Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
Image Compression
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nathaniel Callens
Image Compression
Commits
53e2bb11
Commit
53e2bb11
authored
Mar 12, 2022
by
Nathaniel Callens
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
changes
parent
b88a3252
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
234 additions
and
94 deletions
+234
-94
Error_to_Image-checkpoint.ipynb
.ipynb_checkpoints/Error_to_Image-checkpoint.ipynb
+117
-47
Error_to_Image.ipynb
Error_to_Image.ipynb
+117
-47
No files found.
.ipynb_checkpoints/Error_to_Image-checkpoint.ipynb
View file @
53e2bb11
...
...
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count":
33
,
"execution_count":
2
,
"id": "dbef8759",
"metadata": {
"id": "dbef8759"
...
...
@@ -27,7 +27,7 @@
},
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
3
,
"id": "9ed20f84",
"metadata": {
"id": "9ed20f84"
...
...
@@ -100,7 +100,7 @@
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
4
,
"id": "ba2881d9",
"metadata": {},
"outputs": [],
...
...
@@ -112,17 +112,17 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count":
14
4,
"id": "11e95c34",
"metadata": {},
"outputs": [],
"source": [
"predict, diff, im, err, A = plot_hist(
num_images, 0
)"
"predict, diff, im, err, A = plot_hist(
images, 2
)"
]
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
139
,
"id": "434e4d2f",
"metadata": {},
"outputs": [],
...
...
@@ -147,7 +147,9 @@
" for c in range(1, columns-1):\n",
" z0, z1, z2, z3 = new_e[r-1][c-1], new_e[r-1][c], new_e[r-1][c+1], new_e[r][c-1]\n",
" y = np.vstack((-z0+z2-z3, z0+z1+z2, -z0-z1-z2-z3))\n",
"\n",
" \n",
" if r == 1 and c == 1:\n",
" print(np.linalg.solve(A,y)[-1])\n",
" \n",
" #Real solution that works, DO NOT DELETE\n",
" #new_e[r][c] = int(np.ceil(new_e[r][c] + np.linalg.solve(A,y)[-1]))\n",
...
...
@@ -160,17 +162,52 @@
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
140
,
"id": "3cc609dc",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[22471.5]\n"
]
}
],
"source": [
"new_error = reconstruct(err, A)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 136,
"id": "5d290a0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[22546, 22514, 22513, ..., 22581, 22576, 22587],\n",
" [22488, 67, -21, ..., -1, -1, 22576],\n",
" [22514, -15, -3, ..., 10, -45, 22575],\n",
" ...,\n",
" [22317, 82, -2, ..., -64, 5, 22937],\n",
" [22335, -33, 18, ..., 47, -16, 22932],\n",
" [22333, 22339, 22362, ..., 22952, 22947, 22961]])"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"err"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "706f2816",
"metadata": {},
"outputs": [],
...
...
@@ -194,7 +231,7 @@
},
{
"cell_type": "code",
"execution_count":
8
,
"execution_count":
9
,
"id": "530d2cab",
"metadata": {},
"outputs": [
...
...
@@ -293,7 +330,7 @@
},
{
"cell_type": "code",
"execution_count":
9
,
"execution_count":
10
,
"id": "bb11dcd0",
"metadata": {},
"outputs": [],
...
...
@@ -341,7 +378,7 @@
},
{
"cell_type": "code",
"execution_count":
263
,
"execution_count":
108
,
"id": "c01fda28",
"metadata": {},
"outputs": [],
...
...
@@ -376,10 +413,8 @@
" encoding_dict = huffman_code_tree(node)\n",
" #encoded = [\"1\"+encoding[str(-i)] if i < 0 else \"0\"+encoding[str(i)] for i in error]\n",
" #print(time.time()-start)\n",
" encoded = new_error.reshape((512,640)).copy().astype(str)\n",
" \n",
" #encoded = np.zeros_like(new_error.reshape((512,640))).astype(str)\n",
" print(encoded)\n",
" encoded = new_error.reshape((512,640)).copy().astype(str).astype(object)\n",
"\n",
" for i in range(encoded.shape[0]):\n",
" for j in range(encoded.shape[1]):\n",
" if i == 0 and j == 0:\n",
...
...
@@ -389,59 +424,47 @@
" encoded[i][j] = encoding_dict[encoded[i][j]]\n",
" #print(encoded[i][j])\n",
" \n",
" return encoding_dict, encoded, new_error.reshape((512,640))\n",
" return encoding_dict, encoded, new_error.reshape((512,640))
, image
\n",
" #print(encoding)"
]
},
{
"cell_type": "code",
"execution_count":
264
,
"execution_count":
109
,
"id": "ffa858e8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['22541' '-10' '14' ... '32' '48' '33']\n",
" ['7' '67' '-21' ... '-1' '-1' '77']\n",
" ['7' '-15' '-3' ... '10' '-45' '58']\n",
" ...\n",
" ['49' '82' '-2' ... '-64' '5' '151']\n",
" ['27' '-33' '18' ... '47' '-16' '208']\n",
" ['17' '0' '-5' ... '138' '207' '226']]\n"
]
}
],
"outputs": [],
"source": [
"encode_dict, encoding, error = enc_experiment(images, plot=False)"
"encode_dict, encoding, error
, orig_image
= enc_experiment(images, plot=False)"
]
},
{
"cell_type": "code",
"execution_count":
265
,
"id": "8
5815094
",
"execution_count":
110
,
"id": "8
dfdedc6
",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11110111110\n",
"92\n",
"11110111110001\n"
"[[22541 22531 22555 ... 22573 22589 22574]\n",
" [22548 22544 22530 ... 22607 22612 22618]\n",
" [22548 22544 22560 ... 22603 22605 22599]\n",
" ...\n",
" [22590 22593 22596 ... 22586 22627 22692]\n",
" [22568 22575 22555 ... 22625 22702 22749]\n",
" [22558 22541 22536 ... 22679 22748 22767]]\n"
]
}
],
"source": [
"print(encoding[0][100])\n",
"print(error[0][100])\n",
"print(encode_dict['92'])"
"print(orig_image)"
]
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
148
,
"id": "825cc48c",
"metadata": {},
"outputs": [],
...
...
@@ -451,16 +474,63 @@
" Function that accecpts the prediction matrix A for the linear system,\n",
" the encoded matrix of error values, and the encoding dicitonary.\n",
" \"\"\"\n",
" the_keys = list(encode_dict.keys())\n",
" the_values = list(encode_dict.values())\n",
" error_matrix = encoded_matrix.copy()\n",
" \n",
" for i in range(error_matrix.shape[0]):\n",
" for j in range(error_matrix.shape[1]):\n",
" if i == 0 and j == 0:\n",
" error_matrix[i][j] = encoded_matrix[i][j]\n",
" error_matrix[i][j] = int(encoded_matrix[i][j])\n",
" elif i == 0 or i == error_matrix.shape[0]-1 or j == 0 or j == error_matrix.shape[1]-1:\n",
" error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])]) + error_matrix[0][0]\n",
" else:\n",
" error_matrix[i][j] = encoding_dict."
" if j == 1 and i == 1:\n",
" z0, z1, z2, z3 = error_matrix[i-1][j-1], error_matrix[i-1][j], \\\n",
" error_matrix[i-1][j+1], error_matrix[i][j-1]\n",
"\n",
" y = np.vstack((-z0+z2-z3, z0+z1+z2, -z0-z1-z2-z3))\n",
" #Real solution that works, DO NOT DELETE\n",
" #new_e[r][c] = int(np.ceil(new_e[r][c] + np.linalg.solve(A,y)[-1]))\n",
"\n",
" print(int(the_keys[the_values.index(error_matrix[i,j])]))\n",
" print(np.linalg.solve(A,y)[-1])\n",
" error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])]) + \\\n",
" np.linalg.solve(A,y)[-1][0]\n",
" #error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])])\n",
" break\n",
" \n",
" return error_matrix"
]
},
{
"cell_type": "code",
"execution_count": 149,
"id": "ba1d2c2c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"67\n",
"[22555.]\n"
]
}
],
"source": [
"em = decoder(A, encoding, encode_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b2cdce6d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
...
...
Error_to_Image.ipynb
View file @
53e2bb11
...
...
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count":
33
,
"execution_count":
2
,
"id": "dbef8759",
"metadata": {
"id": "dbef8759"
...
...
@@ -27,7 +27,7 @@
},
{
"cell_type": "code",
"execution_count":
2
,
"execution_count":
3
,
"id": "9ed20f84",
"metadata": {
"id": "9ed20f84"
...
...
@@ -100,7 +100,7 @@
},
{
"cell_type": "code",
"execution_count":
3
,
"execution_count":
4
,
"id": "ba2881d9",
"metadata": {},
"outputs": [],
...
...
@@ -112,17 +112,17 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count":
14
4,
"id": "11e95c34",
"metadata": {},
"outputs": [],
"source": [
"predict, diff, im, err, A = plot_hist(
num_images, 0
)"
"predict, diff, im, err, A = plot_hist(
images, 2
)"
]
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
139
,
"id": "434e4d2f",
"metadata": {},
"outputs": [],
...
...
@@ -147,7 +147,9 @@
" for c in range(1, columns-1):\n",
" z0, z1, z2, z3 = new_e[r-1][c-1], new_e[r-1][c], new_e[r-1][c+1], new_e[r][c-1]\n",
" y = np.vstack((-z0+z2-z3, z0+z1+z2, -z0-z1-z2-z3))\n",
"\n",
" \n",
" if r == 1 and c == 1:\n",
" print(np.linalg.solve(A,y)[-1])\n",
" \n",
" #Real solution that works, DO NOT DELETE\n",
" #new_e[r][c] = int(np.ceil(new_e[r][c] + np.linalg.solve(A,y)[-1]))\n",
...
...
@@ -160,17 +162,52 @@
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
140
,
"id": "3cc609dc",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[22471.5]\n"
]
}
],
"source": [
"new_error = reconstruct(err, A)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 136,
"id": "5d290a0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[22546, 22514, 22513, ..., 22581, 22576, 22587],\n",
" [22488, 67, -21, ..., -1, -1, 22576],\n",
" [22514, -15, -3, ..., 10, -45, 22575],\n",
" ...,\n",
" [22317, 82, -2, ..., -64, 5, 22937],\n",
" [22335, -33, 18, ..., 47, -16, 22932],\n",
" [22333, 22339, 22362, ..., 22952, 22947, 22961]])"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"err"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "706f2816",
"metadata": {},
"outputs": [],
...
...
@@ -194,7 +231,7 @@
},
{
"cell_type": "code",
"execution_count":
8
,
"execution_count":
9
,
"id": "530d2cab",
"metadata": {},
"outputs": [
...
...
@@ -293,7 +330,7 @@
},
{
"cell_type": "code",
"execution_count":
9
,
"execution_count":
10
,
"id": "bb11dcd0",
"metadata": {},
"outputs": [],
...
...
@@ -341,7 +378,7 @@
},
{
"cell_type": "code",
"execution_count":
263
,
"execution_count":
108
,
"id": "c01fda28",
"metadata": {},
"outputs": [],
...
...
@@ -376,10 +413,8 @@
" encoding_dict = huffman_code_tree(node)\n",
" #encoded = [\"1\"+encoding[str(-i)] if i < 0 else \"0\"+encoding[str(i)] for i in error]\n",
" #print(time.time()-start)\n",
" encoded = new_error.reshape((512,640)).copy().astype(str)\n",
" \n",
" #encoded = np.zeros_like(new_error.reshape((512,640))).astype(str)\n",
" print(encoded)\n",
" encoded = new_error.reshape((512,640)).copy().astype(str).astype(object)\n",
"\n",
" for i in range(encoded.shape[0]):\n",
" for j in range(encoded.shape[1]):\n",
" if i == 0 and j == 0:\n",
...
...
@@ -389,59 +424,47 @@
" encoded[i][j] = encoding_dict[encoded[i][j]]\n",
" #print(encoded[i][j])\n",
" \n",
" return encoding_dict, encoded, new_error.reshape((512,640))\n",
" return encoding_dict, encoded, new_error.reshape((512,640))
, image
\n",
" #print(encoding)"
]
},
{
"cell_type": "code",
"execution_count":
264
,
"execution_count":
109
,
"id": "ffa858e8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['22541' '-10' '14' ... '32' '48' '33']\n",
" ['7' '67' '-21' ... '-1' '-1' '77']\n",
" ['7' '-15' '-3' ... '10' '-45' '58']\n",
" ...\n",
" ['49' '82' '-2' ... '-64' '5' '151']\n",
" ['27' '-33' '18' ... '47' '-16' '208']\n",
" ['17' '0' '-5' ... '138' '207' '226']]\n"
]
}
],
"outputs": [],
"source": [
"encode_dict, encoding, error = enc_experiment(images, plot=False)"
"encode_dict, encoding, error
, orig_image
= enc_experiment(images, plot=False)"
]
},
{
"cell_type": "code",
"execution_count":
265
,
"id": "8
5815094
",
"execution_count":
110
,
"id": "8
dfdedc6
",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11110111110\n",
"92\n",
"11110111110001\n"
"[[22541 22531 22555 ... 22573 22589 22574]\n",
" [22548 22544 22530 ... 22607 22612 22618]\n",
" [22548 22544 22560 ... 22603 22605 22599]\n",
" ...\n",
" [22590 22593 22596 ... 22586 22627 22692]\n",
" [22568 22575 22555 ... 22625 22702 22749]\n",
" [22558 22541 22536 ... 22679 22748 22767]]\n"
]
}
],
"source": [
"print(encoding[0][100])\n",
"print(error[0][100])\n",
"print(encode_dict['92'])"
"print(orig_image)"
]
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
148
,
"id": "825cc48c",
"metadata": {},
"outputs": [],
...
...
@@ -451,16 +474,63 @@
" Function that accecpts the prediction matrix A for the linear system,\n",
" the encoded matrix of error values, and the encoding dicitonary.\n",
" \"\"\"\n",
" the_keys = list(encode_dict.keys())\n",
" the_values = list(encode_dict.values())\n",
" error_matrix = encoded_matrix.copy()\n",
" \n",
" for i in range(error_matrix.shape[0]):\n",
" for j in range(error_matrix.shape[1]):\n",
" if i == 0 and j == 0:\n",
" error_matrix[i][j] = encoded_matrix[i][j]\n",
" error_matrix[i][j] = int(encoded_matrix[i][j])\n",
" elif i == 0 or i == error_matrix.shape[0]-1 or j == 0 or j == error_matrix.shape[1]-1:\n",
" error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])]) + error_matrix[0][0]\n",
" else:\n",
" error_matrix[i][j] = encoding_dict."
" if j == 1 and i == 1:\n",
" z0, z1, z2, z3 = error_matrix[i-1][j-1], error_matrix[i-1][j], \\\n",
" error_matrix[i-1][j+1], error_matrix[i][j-1]\n",
"\n",
" y = np.vstack((-z0+z2-z3, z0+z1+z2, -z0-z1-z2-z3))\n",
" #Real solution that works, DO NOT DELETE\n",
" #new_e[r][c] = int(np.ceil(new_e[r][c] + np.linalg.solve(A,y)[-1]))\n",
"\n",
" print(int(the_keys[the_values.index(error_matrix[i,j])]))\n",
" print(np.linalg.solve(A,y)[-1])\n",
" error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])]) + \\\n",
" np.linalg.solve(A,y)[-1][0]\n",
" #error_matrix[i][j] = int(the_keys[the_values.index(error_matrix[i,j])])\n",
" break\n",
" \n",
" return error_matrix"
]
},
{
"cell_type": "code",
"execution_count": 149,
"id": "ba1d2c2c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"67\n",
"[22555.]\n"
]
}
],
"source": [
"em = decoder(A, encoding, encode_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b2cdce6d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment