix+"correlationLowPassSigma",this.correlationLowPassSigma+"");
    		properties.setProperty(prefix+"phaseIntegrationWidth",this.phaseIntegrationWidth+"");
    		properties.setProperty(prefix+"resultHighPass",this.resultHighPass+"");
    		properties.setProperty(prefix+"featureFilter",this.featureFilter+"");
    		properties.setProperty(prefix+"minRMSFrac",this.minRMSFrac+"");
    		properties.setProperty(prefix+"minAbs",this.minAbs+"");
    		properties.setProperty(prefix+"maxPhaseMismatch",this.maxPhaseMismatch+"");
    		properties.setProperty(prefix+"dispertionCost",this.dispertionCost+"");
    		properties.setProperty(prefix+"calculateStrength",this.calculateStrength+"");
    		properties.setProperty(prefix+"directionTolerance",this.directionTolerance+"");
    		properties.setProperty(prefix+"normalDistanceTolerance",this.normalDistanceTolerance+"");
    		properties.setProperty(prefix+"tangentialDistanceTolerance",this.tangentialDistanceTolerance+"");
    		properties.setProperty(prefix+"hostsTolerance",this.hostsTolerance+"");
    		properties.setProperty(prefix+"directionFracSigma",this.directionFracSigma+"");
    		properties.setProperty(prefix+"normalDistanceFracSigma",this.normalDistanceFracSigma+"");
    		properties.setProperty(prefix+"tangentialDistanceFracSigma",this.tangentialDistanceFracSigma+"");
    		properties.setProperty(prefix+"minMerged",this.minMerged+"");
    		properties.setProperty(prefix+"scaleDistances",this.scaleDistances+"");
    		properties.setProperty(prefix+"swapTangentialTolerance",this.swapTangentialTolerance+"");
    		properties.setProperty(prefix+"swapSearchRange",this.swapSearchRange+"");
    		properties.setProperty(prefix+"multiplyByCellUsage",this.multiplyByCellUsage+"");
    		properties.setProperty(prefix+"cellUsageShift",this.cellUsageShift+"");
    		properties.setProperty(prefix+"enableDisplayUsage",this.enableDisplayUsage+"");
    		properties.setProperty(prefix+"displayUsageScale",this.displayUsageScale+"");
    		properties.setProperty(prefix+"debugRow",this.debugRow+"");
    		properties.setProperty(prefix+"debugColumn",this.debugColumn+"");
    	}

    	public void getProperties(String prefix,Properties properties){
  		    if (properties.getProperty(prefix+"extractFeatures")!=null) this.extractFeatures=Boolean.parseBoolean(properties.getProperty(prefix+"extractFeatures"));
  		    if (properties.getProperty(prefix+"ignorePhase")!=null) this.ignorePhase=Boolean.parseBoolean(properties.getProperty(prefix+"ignorePhase"));
  		    if (properties.getProperty(prefix+"preserveDC")!=null)  this.preserveDC=Boolean.parseBoolean(properties.getProperty(prefix+"preserveDC"));
  		    if (properties.getProperty(prefix+"strengthMode")!=null) this.strengthMode=Double.parseDouble(properties.getProperty(prefix+"strengthMode"));
  		    if (properties.getProperty(prefix+"corrFFTSize")!=null) this.corrFFTSize=Integer.parseInt(properties.getProperty(prefix+"corrFFTSize"));
  		    if (properties.getProperty(prefix+"overlapFraction")!=null) this.overlapFraction=Integer.parseInt(properties.getProperty(prefix+"overlapFraction"));
  		    if (properties.getProperty(prefix+"alphaThreshold")!=null) this.alphaThreshold=Double.parseDouble(properties.getProperty(prefix+"alphaThreshold"));
  		    if (properties.getProperty(prefix+"useBinaryAlpha")!=null) this.useBinaryAlpha=Boolean.parseBoolean(properties.getProperty(prefix+"useBinaryAlpha"));
  		    if (properties.getProperty(prefix+"correlationHighPassSigma")!=null) this.correlationHighPassSigma=Double.parseDouble(properties.getProperty(prefix+"correlationHighPassSigma"));
  		    if (properties.getProperty(prefix+"correlationLowPassSigma")!=null) this.correlationLowPassSigma=Double.parseDouble(properties.getProperty(prefix+"correlationLowPassSigma"));
  		    if (properties.getProperty(prefix+"phaseIntegrationWidth")!=null) this.phaseIntegrationWidth=Double.parseDouble(properties.getProperty(prefix+"phaseIntegrationWidth"));
  		    if (properties.getProperty(prefix+"resultHighPass")!=null) this.resultHighPass=Double.parseDouble(properties.getProperty(prefix+"resultHighPass"));
  		    if (properties.getProperty(prefix+"featureFilter")!=null) this.featureFilter=Integer.parseInt(properties.getProperty(prefix+"featureFilter"));
  		    if (properties.getProperty(prefix+"minRMSFrac")!=null) this.minRMSFrac=Double.parseDouble(properties.getProperty(prefix+"minRMSFrac"));
  		    if (properties.getProperty(prefix+"minAbs")!=null) this.minAbs=Double.parseDouble(properties.getProperty(prefix+"minAbs"));
  		    if (properties.getProperty(prefix+"maxPhaseMismatch")!=null) this.maxPhaseMismatch=Double.parseDouble(properties.getProperty(prefix+"maxPhaseMismatch"));
  		    if (properties.getProperty(prefix+"dispertionCost")!=null) this.dispertionCost=Double.parseDouble(properties.getProperty(prefix+"dispertionCost"));
  		    if (properties.getProperty(prefix+"calculateStrength")!=null) this.calculateStrength=Boolean.parseBoolean(properties.getProperty(prefix+"calculateStrength"));
  		    if (properties.getProperty(prefix+"directionTolerance")!=null) this.directionTolerance=Double.parseDouble(properties.getProperty(prefix+"directionTolerance"));
  		    if (properties.getProperty(prefix+"normalDistanceTolerance")!=null) this.normalDistanceTolerance=Double.parseDouble(properties.getProperty(prefix+"normalDistanceTolerance"));
  		    if (properties.getProperty(prefix+"tangentialDistanceTolerance")!=null) this.tangentialDistanceTolerance=Double.parseDouble(properties.getProperty(prefix+"tangentialDistanceTolerance"));
  		    if (properties.getProperty(prefix+"hostsTolerance")!=null) this.hostsTolerance=Double.parseDouble(properties.getProperty(prefix+"hostsTolerance"));
  		    if (properties.getProperty(prefix+"directionFracSigma")!=null) this.directionFracSigma=Double.parseDouble(properties.getProperty(prefix+"directionFracSigma"));
  		    if (properties.getProperty(prefix+"normalDistanceFracSigma")!=null) this.normalDistanceFracSigma=Double.parseDouble(properties.getProperty(prefix+"normalDistanceFracSigma"));
  		    if (properties.getProperty(prefix+"tangentialDistanceFracSigma")!=null) this.tangentialDistanceFracSigma=Double.parseDouble(properties.getProperty(prefix+"tangentialDistanceFracSigma"));
  		    if (properties.getProperty(prefix+"minMerged")!=null) this.minMerged=Integer.parseInt(properties.getProperty(prefix+"minMerged"));
  		    if (properties.getProperty(prefix+"scaleDistances")!=null) this.scaleDistances=Double.parseDouble(properties.getProperty(prefix+"scaleDistances"));
  		    if (properties.getProperty(prefix+"swapTangentialTolerance")!=null) this.swapTangentialTolerance=Double.parseDouble(properties.getProperty(prefix+"swapTangentialTolerance"));
  		    if (properties.getProperty(prefix+"swapSearchRange")!=null) this.swapSearchRange=Integer.parseInt(properties.getProperty(prefix+"swapSearchRange"));
  		    if (properties.getProperty(prefix+"multiplyByCellUsage")!=null) this.multiplyByCellUsage=Boolean.parseBoolean(properties.getProperty(prefix+"multiplyByCellUsage"));
  		    if (properties.getProperty(prefix+"cellUsageShift")!=null) this.cellUsageShift=Double.parseDouble(properties.getProperty(prefix+"cellUsageShift"));
  		    if (properties.getProperty(prefix+"enableDisplayUsage")!=null) this.enableDisplayUsage=Boolean.parseBoolean(properties.getProperty(prefix+"enableDisplayUsage"));
  		    if (properties.getProperty(prefix+"displayUsageScale")!=null) this.displayUsageScale=Double.parseDouble(properties.getProperty(prefix+"displayUsageScale"));
  		    if (properties.getProperty(prefix+"debugRow")!=null) this.debugRow=Integer.parseInt(properties.getProperty(prefix+"debugRow"));
  		    if (properties.getProperty(prefix+"debugColumn")!=null) this.debugColumn=Integer.parseInt(properties.getProperty(prefix+"debugColumn"));
    	}
		
		public boolean showDialog(String title) { 
			GenericDialog gd = new GenericDialog(title);
			gd.addCheckbox    ("(Re)-extract linear features", this.extractFeatures);
			gd.addCheckbox    ("Ignore feature phase", this.ignorePhase);
			gd.addCheckbox    ("Preserve DC when reconstructing features", this.preserveDC);
			gd.addNumericField("Scale features mode: -2.0 - no scale, -1.0 - phase strength, 0.0 - absolute strength, 1.0 - relative strength",this.strengthMode,3,5,"");
			gd.addNumericField("Tile size (power of 2)",this.corrFFTSize,0);
			gd.addNumericField("Overlap as fraction of the tile width (FFT size)",this.overlapFraction,0);
			gd.addNumericField("Minimal fractional tile to use",100*this.alphaThreshold,1,5,"%");
			gd.addCheckbox    ("Use binary alpha (all >0.0 treat as 1.0)", this.useBinaryAlpha);
			gd.addNumericField("correlationHighPassSigma, - pixels in frequency domain",this.correlationHighPassSigma,3,5,"");
			gd.addNumericField("correlationLowPassSigma, - fraction of the frequency range",this.correlationLowPassSigma,3,5,"");
			gd.addNumericField("Phase integration width ",this.phaseIntegrationWidth,3,5,"frequency samples");
			gd.addNumericField("Result high-pass filter",this.resultHighPass,3,5,"frequency samples");
			gd.addNumericField("Feature filter 0 - any, +1 white lines, +4 - black lines, + 2 black-to-white in the direction, 8 - white-to-black",this.featureFilter,0);
			gd.addNumericField("Minimal frequency sample value relative to RMS to be considered when looking for the linear phase feature (0.0 - skip test) ",this.minRMSFrac,3,5,"");
			gd.addNumericField("Minimal frequency sample absolute value to be considered when looking for the linear phase feature  (0.0 - skip test)",this.minAbs,3,5,"");
			gd.addNumericField("Maximal phase mismatch (between diagonals in a 2x2 sqaure) to use frequaency sample",180.0/Math.PI*this.maxPhaseMismatch,3,5,"degrees");
			gd.addNumericField("Phase dispersion cost when finding direction (0.0 - only amplitudes) ",this.dispertionCost,3,5,"");
			gd.addCheckbox    ("Calculate features strengths", this.calculateStrength);
			gd.addMessage     ("Merging features:");
			gd.addNumericField("Direction tolerance",180.0/Math.PI*this.directionTolerance,3,5,"degrees");
			gd.addNumericField("Normal distance  tolerance",this.normalDistanceTolerance,3,5,"pixels");
			gd.addNumericField("Tangential distance  tolerance",this.tangentialDistanceTolerance,3,5,"pixels");
			gd.addNumericField("Hosts cells tolerance (if two neighbors claim same point as it's own",this.hostsTolerance,3,5,"pixels");
			gd.addNumericField("Direction sigma - fraction of direction tolerance",this.directionFracSigma,3,5,"x");
			gd.addNumericField("Normal distance  sigma - fraction of normal distance  tolerance",this.normalDistanceFracSigma,3,5,"x");
			gd.addNumericField("Tangential distance  sigma - fraction of normal distance  tolerance",this.tangentialDistanceFracSigma,3,5,"x");
			gd.addNumericField("Minimal number of merged (0 - including single with off-cell features, 1 - including same cell no-merge, >1 - merged)",this.minMerged,0);
			gd.addNumericField("Scale distance (compensate for apparent decrease of measured distance to feature caused by windowing)",this.scaleDistances,3,5,"x");
			gd.addNumericField("Maximal tangential shift while moving features to the closer cells",this.swapTangentialTolerance,3,5,"x");
			gd.addNumericField("Number of cells around feature center to search for the new host cell",this.swapSearchRange,0,5," cells each direction");
			gd.addCheckbox    ("Multiply by cell usage", this.multiplyByCellUsage);
			gd.addNumericField("Cell usage shift",this.cellUsageShift,3,5,"x");
			gd.addCheckbox    ("Show cell usage", this.enableDisplayUsage);
			gd.addNumericField("Cell usage display scale (if enabled))",this.displayUsageScale,3,5,"x");
			gd.addNumericField("Debug row",this.debugRow,0);
			gd.addNumericField("Debug column",this.debugColumn,0);
			WindowTools.addScrollBars(gd);
			gd.showDialog();
			if (gd.wasCanceled()) return false;
			this.extractFeatures=        gd.getNextBoolean();
			this.ignorePhase=            gd.getNextBoolean();
			this.preserveDC=             gd.getNextBoolean();

			this.strengthMode=             gd.getNextNumber();
			this.corrFFTSize=          (int) gd.getNextNumber();
			this.overlapFraction=      (int) gd.getNextNumber();
			this.alphaThreshold=     0.01*gd.getNextNumber();
			this.useBinaryAlpha=         gd.getNextBoolean();
			this.correlationHighPassSigma=gd.getNextNumber();
			this.correlationLowPassSigma= gd.getNextNumber();
			this.phaseIntegrationWidth=   gd.getNextNumber();
			this.resultHighPass=          gd.getNextNumber();
			this.featureFilter=        (int) gd.getNextNumber();
			this.minRMSFrac=              gd.getNextNumber();
			this.minAbs=                  gd.getNextNumber();
			this.maxPhaseMismatch=        Math.PI/180.0*gd.getNextNumber();
			this.dispertionCost=          gd.getNextNumber();
			this.calculateStrength=      gd.getNextBoolean();
			this.directionTolerance=      Math.PI/180.0*gd.getNextNumber();
			this.normalDistanceTolerance= gd.getNextNumber();
			this.tangentialDistanceTolerance= gd.getNextNumber();
			this.hostsTolerance=          gd.getNextNumber();
			this.directionFracSigma=      gd.getNextNumber(); // make a fixed fraction of directionTolerance?
			this.normalDistanceFracSigma= gd.getNextNumber(); // make a fixed fraction of distanceTolerance?
			this.tangentialDistanceFracSigma= gd.getNextNumber(); // make a fixed fraction of distanceTolerance?
			this.minMerged=            (int) gd.getNextNumber();
			this.scaleDistances=          gd.getNextNumber();
			this.swapTangentialTolerance= gd.getNextNumber();
			this.swapSearchRange=   (int) gd.getNextNumber();
			this.multiplyByCellUsage=    gd.getNextBoolean();
			this.cellUsageShift=          gd.getNextNumber();
// !!!!!!			if (!multiplyByCellUsage) cellUsageShift=Double.NaN;
			this.enableDisplayUsage=     gd.getNextBoolean();
			this.displayUsageScale=       gd.getNextNumber()*(enableDisplayUsage?1.0:0.0);
			this.debugRow=             (int) gd.getNextNumber();
			this.debugColumn=          (int) gd.getNextNumber();
			return true;
		}
	}
}