Commit faaa504f authored by Andrey Filippov's avatar Andrey Filippov

added DQS_IDELAY vs PHASE measurement/calculation

parent 3d603296
......@@ -504,3 +504,323 @@ def get_data(variant=2):
[[[(95, 0.0), (103, 0.03125)], [(10, None), (14, 0.0625)]], [[(85, None), (94, 0.09375)], [(5, None), (9, -0.34375)]], [[(91, 0.09375), (90, None)], [(14, -0.15625), (10, 0.0)]], [[(85, None), (93, 0.0)], [(11, 0.40625), (5, None)]], [[(99, -0.1875), (101, 0.03125)], [(16, -0.03125), (10, None)]], [[(92, -0.28125), (90, None)], [(12, -0.03125), (10, 0.4375)]], [[(94, -0.25), (95, None)], [(14, 0.03125), (10, 0.15625)]], [[(89, -0.40625), (90, 0.03125)], [(5, None), (9, 0.0625)]], [[(102, 0.09375), (95, None)], [(15, None), (15, 0.375)]], [[(100, None), (102, -0.09375)], [(22, 0.03125), (17, 0.1875)]], [[(99, 0.1875), (100, 0.0)], [(19, -0.28125), (10, None)]], [[(105, 0.125), (108, 0.46875)], [(20, None), (18, -0.03125)]], [[(98, 0.03125), (99, -0.375)], [(19, -0.09375), (12, -0.125)]], [[(100, 0.4375), (100, 0.25)], [(20, 0.375), (10, None)]], [[(96, 0.09375), (95, 0.09375)], [(16, -0.03125), (11, 0.125)]], [[(95, None), (101, 0.03125)], [(15, None), (10, None)]]],
[[[(96, -0.1875), (103, -0.0625)], [(15, 0.4375), (14, 0.03125)]], [[(85, None), (94, -0.03125)], [(5, None), (5, None)]], [[(93, 0.15625), (90, None)], [(13, -0.4375), (10, 0.0625)]], [[(85, None), (93, -0.0625)], [(10, 0.1875), (5, None)]], [[(95, None), (102, 0.03125)], [(18, -0.0625), (10, None)]], [[(93, 0.03125), (90, None)], [(14, -0.0625), (10, 0.4375)]], [[(90, None), (95, None)], [(14, -0.28125), (10, 0.125)]], [[(85, None), (90, -0.1875)], [(10, 0.46875), (9, -0.03125)]], [[(104, -0.0625), (95, None)], [(22, 0.46875), (15, 0.0625)]], [[(100, None), (103, 0.125)], [(24, 0.375), (18, 0.0)]], [[(99, -0.34375), (100, -0.0625)], [(19, -0.4375), (10, None)]], [[(106, 0.3125), (109, 0.03125)], [(20, None), (19, 0.0625)]], [[(99, 0.3125), (95, None)], [(19, -0.25), (14, 0.03125)]], [[(100, 0.09375), (100, 0.09375)], [(20, 0.03125), (10, None)]], [[(97, 0.03125), (96, -0.09375)], [(18, -0.125), (12, -0.03125)]], [[(100, 0.4375), (102, 0.1875)], [(20, 0.4375), (10, None)]]],
]
def get_dqi_dqsi():
return {
'early':[None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, [None, None, None, None, None, None, None, None, 0, 0, 0, 1, 0, 0, 0, 0],
[None, None, None, None, None, None, None, None, 0, 0, 0, 1, 0, 0, 0, 0], [None, None, None, None, None, None, None, None, 0, 1, 0, 1, 0, 0, 0, 0],
[None, None, None, None, None, None, None, None, 0, 1, 0, 2, 0, 0, 0, 0], [None, None, None, None, None, None, None, None, 0, 1, 0, 2, 0, 0, 0, 0],
[None, None, None, None, None, None, None, None, 4, 5, 2, 6, 1, 3, 0, 3], [None, None, None, None, None, None, None, None, 4, 5, 2, 6, 1, 3, 0, 3],
[None, None, None, None, None, None, None, None, 4, 5, 2, 6, 1, 3, 0, 3], [None, None, None, None, None, None, None, None, 5, 6, 2, 6, 1, 4, 0, 3],
[None, None, None, None, None, None, None, None, 5, 6, 3, 7, 2, 4, 1, 4], [1, 0, 0, 0, 3, 0, 0, 0, 9, 10, 7, 11, 5, 8, 4, 7],
[2, 0, 0, 0, 3, 0, 0, 0, 9, 10, 7, 11, 6, 8, 5, 8], [2, 0, 0, 0, 3, 0, 0, 0, 9, 10, 7, 11, 6, 8, 5, 8],
[2, 0, 1, 0, 4, 0, 0, 0, 10, 11, 7, 12, 6, 9, 5, 8], [3, 0, 1, 0, 4, 0, 1, 0, 10, 11, 8, 12, 7, 9, 6, 9],
[7, 2, 5, 3, 8, 4, 5, 2, 14, 15, 12, 16, 11, 13, 10, 13], [7, 3, 5, 3, 9, 5, 5, 2, 14, 15, 12, 16, 11, 13, 10, 13],
[7, 3, 5, 3, 9, 5, 5, 2, 14, 15, 12, 16, 11, 14, 10, 13], [8, 3, 6, 4, 9, 5, 6, 3, 15, 16, 12, 17, 11, 14, 10, 13],
[8, 3, 6, 4, 10, 6, 6, 3, 15, 16, 13, 17, 12, 14, 11, 14], [12, 8, 10, 8, 14, 10, 10, 7, 19, 20, 16, 21, 15, 18, 14, 17],
[13, 8, 11, 9, 15, 10, 11, 8, 19, 20, 17, 21, 16, 18, 15, 18], [13, 8, 11, 9, 14, 10, 11, 8, 19, 20, 17, 21, 16, 18, 15, 18],
[13, 9, 11, 9, 15, 11, 11, 8, 19, 21, 17, 22, 16, 19, 15, 18], [14, 9, 12, 10, 15, 11, 12, 9, 20, 21, 18, 22, 17, 19, 16, 19],
[18, 13, 16, 13, 19, 15, 16, 12, 24, 25, 21, 26, 20, 23, 19, 22], [19, 13, 16, 14, 20, 16, 16, 13, 24, 25, 22, 26, 21, 23, 20, 23],
[18, 13, 16, 14, 20, 16, 16, 13, 24, 25, 22, 26, 21, 23, 20, 23], [19, 14, 17, 15, 20, 16, 17, 14, 24, 26, 22, 27, 21, 24, 20, 23],
[19, 14, 17, 15, 21, 16, 17, 14, 25, 26, 23, 27, 21, 24, 21, 24], [24, 18, 21, 19, 25, 20, 21, 18, 29, 30, 26, 31, 25, 28, 24, 27],
[24, 19, 22, 20, 26, 21, 22, 19, 29, 30, 27, 31, 25, 28, 24, 28], [24, 19, 22, 19, 26, 21, 22, 18, 29, 30, 27, 32, 26, 28, 25, 28],
[25, 19, 22, 20, 26, 22, 22, 19, 29, 30, 27, 32, 26, 29, 25, 28], [25, 20, 22, 20, 26, 22, 23, 19, 30, 31, 28, 32, 26, 29, 25, 29],
[29, 23, 26, 24, 30, 26, 27, 23, 34, 35, 32, 37, 30, 33, 30, 33], [30, 24, 27, 25, 31, 26, 27, 24, 34, 35, 32, 37, 31, 34, 30, 33],
[30, 24, 27, 25, 31, 26, 27, 24, 34, 35, 32, 37, 31, 34, 30, 33], [30, 25, 27, 25, 32, 27, 28, 24, 35, 36, 33, 38, 31, 34, 30, 34],
[31, 25, 28, 26, 32, 27, 28, 25, 35, 36, 33, 38, 32, 34, 31, 34], [34, 28, 31, 29, 36, 31, 32, 28, 39, 40, 37, 42, 35, 38, 34, 38],
[35, 29, 32, 30, 36, 31, 33, 29, 39, 40, 37, 42, 35, 38, 35, 38], [35, 29, 32, 30, 36, 31, 33, 29, 39, 40, 37, 42, 36, 38, 35, 38],
[35, 30, 32, 30, 37, 32, 33, 29, 39, 41, 37, 42, 36, 39, 35, 38], [36, 30, 33, 31, 37, 32, 33, 29, 40, 41, 38, 43, 36, 39, 35, 39],
[39, 33, 36, 34, 41, 36, 37, 33, 44, 45, 42, 47, 40, 43, 40, 43], [40, 34, 37, 35, 41, 36, 38, 34, 44, 45, 42, 47, 41, 44, 40, 43],
[40, 34, 37, 35, 41, 36, 38, 34, 44, 45, 42, 47, 41, 44, 40, 43], [41, 34, 37, 35, 42, 37, 38, 34, 45, 46, 43, 48, 41, 44, 40, 44],
[41, 35, 38, 36, 42, 37, 39, 34, 45, 46, 43, 48, 42, 45, 41, 44], [45, 39, 41, 39, 46, 41, 43, 38, 49, 50, 47, 52, 45, 48, 44, 48],
[46, 39, 42, 40, 47, 42, 43, 39, 49, 50, 47, 52, 46, 49, 45, 48], [46, 39, 42, 40, 47, 42, 43, 39, 49, 50, 47, 53, 46, 49, 45, 48],
[46, 40, 42, 40, 47, 42, 44, 39, 50, 51, 48, 53, 46, 49, 45, 49], [46, 40, 43, 41, 48, 43, 44, 40, 50, 51, 48, 53, 47, 49, 46, 49],
[50, 44, 47, 45, 52, 46, 48, 43, 54, 55, 52, 57, 50, 53, 49, 53], [51, 45, 47, 45, 52, 47, 49, 44, 54, 55, 52, 58, 51, 54, 50, 53],
[51, 44, 47, 45, 52, 47, 48, 44, 54, 56, 52, 58, 51, 54, 50, 53], [51, 45, 48, 46, 53, 47, 49, 44, 55, 56, 53, 58, 51, 54, 50, 54],
[52, 45, 48, 46, 53, 48, 49, 45, 55, 56, 53, 59, 52, 55, 51, 54]],
'late':None,
'nominal':[[52, 45, 48, 46, 53, 48, 49, 45, 65, 66, 63, 69, 62, 65, 61, 64], [52, 46, 48, 46, 54, 48, 50, 45, 65, 66, 63, 69, 62, 65, 61, 64],
[52, 46, 48, 46, 54, 48, 50, 45, 65, 67, 64, 69, 62, 65, 61, 65], [53, 46, 49, 47, 54, 49, 50, 46, 66, 67, 64, 70, 62, 65, 61, 65],
[53, 47, 49, 47, 54, 49, 51, 46, 66, 67, 64, 70, 63, 66, 62, 65], [57, 50, 53, 51, 59, 53, 55, 50, 70, 71, 68, 74, 67, 70, 66, 69],
[58, 51, 54, 52, 59, 54, 55, 51, 71, 72, 69, 75, 67, 70, 66, 70], [58, 51, 54, 52, 59, 54, 55, 50, 71, 72, 69, 75, 67, 70, 66, 70],
[58, 52, 54, 52, 60, 54, 56, 51, 71, 72, 69, 75, 67, 71, 67, 70], [59, 52, 55, 53, 60, 54, 56, 51, 71, 73, 70, 76, 68, 71, 67, 71],
[63, 55, 58, 56, 64, 58, 60, 55, 75, 76, 73, 79, 72, 75, 71, 75], [63, 56, 59, 57, 64, 59, 61, 55, 76, 77, 74, 80, 72, 75, 71, 75],
[63, 56, 59, 57, 64, 59, 60, 55, 76, 77, 74, 80, 72, 75, 71, 75], [64, 56, 59, 57, 65, 59, 61, 56, 76, 77, 74, 80, 73, 76, 72, 75],
[64, 57, 59, 58, 65, 59, 61, 56, 77, 78, 75, 81, 73, 76, 72, 76], [68, 61, 64, 62, 69, 64, 66, 60, 80, 81, 78, 84, 77, 80, 76, 79],
[69, 62, 64, 62, 70, 64, 66, 61, 80, 82, 79, 85, 77, 80, 76, 80], [69, 62, 64, 62, 70, 64, 66, 61, 81, 82, 79, 85, 77, 80, 76, 80],
[69, 62, 65, 63, 71, 65, 67, 61, 81, 82, 79, 85, 77, 81, 76, 80], [70, 62, 65, 63, 71, 65, 67, 62, 81, 83, 80, 86, 78, 81, 77, 81],
[73, 66, 68, 67, 75, 69, 71, 65, 85, 86, 83, 90, 82, 85, 81, 85], [74, 67, 69, 67, 75, 69, 71, 66, 85, 87, 84, 90, 82, 85, 81, 85],
[74, 66, 69, 67, 75, 69, 71, 66, 86, 87, 84, 90, 82, 85, 81, 85], [75, 67, 70, 68, 76, 70, 72, 66, 86, 87, 84, 91, 82, 86, 81, 85],
[75, 67, 70, 68, 76, 70, 72, 67, 86, 88, 85, 91, 83, 86, 82, 86], [78, 71, 73, 71, 79, 73, 76, 70, 90, 91, 88, 95, 87, 90, 86, 90],
[79, 71, 74, 72, 80, 74, 76, 71, 90, 92, 89, 95, 87, 90, 86, 90], [79, 71, 74, 72, 80, 74, 76, 70, 91, 92, 89, 95, 87, 90, 86, 90],
[79, 72, 74, 72, 81, 74, 77, 71, 91, 92, 89, 96, 87, 91, 86, 90], [80, 72, 75, 73, 81, 75, 77, 71, 91, 93, 90, 96, 88, 91, 87, 91],
[84, 76, 79, 77, 85, 79, 81, 75, 95, 96, 94, 100, 92, 95, 91, 95], [85, 77, 79, 77, 86, 80, 82, 76, 95, 97, 94, 100, 92, 95, 91, 95],
[85, 77, 79, 77, 86, 79, 82, 76, 96, 97, 94, 101, 92, 95, 91, 95], [85, 77, 80, 78, 86, 80, 82, 76, 96, 97, 94, 101, 92, 96, 91, 95],
[86, 78, 80, 78, 87, 80, 83, 77, 96, 98, 95, 101, 93, 96, 92, 96], [90, 82, 84, 82, 91, 85, 87, 81, 100, 101, 98, 105, 96, 100, 95, 99],
[91, 82, 85, 83, 92, 85, 88, 82, 100, 101, 98, 105, 96, 100, 95, 100], [91, 82, 85, 83, 92, 85, 88, 81, 100, 101, 99, 105, 97, 100, 96, 100],
[91, 83, 85, 83, 92, 86, 88, 82, 101, 102, 99, 106, 97, 100, 96, 100], [91, 83, 86, 84, 92, 86, 89, 82, 101, 102, 99, 106, 97, 101, 96, 100],
[95, 87, 89, 87, 96, 90, 92, 86, 105, 106, 103, 110, 101, 104, 100, 104], [96, 87, 90, 88, 97, 90, 93, 87, 105, 106, 103, 110, 101, 105, 100, 104],
[96, 87, 90, 88, 97, 90, 93, 87, 105, 106, 103, 110, 101, 105, 100, 104], [96, 88, 90, 88, 97, 91, 93, 87, 105, 107, 104, 111, 102, 105, 101, 105],
[97, 88, 91, 89, 98, 91, 94, 87, 106, 107, 104, 111, 102, 106, 101, 105], [101, 92, 95, 93, 102, 95, 98, 91, 109, 111, 108, 115, 106, 109, 105, 109],
[102, 93, 95, 94, 103, 96, 99, 92, 110, 111, 108, 115, 106, 109, 105, 109], [102, 93, 95, 94, 103, 96, 99, 92, 110, 111, 108, 115, 106, 110, 105, 109],
[102, 93, 96, 94, 103, 96, 99, 92, 110, 111, 109, 115, 106, 110, 105, 110], [103, 94, 96, 94, 103, 97, 99, 93, 111, 112, 109, 116, 107, 110, 106, 110],
[107, 98, 100, 98, 108, 101, 104, 97, 114, 116, 113, 120, 111, 114, 110, 114], [107, 98, 101, 99, 108, 101, 104, 97, 115, 116, 113, 120, 111, 115, 110, 114],
[107, 98, 101, 99, 108, 101, 104, 97, 115, 116, 113, 120, 111, 115, 110, 114], [108, 99, 101, 99, 109, 102, 105, 98, 115, 116, 114, 121, 111, 115, 111, 115],
[108, 99, 102, 100, 109, 102, 105, 98, 116, 117, 114, 121, 112, 116, 111, 115], [112, 103, 105, 104, 113, 106, 109, 102, 119, 120, 118, 125, 115, 119, 115, 119],
[113, 104, 106, 104, 114, 107, 110, 103, 120, 121, 118, 125, 116, 119, 115, 119], [113, 104, 106, 104, 114, 107, 110, 103, 120, 121, 118, 125, 116, 120, 115, 119],
[113, 104, 106, 105, 114, 107, 110, 103, 120, 121, 119, 126, 116, 120, 115, 120], [114, 104, 107, 105, 115, 107, 111, 103, 120, 122, 119, 126, 117, 120, 116, 120],
[118, 109, 111, 109, 119, 112, 115, 108, 125, 126, 123, 130, 121, 125, 120, 124], [119, 109, 112, 110, 120, 112, 116, 108, 125, 126, 123, 131, 121, 125, 120, 125],
[119, 109, 112, 110, 119, 112, 115, 108, 125, 126, 124, 131, 121, 125, 120, 125], [119, 110, 112, 110, 120, 113, 116, 109, 125, 127, 124, 131, 122, 125, 121, 125],
[120, 110, 112, 111, 120, 113, 116, 109, 126, 127, 124, 132, 122, 126, 121, 126], [123, 114, 116, 114, 124, 117, 120, 113, 130, 131, 128, 136, 126, 130, 125, 129],
[124, 114, 117, 115, 125, 117, 121, 113, 130, 131, 129, 136, 126, 130, 125, 130], [124, 114, 117, 115, 125, 117, 121, 113, 130, 131, 129, 136, 126, 130, 125, 130],
[124, 115, 117, 115, 125, 118, 121, 114, 130, 132, 129, 137, 127, 131, 126, 130], [125, 115, 117, 116, 126, 118, 122, 114, 131, 132, 129, 137, 127, 131, 126, 131],
[129, 119, 121, 120, 130, 122, 126, 118, 135, 136, 133, 141, 131, 135, 130, 135], [130, 119, 122, 120, 130, 123, 126, 118, 135, 136, 134, 141, 131, 135, 130, 135],
[130, 119, 122, 120, 130, 123, 126, 118, 135, 136, 134, 141, 131, 135, 130, 135], [130, 120, 122, 121, 131, 123, 127, 119, 136, 137, 134, 142, 132, 136, 131, 135],
[130, 120, 123, 121, 131, 123, 127, 119, 136, 137, 135, 142, 132, 136, 131, 136], [134, 124, 126, 125, 135, 127, 131, 123, 140, 141, 138, 146, 136, 140, 135, 140],
[135, 125, 127, 125, 136, 128, 132, 124, 140, 141, 139, 147, 136, 140, 135, 140], [135, 125, 127, 125, 136, 128, 131, 123, 140, 142, 139, 147, 136, 140, 136, 140],
[135, 125, 127, 126, 136, 128, 132, 124, 141, 142, 139, 147, 137, 141, 136, 141], [136, 125, 128, 126, 136, 129, 132, 124, 141, 142, 140, 148, 137, 141, 136, 141],
[140, 129, 132, 130, 140, 133, 136, 128, 145, 146, 144, 152, 141, 145, 140, 145], [141, 130, 132, 131, 141, 133, 137, 129, 145, 147, 144, 152, 141, 145, 140, 145],
[140, 130, 132, 131, 141, 133, 137, 129, 145, 147, 144, 152, 142, 146, 141, 145], [141, 130, 133, 131, 142, 134, 137, 129, 146, 147, 144, 152, 142, 146, 141, 146],
[141, 131, 133, 131, 142, 134, 138, 130, 146, 147, 145, 153, 142, 146, 141, 146],
[145, 135, 137, 135, 146, 138, 142, 133, None, None, None, None, None, None, None, None],
[146, 135, 138, 136, 147, 139, 143, 134, None, None, None, None, None, None, None, None],
[146, 135, 138, 136, 147, 138, 142, 134, None, None, None, None, None, None, None, None],
[146, 136, 138, 136, 147, 139, 143, 134, None, None, None, None, None, None, None, None],
[147, 136, 138, 137, 147, 139, 143, 135, None, None, None, None, None, None, None, None],
[150, 139, 142, 140, 151, 143, 147, 138, None, None, None, None, None, None, None, None],
[151, 140, 142, 141, 152, 143, 148, 139, None, None, None, None, None, None, None, None],
[151, 140, 142, 141, 152, 143, 147, 139, None, None, None, None, None, None, None, None],
[152, 140, 143, 141, 152, 144, 148, 139, None, None, None, None, None, None, None, None],
[152, 141, 143, 142, 152, 144, 148, 140, None, None, None, None, None, None, None, None],
None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, None, None, None, None, None, None, None, None]
}
def get_adjust_cmda_odelay():
return {
'cmda_odly_period':-1,
'cmda_fine_corr':[0.030713940147897745, -0.31142995369410897, 0.25855967931439255, 0.33272217450114078, -0.044430686684212156],
'cmda_odly_b':45.0047826387,
'cmda_bspe':[{'ldly': 45, 'period': -1, 'err': -0.035496578892797004}, {'ldly': 44, 'period': -1, 'err': 0.44070548107222152},
{'ldly': 42, 'period': -1, 'err': -0.46122745179348357}, {'ldly': 41, 'period': -1, 'err': 0.50981961434792566}, {'ldly': 39, 'period': -1, 'err': -0.35612221952906253},
{'ldly': 38, 'period': -1, 'err': -0.33221764758151551}, {'ldly': 37, 'period': -1, 'err': 0.1430022807381377}, {'ldly': 35, 'period': -1, 'err': -0.22809454696245979},
{'ldly': 34, 'period': -1, 'err': 0.24810751300255873}, {'ldly': 33, 'period': -1, 'err': 0.27201208495010576}, {'ldly': 31, 'period': -1, 'err': 0.31722164627826288},
{'ldly': 30, 'period': -1, 'err': 0.37613518556916148}, {'ldly': 28, 'period': -1, 'err': -0.52481561565117474}, {'ldly': 27, 'period': -1, 'err': -0.049595687331521532},
{'ldly': 25, 'period': -1, 'err': -0.42069251503212257}, {'ldly': 24, 'period': -1, 'err': 0.055509544932892396}, {'ldly': 23, 'period': -1, 'err': 0.079414116880446528},
{'ldly': 21, 'period': -1, 'err': 0.1246236782086001}, {'ldly': 20, 'period': -1, 'err': 0.18353721749949869}, {'ldly': 19, 'period': -1, 'err': 0.65973927746451366},
{'ldly': 17, 'period': -1, 'err': -0.24219365540118432}, {'ldly': 15, 'period': -1, 'err': -0.61329048310178536}, {'ldly': 14, 'period': -1, 'err': -0.13708842313677039},
{'ldly': 13, 'period': -1, 'err': -0.11318385118921803}, {'ldly': 11, 'period': -1, 'err': -0.067974289861062687}, {'ldly': 10, 'period': -1, 'err': -0.0090607505701782998},
{'ldly': 9, 'period': -1, 'err': 0.46714130939483667}, {'ldly': 7, 'period': -1, 'err': -0.4347916234708622}, {'ldly': 6, 'period': -1, 'err': 0.53625544267054437},
{'ldly': 4, 'period': -1, 'err': -0.32968639120644738}, {'ldly': 3, 'period': -1, 'err': -0.30578181925889458}, {'ldly': 2, 'period': -1, 'err': 0.16943810906075885},
{'ldly': 0, 'period': -1, 'err': -0.20165871863984108}, {'ldly': 156, 'period': 0, 'err': 0.62311009744971102}, {'ldly': 154, 'period': 0, 'err': -0.24283173642726297},
{'ldly': 153, 'period': 0, 'err': -0.21892716447970884}, {'ldly': 151, 'period': 0, 'err': -0.17371760315154461}, {'ldly': 150, 'period': 0, 'err': -0.11480406386064601},
{'ldly': 149, 'period': 0, 'err': 0.36139799610438672}, {'ldly': 148, 'period': 0, 'err': 0.38530256805194085}, {'ldly': 146, 'period': 0, 'err': 0.43051212938004824},
{'ldly': 144, 'period': 0, 'err': -0.43542970449692575}, {'ldly': 143, 'period': 0, 'err': -0.41152513254937162}, {'ldly': 142, 'period': 0, 'err': 0.063694795770260271},
{'ldly': 140, 'period': 0, 'err': -0.30740203193033722}, {'ldly': 139, 'period': 0, 'err': 0.16880002803469552}, {'ldly': 138, 'period': 0, 'err': 0.19270459998224965},
{'ldly': 136, 'period': 0, 'err': 0.23791416131038545}, {'ldly': 135, 'period': 0, 'err': 0.29682770060128405}, {'ldly': 133, 'period': 0, 'err': -0.6041231006190344},
{'ldly': 132, 'period': 0, 'err': -0.12890317229940251}, {'ldly': 130, 'period': 0, 'err': -0.5}, {'ldly': 129, 'period': 0, 'err': -0.023797940034967269},
{'ldly': 128, 'period': 0, 'err': 0.00010663191257265225}, {'ldly': 126, 'period': 0, 'err': 0.045316193240722669}, {'ldly': 125, 'period': 0, 'err': 0.10422973253162127},
{'ldly': 124, 'period': 0, 'err': 0.58043179249663979}, {'ldly': 122, 'period': 0, 'err': -0.32150114036905109}, {'ldly': 121, 'period': 0, 'err': 0.64954592577234394},
{'ldly': 119, 'period': 0, 'err': -0.21639590810464426}, {'ldly': 118, 'period': 0, 'err': -0.19249133615709013}, {'ldly': 116, 'period': 0, 'err': -0.14728177482894012},
{'ldly': 115, 'period': 0, 'err': -0.088368235538041517}, {'ldly': 114, 'period': 0, 'err': 0.387833824426977}, {'ldly': 113, 'period': 0, 'err': 0.41173839637453113},
{'ldly': 111, 'period': 0, 'err': 0.45694795770268115}, {'ldly': 109, 'period': 0, 'err': -0.40899387617430705}, {'ldly': 108, 'period': 0, 'err': -0.38508930422675292},
{'ldly': 107, 'period': 0, 'err': 0.090130624092907397}, {'ldly': 105, 'period': 0, 'err': -0.2809662036077043}, {'ldly': 104, 'period': 0, 'err': 0.19523585635731422},
{'ldly': 103, 'period': 0, 'err': 0.21914042830486835}, {'ldly': 101, 'period': 0, 'err': 0.26434998963301837}, {'ldly': 100, 'period': 0, 'err': 0.32326352892391697},
{'ldly': 98, 'period': 0, 'err': -0.5776872722964157}, {'ldly': 97, 'period': 0, 'err': -0.10246734397675539}, {'ldly': 95, 'period': 0, 'err': -0.47356417167736709},
{'ldly': 94, 'period': 0, 'err': 0.0026378882876372245}, {'ldly': 93, 'period': 0, 'err': 0.026542460235191356}, {'ldly': 91, 'period': 0, 'err': 0.071752021563355584},
{'ldly': 90, 'period': 0, 'err': 0.13066556085423997}, {'ldly': 89, 'period': 0, 'err': 0.60686762081925849}, {'ldly': 87, 'period': 0, 'err': -0.29506531204643238},
{'ldly': 85, 'period': 0, 'err': -0.66616213974704408}, {'ldly': 84, 'period': 0, 'err': -0.18996007978202556}, {'ldly': 83, 'period': 0, 'err': -0.16605550783447143},
{'ldly': 81, 'period': 0, 'err': -0.12084594650632141}, {'ldly': 80, 'period': 0, 'err': -0.061932407215422813}, {'ldly': 79, 'period': 0, 'err': 0.41426965274959571},
{'ldly': 78, 'period': 0, 'err': 0.43817422469714984}, {'ldly': 76, 'period': 0, 'err': 0.48338378602529986}, {'ldly': 74, 'period': 0, 'err': -0.38255804785168834},
{'ldly': 73, 'period': 0, 'err': -0.35865347590413421}, {'ldly': 72, 'period': 0, 'err': 0.1165664524155261}, {'ldly': 70, 'period': 0, 'err': -0.2545303752850856},
{'ldly': 69, 'period': 0, 'err': 0.22167168467993292}, {'ldly': 68, 'period': 0, 'err': 0.24557625662748706}, {'ldly': 66, 'period': 0, 'err': 0.29078581795562286},
{'ldly': 65, 'period': 0, 'err': 0.34969935724652146}, {'ldly': 63, 'period': 0, 'err': -0.5512514439738041}, {'ldly': 62, 'period': 0, 'err': -0.076031515654150894},
{'ldly': 60, 'period': 0, 'err': -0.44712834335474838}, {'ldly': 59, 'period': 0, 'err': 0.029073716610277245}, {'ldly': 58, 'period': 0, 'err': 0.052978288557824271},
{'ldly': 56, 'period': 0, 'err': 0.098187849885967182}, {'ldly': 55, 'period': 0, 'err': 0.15710138917686578}, {'ldly': 54, 'period': 0, 'err': 0.6333034491418843},
{'ldly': 52, 'period': 0, 'err': -0.26862948372382078}, {'ldly': 50, 'period': 0, 'err': -0.63972631142441827}, {'ldly': 49, 'period': 0, 'err': -0.16352425145939975},
{'ldly': 48, 'period': 0, 'err': -0.13961967951185272}, {'ldly': 46, 'period': 0, 'err': -0.094410118183695602}],
'cmda_odly_a':-1.40105743313
}
def get_wlev_data():
return {
'wlev_dqs_odly_b':[52.119267926792674, 49.885802580258002],
'wlev_dqs_period':[-1, -1],
'wlev_dqs_bspe':[[{'ldly': 53, 'period': -1, 'err': 0.15836650331700497}, {'ldly': 52, 'period': -1, 'err': 0.58329899656632733}, {'ldly': 49, 'period': -1, 'err': -0.10726153212335987},
{'ldly': 48, 'period': -1, 'err': -0.30379371270459643}, {'ldly': 47, 'period': -1, 'err': 0.12113878054472593}, {'ldly': 44, 'period': -1, 'err': -0.56942174814496838},
{'ldly': 43, 'period': -1, 'err': -0.76595392872619783}, {'ldly': 41, 'period': -1, 'err': 0.095354535453544997}, {'ldly': 39, 'period': -1, 'err': -1.0315819641665698},
{'ldly': 39, 'period': -1, 'err': 0.48103129715956783}, {'ldly': 38, 'period': -1, 'err': 0.28449911657833127}, {'ldly': 37, 'period': -1, 'err': 0.70943160982765363},
{'ldly': 34, 'period': -1, 'err': 0.018871081137966428}, {'ldly': 33, 'period': -1, 'err': -0.17766109944327013}, {'ldly': 32, 'period': -1, 'err': 0.24727139380605223},
{'ldly': 29, 'period': -1, 'err': -0.44328913488363497}, {'ldly': 28, 'period': -1, 'err': -0.63982131546487508}, {'ldly': 25, 'period': -1, 'err': -0.19156715671566715},
{'ldly': 24, 'period': -1, 'err': -0.90544935090523637}, {'ldly': 24, 'period': -1, 'err': 0.60716391042089768}, {'ldly': 21, 'period': -1, 'err': -0.2406730673067301},
{'ldly': 22, 'period': -1, 'err': 0.83556422308897993}, {'ldly': 19, 'period': -1, 'err': 0.14500369439929628}, {'ldly': 18, 'period': -1, 'err': -0.051528486181947386},
{'ldly': 17, 'period': -1, 'err': 0.37340400706738208}, {'ldly': 14, 'period': -1, 'err': -0.3171565216223069}, {'ldly': 13, 'period': -1, 'err': -0.51368870220354701},
{'ldly': 10, 'period': -1, 'err': -0.065434543454344407}, {'ldly': 9, 'period': -1, 'err': -0.7793167376439083}, {'ldly': 9, 'period': -1, 'err': 0.7332965236822222},
{'ldly': 6, 'period': -1, 'err': -0.11454045404540381}, {'ldly': 7, 'period': -1, 'err': 0.96169683635031067}, {'ldly': 4, 'period': -1, 'err': 0.27113630766062169},
{'ldly': 3, 'period': -1, 'err': 0.074604127079380245}, {'ldly': 2, 'period': -1, 'err': 0.49953662032870971}, {'ldly': 2, 'period': -1, 'err': 2.0121498816548402},
{'ldly': 2, 'period': -1, 'err': 3.5247631429809707}, {'ldly': 0, 'period': -1, 'err': 5.0606980698069899}, {'ldly': 159, 'period': 0, 'err': -5.0658693929094625},
{'ldly': 159, 'period': 0, 'err': -3.5532561315833107}, {'ldly': 159, 'period': 0, 'err': -2.0406428702571873}, {'ldly': 159, 'period': 0, 'err': -0.52802960893103545},
{'ldly': 158, 'period': 0, 'err': -0.72456178951227912}, {'ldly': 156, 'period': 0, 'err': 0.1367466746674495}, {'ldly': 154, 'period': 0, 'err': -0.99018982495266528},
{'ldly': 154, 'period': 0, 'err': 0.52242343637348654}, {'ldly': 151, 'period': 0, 'err': -0.3254135413541519}, {'ldly': 152, 'period': 0, 'err': 0.75082374904158655},
{'ldly': 149, 'period': 0, 'err': 0.060263220351885138}, {'ldly': 148, 'period': 0, 'err': -0.13626896022935853}, {'ldly': 147, 'period': 0, 'err': 0.28866353301995673},
{'ldly': 144, 'period': 0, 'err': -0.40189699566974468}, {'ldly': 143, 'period': 0, 'err': -0.59842917625095993}, {'ldly': 140, 'period': 0, 'err': -0.15017501750173778},
{'ldly': 139, 'period': 0, 'err': -0.86405721169131766}, {'ldly': 139, 'period': 0, 'err': 0.64855604963480573}, {'ldly': 136, 'period': 0, 'err': -0.19928092809283271},
{'ldly': 137, 'period': 0, 'err': 0.87695636230287732}, {'ldly': 134, 'period': 0, 'err': 0.18639583361320433}, {'ldly': 133, 'period': 0, 'err': -0.010136346968010912},
{'ldly': 132, 'period': 0, 'err': 0.41479614628130435}, {'ldly': 129, 'period': 0, 'err': -0.27576438240839707}, {'ldly': 128, 'period': 0, 'err': -0.47229656298964073},
{'ldly': 125, 'period': 0, 'err': -0.024042404240432802}, {'ldly': 124, 'period': 0, 'err': -0.73792459842999847}, {'ldly': 124, 'period': 0, 'err': 0.77468866289613914},
{'ldly': 121, 'period': 0, 'err': -0.073148314831499306}, {'ldly': 122, 'period': 0, 'err': 1.0030889755642107}, {'ldly': 119, 'period': 0, 'err': 0.31252844687453774},
{'ldly': 118, 'period': 0, 'err': 0.11599626629327986}, {'ldly': 117, 'period': 0, 'err': 0.54092875954260933}, {'ldly': 114, 'period': 0, 'err': -0.14963176914706366},
{'ldly': 113, 'period': 0, 'err': -0.34616394972832154}, {'ldly': 112, 'period': 0, 'err': 0.078768543521007928}, {'ldly': 109, 'period': 0, 'err': -0.61179198516866506},
{'ldly': 108, 'period': 0, 'err': -0.80832416574992294}, {'ldly': 106, 'period': 0, 'err': 0.052984298429834098}, {'ldly': 104, 'period': 0, 'err': -1.0739522011902665},
{'ldly': 104, 'period': 0, 'err': 0.43866106013585693}, {'ldly': 103, 'period': 0, 'err': 0.24212887955461326}, {'ldly': 102, 'period': 0, 'err': 0.66706137280392852},
{'ldly': 99, 'period': 0, 'err': -0.023499155885744472}, {'ldly': 98, 'period': 0, 'err': -0.22003133646698814}, {'ldly': 97, 'period': 0, 'err': 0.20490115678232712},
{'ldly': 94, 'period': 0, 'err': -0.48565937190734587}, {'ldly': 93, 'period': 0, 'err': -0.68219155248858954}, {'ldly': 91, 'period': 0, 'err': 0.17911691169115329},
{'ldly': 89, 'period': 0, 'err': -0.94781958792893306}, {'ldly': 89, 'period': 0, 'err': 0.56479367339719033}, {'ldly': 86, 'period': 0, 'err': -0.28304330433044811},
{'ldly': 87, 'period': 0, 'err': 0.79319398606527614}, {'ldly': 84, 'period': 0, 'err': 0.10263345737558893}, {'ldly': 83, 'period': 0, 'err': -0.093898723205668944},
{'ldly': 82, 'period': 0, 'err': 0.33103377004367474}, {'ldly': 79, 'period': 0, 'err': -0.35952675864601247}, {'ldly': 78, 'period': 0, 'err': -0.55605893922727034},
{'ldly': 75, 'period': 0, 'err': -0.10780478047803399}, {'ldly': 74, 'period': 0, 'err': -0.82168697466761387}, {'ldly': 74, 'period': 0, 'err': 0.69092628665850953},
{'ldly': 71, 'period': 0, 'err': -0.15691069106912892}, {'ldly': 72, 'period': 0, 'err': 0.91932659932659533}, {'ldly': 69, 'period': 0, 'err': 0.22876607063690813},
{'ldly': 68, 'period': 0, 'err': 0.032233890055650249}, {'ldly': 67, 'period': 0, 'err': 0.45716638330499393}, {'ldly': 64, 'period': 0, 'err': -0.23339414538470038},
{'ldly': 63, 'period': 0, 'err': -0.42992632596594405}, {'ldly': 62, 'period': 0, 'err': -0.004993832716600366}, {'ldly': 59, 'period': 0, 'err': -0.69555436140630178},
{'ldly': 59, 'period': 0, 'err': 0.81705889991982161}, {'ldly': 56, 'period': 0, 'err': -0.030778077807781301}, {'ldly': 57, 'period': 0, 'err': 1.0454592125879216},
{'ldly': 54, 'period': 0, 'err': 0.35489868389822021}], [{'ldly': 50, 'period': -1, 'err': 0.90683082593974973}, {'ldly': 49, 'period': -1, 'err': 0.52528052805281789},
{'ldly': 46, 'period': -1, 'err': -0.10166902404525047}, {'ldly': 45, 'period': -1, 'err': 0.38526466932408709}, {'ldly': 44, 'period': -1, 'err': 0.0037143714371552505},
{'ldly': 42, 'period': -1, 'err': 0.1118091809181081}, {'ldly': 40, 'period': -1, 'err': -0.13630148729157554}, {'ldly': 39, 'period': -1, 'err': -0.51785178517850738},
{'ldly': 37, 'period': -1, 'err': -0.40975697569755454}, {'ldly': 36, 'period': -1, 'err': 0.34800994385153672}, {'ldly': 35, 'period': -1, 'err': 0.83494363722087428},
{'ldly': 34, 'period': -1, 'err': 0.45339333933394244}, {'ldly': 33, 'period': -1, 'err': 0.064628770569385097}, {'ldly': 30, 'period': -1, 'err': 0.31337748060521875},
{'ldly': 29, 'period': -1, 'err': -0.068172817281713094}, {'ldly': 27, 'period': -1, 'err': 0.039921992199239753}, {'ldly': 25, 'period': -1, 'err': -0.20818867601044388},
{'ldly': 24, 'period': -1, 'err': -0.58973897389737573}, {'ldly': 22, 'period': -1, 'err': -0.48164416441642288}, {'ldly': 21, 'period': -1, 'err': 0.27612275513266837},
{'ldly': 20, 'period': -1, 'err': 0.76305644850200594}, {'ldly': 19, 'period': -1, 'err': 0.38150615061507764}, {'ldly': 18, 'period': -1, 'err': -0.007258418149493906},
{'ldly': 15, 'period': -1, 'err': 0.24149029188634508}, {'ldly': 14, 'period': -1, 'err': -0.14006000600057966}, {'ldly': 12, 'period': -1, 'err': -0.031965196519628591},
{'ldly': 10, 'period': -1, 'err': -0.28007586472931045}, {'ldly': 9, 'period': -1, 'err': -0.6616261626162423}, {'ldly': 7, 'period': -1, 'err': -0.55353135313529123},
{'ldly': 6, 'period': -1, 'err': 0.20423556641380003}, {'ldly': 5, 'period': -1, 'err': 0.69116925978313848}, {'ldly': 4, 'period': -1, 'err': 0.30961896189620663},
{'ldly': 3, 'period': -1, 'err': -0.079145606868361362}, {'ldly': 0, 'period': -1, 'err': 0.16960310316747595}, {'ldly': 0, 'period': -1, 'err': 1.6624143842955883},
{'ldly': 0, 'period': -1, 'err': 3.1552256654237008}, {'ldly': 159, 'period': 0, 'err': -4.4211881188118696}, {'ldly': 159, 'period': 0, 'err': -2.9283768376837713},
{'ldly': 159, 'period': 0, 'err': -1.4355655565556731}, {'ldly': 159, 'period': 0, 'err': 0.057245724572453582}, {'ldly': 157, 'period': 0, 'err': 0.16534053405342775},
{'ldly': 155, 'period': 0, 'err': -0.082770134156277209}, {'ldly': 154, 'period': 0, 'err': -0.46432043204319484}, {'ldly': 152, 'period': 0, 'err': -0.3562256225622491},
{'ldly': 151, 'period': 0, 'err': 0.40154129698686347}, {'ldly': 150, 'period': 0, 'err': 0.88847499035617261}, {'ldly': 149, 'period': 0, 'err': 0.50692469246922656},
{'ldly': 148, 'period': 0, 'err': 0.11816012370468343}, {'ldly': 145, 'period': 0, 'err': 0.36690883374052419}, {'ldly': 144, 'period': 0, 'err': -0.014641464146393446},
{'ldly': 142, 'period': 0, 'err': 0.093453345334552296}, {'ldly': 140, 'period': 0, 'err': -0.15465732287515266}, {'ldly': 139, 'period': 0, 'err': -0.53620762076207029},
{'ldly': 137, 'period': 0, 'err': -0.42811281128109613}, {'ldly': 136, 'period': 0, 'err': 0.32965410826798802}, {'ldly': 135, 'period': 0, 'err': 0.81658780163729716},
{'ldly': 134, 'period': 0, 'err': 0.43503750375037953}, {'ldly': 133, 'period': 0, 'err': 0.0462729349858364}, {'ldly': 130, 'period': 0, 'err': 0.29502164502164874},
{'ldly': 129, 'period': 0, 'err': -0.086528652865297317}, {'ldly': 127, 'period': 0, 'err': 0.021566156615676846}, {'ldly': 125, 'period': 0, 'err': -0.2265445115940139},
{'ldly': 124, 'period': 0, 'err': -0.60809480948094574}, {'ldly': 122, 'period': 0, 'err': -0.49999999999998579}, {'ldly': 121, 'period': 0, 'err': 0.25776691954909836},
{'ldly': 120, 'period': 0, 'err': 0.74470061291843592}, {'ldly': 119, 'period': 0, 'err': 0.36315031503150408}, {'ldly': 118, 'period': 0, 'err': -0.025614253733067471},
{'ldly': 115, 'period': 0, 'err': 0.22313445630277329}, {'ldly': 114, 'period': 0, 'err': -0.15841584158415856}, {'ldly': 112, 'period': 0, 'err': -0.050321032103198604},
{'ldly': 110, 'period': 0, 'err': -0.29843170031288935}, {'ldly': 109, 'period': 0, 'err': -0.67998199819982119}, {'ldly': 107, 'period': 0, 'err': -0.57188718871886124},
{'ldly': 106, 'period': 0, 'err': 0.18587973083022291}, {'ldly': 105, 'period': 0, 'err': 0.67281342419956047}, {'ldly': 104, 'period': 0, 'err': 0.29126312631262863},
{'ldly': 103, 'period': 0, 'err': -0.097501442451942921}, {'ldly': 100, 'period': 0, 'err': 0.15124726758389784}, {'ldly': 99, 'period': 0, 'err': -0.23030303030303401},
{'ldly': 97, 'period': 0, 'err': -0.12220822082207405}, {'ldly': 95, 'period': 0, 'err': -0.37031888903175059}, {'ldly': 94, 'period': 0, 'err': -0.75186918691868243},
{'ldly': 92, 'period': 0, 'err': -0.64377437743772248}, {'ldly': 91, 'period': 0, 'err': 0.11399254211136167}, {'ldly': 90, 'period': 0, 'err': 0.60092623548069923},
{'ldly': 89, 'period': 0, 'err': 0.21937593759375318}, {'ldly': 88, 'period': 0, 'err': -0.16938863117080416}, {'ldly': 85, 'period': 0, 'err': 0.079360078865022388},
{'ldly': 84, 'period': 0, 'err': -0.30219021902189525}, {'ldly': 82, 'period': 0, 'err': -0.1940954095409495}, {'ldly': 80, 'period': 0, 'err': -0.44220607775062604},
{'ldly': 79, 'period': 0, 'err': -0.82375637563757209}, {'ldly': 79, 'period': 0, 'err': 0.66905490549055457}, {'ldly': 76, 'period': 0, 'err': 0.042105353392472011},
{'ldly': 75, 'period': 0, 'err': 0.52903904676182378}, {'ldly': 74, 'period': 0, 'err': 0.14748874887490615}, {'ldly': 73, 'period': 0, 'err': -0.24127581988967961},
{'ldly': 70, 'period': 0, 'err': 0.0074728901461753594}, {'ldly': 69, 'period': 0, 'err': -0.3740774077407707}, {'ldly': 67, 'period': 0, 'err': -0.26598259825979653},
{'ldly': 66, 'period': 0, 'err': 0.49178432128927341}, {'ldly': 64, 'period': 0, 'err': -0.89564356435641912}, {'ldly': 64, 'period': 0, 'err': 0.59716771677167912},
{'ldly': 61, 'period': 0, 'err': -0.029781835326375017}, {'ldly': 60, 'period': 0, 'err': 0.45715185804294833}, {'ldly': 59, 'period': 0, 'err': 0.0756015601560307},
{'ldly': 57, 'period': 0, 'err': 0.18369636963696934}, {'ldly': 55, 'period': 0, 'err': -0.064414298572700091}, {'ldly': 54, 'period': 0, 'err': -0.44596459645964615},
{'ldly': 52, 'period': 0, 'err': -0.33786978697867909}, {'ldly': 51, 'period': 0, 'err': 0.41989713257039796}]],
'wlev_dqs_odly_a':[-1.5126132613261327, -1.4928112811281129],
'wlev_dqs_fine_corr':[[-1.2132753275327497, -0.62632963296329081, 0.81004633796713199, 0.72236556989032386, 0.013220127982951815],
[-0.79263340619775235, -0.79851099395652625, -0.53355535553554745, 0.96330402270997262, 0.081728172817291833]],
}
def get_dqi_dqsi_parameters():
return [{'tDQHL': [-131.45632420749391, -108.54636845478372, -84.023122572918567, -83.103013490858444,
-108.4723768102055, -61.845175947337246, -124.09529140373243, -66.850049366341011],
'tDQSHL': 33.630627491376956,
'tFDQ': [-18.169014669301639, -8.84397905157625, 0.97114481020087629, 10.813771759350912,
-18.00410155414038, -5.0149632407802347, 1.297182361808636, 9.1919281214785133,
-15.117309782180065, -7.6355576013292223,-1.0788940806483389, 6.341602251455142,
-18.181179822359098,-12.116537336918025, 2.9609772279177631, 11.405923805850376,
-18.928113920491676, -7.8283184960458785,-0.044628100356851719, 8.1128573798139989,
-17.408789192927088, -6.1207363578761038, 1.6784422575078048, 5.7664758916114911,
-18.231183132897023, -6.2570148639613343, 0.46315232003504803, 8.8850427413296931,
-16.381481961618071, -6.1174342247526683, -0.82283483445295313, 6.7778815926356089],
'tCDQS': [-6.0430581162323005, -7.2757801319630229, -2.5421518060152657, -7.5603992191772083, -2.2055383942761204, 6.567005178636669, 2.2874275225718126, -2.4826716594707356,
-3.9070988518160283, -7.0454853282507406, -7.0592219194082384,-11.875950010996496, -8.1897709787402579,-8.8611382356966004,-7.4771065174616496, -7.9803816333132609,
-8.5942156314275113, -2.4121425692062815, 0.33707038068398676, 3.0848764289567301, 3.8499782486228042, 4.5061334038974064, 4.6048528083479141,
0.11787918795170077,-3.0461173388003537, -2.8646101441124636, 1.2473306831273321, 5.5221447897347211, 5.5801911846440824, 6.5311420195002867],
'tDQ': [178.54993633069836, 116.65061870453647, 159.03578832976919, 126.78532767972659,
202.90886522937919, 147.34955168578901, 150.5973655908777, 113.57908737512665],
'tDQS': 0.0,
'anaScale': 14.440746252956936,
'tSDQS': 16.081739769147354,
'tSDQ': [14.629922533518178, 15.32021309800418, 15.358553006242195, 15.317433438991307,
14.736478243160605, 15.178983370614914, 14.792911008035999, 15.42410605101378],
'tFDQS': [-20.920976712365256, -14.851051240024837, 2.544249229934898, 11.436496687716323]},
{'tDQHL': [-46.92862204920484, -45.873438129654339, -169.48428151560637, -108.63460880868871,
-99.945595444819844,-114.23567500178559, -79.910981307637172,-108.15257217444315],
'tDQSHL': -63.73607957321687,
'tFDQ': [-22.651208080162565, -9.6742387595856307, 1.6398758560518707, 11.54610375430673,
-20.232881982908012, -11.280847426552146, 0.55718928848580018, 9.1882686270403138,
-19.697511431229653, -7.3788999105222377, -3.0481680405296463, 11.644035069268249,
-14.788579667174496, -9.5382118978718218, 1.0032294552390997, 8.1729278773105705,
-21.378807382538035, -9.5665771864962146, -1.6206612289815727, 10.87690300433092,
-19.567199352107099, -7.8974633039664246, 3.7463643516202096, 9.296256580781975,
-21.677030891494294, -11.638328204580649, 1.2612350558170864, 10.941149227972524,
-15.777849021516966, -6.950745912105897, 4.7761338973479601, 6.1653134248130286],
'tCDQS': [-6.6540068568819404, -9.710432593520018, -10.898311539862851, -8.3495211811059971, -9.9648005738403533, -9.8822240868698259, -10.374184346489738, -3.600757867511521,
3.017721438680292, 1.1439974675125524, 3.5446130727629153, -1.7810713995265357, -3.7222951788697238, -5.1561798397448477, -6.8559122320934298, -8.4425997702883766,
-6.7022369345283312, -5.5222500342883594, -5.3711888327888762, -6.1798317970983154, -3.1812468245595431, -1.5243912445920293, -3.8961253294496134,
0.22045216697579145, 0.60574328325657445, -4.4894441298077377, -0.63488407214268139, -5.0567724757990842, -3.5610372972266342, -5.524375838152439],
'tDQ': [403.59125625398372, 419.2736920286585, 368.27332134758177, 424.54923786790363, 354.16339946510629,
389.42079118966922, 339.42258324461545, 382.15216838629846],
'tDQS': 0.0,
'anaScale': 15.848122667310021,
'tSDQS': 15.054401696282699,
'tSDQ': [15.090935942384293, 15.068960000988493, 14.991028033299427, 14.592811409659639,
15.152223949474106, 14.983660572919542, 15.150210715479881, 14.9599076073857],
'tFDQS': [-21.824409224001187, -10.830180678770162, 1.5698858542328959, 11.267851084349177]}]
def get_dqsi_vs_phase(variant):
if variant==0:
return [[(37, 0.25, 'n'), (20, 0.25, 'n')], [(35, None, 'n'), (23, 0.0, 'n')], [(35, None, 'n'), (24, -0.5, 'n')], [(40, 0.25, 'n'), (20, None, 'n')],
[(42, 0.25, 'n'), (25, 0.5, 'n')], [(40, None, 'n'), (27, -0.5, 'n')], [(40, None, 'n'), (29, -0.5, 'n')], [(46, 0.0, 'n'), (32, 0.0, 'n')],
[(49, 0.75, 'n'), (30, -0.5, 'n')], [(45, None, 'n'), (30, None, 'n')], [(45, None, 'n'), (30, None, 'n')], [(51, 0.25, 'n'), (35, -0.5, 'n')],
[(54, 0.0, 'n'), (35, None, 'n')], [(50, None, 'n'), (39, -0.5, 'n')], [(55, 0.5, 'n'), (41, 0.25, 'n')], [(58, 0.0, 'n'), (42, -0.5, 'n')],
[(55, None, 'n'), (40, None, 'n')], [(55, None, 'n'), (45, -0.25, 'n')], [(61, 0.5, 'n'), (49, 0.0, 'n')], [(64, 0.0, 'n'), (45, None, 'n')],
[(60, None, 'n'), (45, None, 'n')], [(65, 0.25, 'n'), (54, 0.0, 'n')], [(68, 0.0, 'n'), (50, None, 'n')], [(69, 0.0, 'n'), (55, 0.25, 'n')],
[(65, None, 'n'), (58, -0.25, 'n')], [(70, 0.75, 'n'), (56, -0.5, 'n')], [(66, None, 'n'), (55, None, 'n')], [(70, None, 'n'), (55, None, 'n')],
[(75, 0.75, 'n'), (64, 0.0, 'n')], [(76, 0.0, 'n'), (60, None, 'n')], [(74, None, 'n'), (60, None, 'n')], [(75, None, 'n'), (67, -0.75, 'n')],
None, [(84, 0.25, 'n'), (71, 0.5, 'n')], [(80, None, 'n'), (72, 0.25, 'n')], [(85, 0.0, 'n'), (70, None, 'n')], [(None, None, 'n'), (70, None, 'n')],
None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
None, None, None, [(126, 0.25, 'e'), (118, -0.25, 'e')], [(125, None, 'e'), (115, None, 'e')], [(125, None, 'e'), (115, None, 'e')],
[(130, 0.75, 'e'), (123, 0.0, 'e')], [(132, 0.0, 'e'), (124, 0.5, 'e')], [(134, 0.25, 'e'), (120, None, 'e')], [(135, 0.75, 'e'), (125, 0.0, 'e')],
[(136, 0.75, 'e'), (125, 0.0, 'e')], [(138, 0.0, 'e'), (125, None, 'e')], [(135, None, 'e'), (125, None, 'e')], [(140, 0.0, 'e'), (131, 0.25, 'e')],
[(143, 0.0, 'e'), (133, 0.0, 'e')], [(140, None, 'e'), (130, None, 'e')], [(140, None, 'e'), (135, 0.0, 'e')], [(145, 0.5, 'e'), (135, None, 'e')],
[(149, 0.5, 'e'), (139, -0.5, 'e')], [(145, None, 'e'), (139, -0.75, 'e')], [(145, None, 'e'), (141, 0.25, 'e')], [(151, 0.75, 'e'), (143, 0.0, 'e')],
[(150, None, 'e'), (140, None, 'e')], [(150, None, 'e'), (140, None, 'e')], [(155, 0.0, 'e'), (148, 0.25, 'e')], [(159, 0.0, 'e'), (149, -0.5, 'e')],
[(None, None, 'e'), (150, 0.75, 'e')], None, None, None, None, None, None, None, None, None, None, None, None, None, None, None,
[(20, None, 'n'), (7, -0.25, 'n')], [(29, 0.25, 'n'), (5, None, 'n')], [(25, None, 'n'), (10, 0.75, 'n')], [(25, None, 'n'), (14, 0.25, 'n')],
[(31, 0.75, 'n'), (10, None, 'n')], [(34, 0.0, 'n'), (16, -0.25, 'n')], [(30, None, 'n'), (17, 0.0, 'n')], [(30, None, 'n'), (19, -0.75, 'n')]]
def get_dqsi_vs_phase_prim_steps(variant=0):
# while scanning, compare this delay with 1 less by primary(not fine) step,
# save None for fraction in unknown (previous -0.5, next +0.5)
if variant in (0,):
return 1
else:
return 0
def get_dqsi_phase():
dqsi_optimal_ps=[-662.3378911803243, -945.8229473629233]
dqsi_phase=[
[ 114 , 115 , 116 , 119 , 120 , 120 , 124 , 124 , 125 , 127 , 129 , 130 , 130 , 133 , 134 , 135 ,
135 , 139 , 139 , 140 , 141 , 144 , 145 , 145 , 149 , 149 , 150 , 152 , 154 , 155 , 0 , 2 ,
4 , 5 , 5 , 8 , 9 , 10 , 10 , 14 , 14 , 15 , 18 , 19 , 20 , 20 , 24 , 24 ,
25 , 27 , 29 , 30 , 30 , 33 , 34 , 35 , 35 , 39 , 39 , 40 , 41 , 44 , 45 , 45 ,
49 , 49 , 50 , 52 , 54 , 55 , 55 , 58 , 59 , 60 , 60 , 64 , 64 , 65 , 66 , 69 ,
70 , 70 , 74 , 74 , 75 , 77 , 79 , 80 , 80 , 83 , 84 , 85 , 85 , 89 , 89 , 90 ,
91 , 94 , 95 , 95 , 99 , 99 , 100 , 102 , 104 , 105 , 105 , 108 , 109 , 110 , 110 , 114 ],
[ 104 , 105 , 105 , 109 , 109 , 110 , 113 , 114 , 115 , 115 , 119 , 119 , 120 , 124 , 124 , 125 ,
127 , 129 , 130 , 130 , 134 , 134 , 135 , 138 , 139 , 140 , 141 , 144 , 145 , 145 , 149 , 149 ,
150 , 153 , 154 , 155 , 156 , 159 , 159 , None , None , None , None , 0 , 3 , 4 , 5 , 7 ,
9 , 10 , 10 , 14 , 14 , 15 , 18 , 19 , 20 , 21 , 24 , 25 , 25 , 29 , 29 , 30 ,
32 , 34 , 35 , 35 , 39 , 39 , 40 , 43 , 44 , 45 , 47 , 49 , 50 , 50 , 54 , 54 ,
55 , 58 , 59 , 60 , 61 , 64 , 65 , 65 , 69 , 69 , 70 , 73 , 74 , 75 , 75 , 79 ,
79 , 80 , 84 , 84 , 85 , 87 , 89 , 90 , 90 , 94 , 94 , 95 , 98 , 99 , 100 , 101 ]]
return {"dqsi_optimal_ps":dqsi_optimal_ps,
"dqsi_phase":dqsi_phase}
......@@ -177,7 +177,9 @@ class X393LMA(object):
y=np.zeros((n,), dtype=np.int) #[0]*n
w=np.zeros((n,)) #[0]*n
f=np.full((n,),np.nan) # fractions
# f=np.full((n,),np.nan) # fractions
f=np.empty((n,)) # fractions
f[:]=np.nan
yf=np.zeros((n,)) # y with added fractions
if not periods is None:
p=np.zeros((n), dtype=np.int)#[0]*n
......@@ -291,6 +293,47 @@ class X393LMA(object):
print("?",end=" ")
print()
def showENLresults(self,
DQvDQS):
rslt_names=("early","nominal","late")
numBits=0
for n in DQvDQS:
try:
for d in DQvDQS[n]:
try:
numBits=len(d)
# print ("d=",d)
break
except:
pass
break
except:
pass
if not numBits:
raise Exception("showENLresults(): No no-None data provided")
# print ("numBits=%d"%(numBits))
enl_list=[]
for k in rslt_names:
if DQvDQS[k]:
enl_list.append(k)
print("DQS", end=" ")
for enl in enl_list:
for b in range(numBits):
print("%s%d"%(enl[0].upper(),b),end=" ")
print()
for dly in range(len(DQvDQS[enl_list[0]])):
print ("%d"%(dly),end=" ")
for enl in enl_list:
if DQvDQS[enl][dly] is None:
print ("? "*numBits,end="")
else:
for b in range(numBits):
if DQvDQS[enl][dly][b] is None:
print("?",end=" ")
else:
print("%d"%(DQvDQS[enl][dly][b]),end=" ")
print()
def normalizeParameters(self,
parameters,
......@@ -453,7 +496,7 @@ class X393LMA(object):
index += 1
return parameters
def estimate_from_histograms(self,
def dqi_dqsi_estimate_from_histograms(self,
lane, # byte lane
bin_size,
clk_period,
......@@ -773,7 +816,7 @@ class X393LMA(object):
print()
return data_periods_map
def lma_fit(self,
def lma_fit_dqi_dqsi(self,
lane, # byte lane
bin_size,
clk_period,
......@@ -793,8 +836,7 @@ class X393LMA(object):
After initial parametersn are created - run LMA to find optimal ones,
then return up to 3 varints (early, nominal, late) providing the best
DQ input delay for each DQS one
@lane byte lane to process
@lane byte lane to process (or non-number - process all byte lanes of the device)
@bin_size bin size for the histograms (should be 5/10/20/40)
@clk_period SDCLK period in ps
@dly_step_ds IDELAY step (from the datasheet)
......@@ -807,11 +849,58 @@ class X393LMA(object):
@return 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
each element being either None, or a list of 3 best DQ delay values for the DQS delay (some mey be None too)
"""
if not isinstance(lane,(int, long)): # ignore content, process both lanes
lane_rslt=[]
numLanes=2
parametersKey='parameters'
for lane in range(numLanes):
lane_rslt.append(self.lma_fit(lane, # byte lane
bin_size,
clk_period,
dly_step_ds,
primary_set,
data_set,
compare_prim_steps,
scale_w,
quiet))
rslt={}
for k in lane_rslt[0].keys():
if k != parametersKey:
for r in lane_rslt:
try:
l=len(r[k])
break
except:
pass
else:
rslt[k]=None
continue
rslt[k]=[]
for dly in range(l):
w=[]
for lane in range(numLanes):
if (lane_rslt[lane][k] is None) or (lane_rslt[lane][k][dly] is None):
w += [None]*8
else:
w+=lane_rslt[lane][k][dly]
for b in w:
if not b is None:
rslt[k].append(w)
break
else:
rslt[k].append(None)
rslt[parametersKey] = []
for lane in range(numLanes):
rslt[parametersKey].append(lane_rslt[lane][parametersKey])
return rslt # byte lanes combined
if quiet < 3:
print ("init_parameters(): scale_w=%f"%(scale_w))
self.clk_period=clk_period
hist_estimated=self.estimate_from_histograms(lane, # byte lane
hist_estimated=self.dqi_dqsi_estimate_from_histograms(lane, # byte lane
bin_size,
clk_period,
dly_step_ds,
......@@ -997,6 +1086,7 @@ class X393LMA(object):
rslt_names=("early","nominal","late")
for i, d in enumerate(DQvDQS):
rslt[rslt_names[i]] = d
rslt['parameters']=parameters
return rslt
# return DQvDQS
# Returns 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
......@@ -1386,22 +1476,14 @@ class X393LMA(object):
w_vector = ywp['w']
except:
w_vector = np.full((len(fxj['fx']),),1.0)
# print("w_vector=",w_vector)
# print("fxj['jacob']=",fxj['jacob'])
# JT=np.transpose(fxj['jacob'])
# print("JT=",JT)
wJ=fxj['jacob'] *w_vector
# JT=np.transpose(wJ) # fxj['jacob'])
JT=np.transpose(fxj['jacob'])
# print("wJ=",wJ)
#np.fill_diagonal(z3,np.diag(z3)*0.1)
jByJT=np.dot(wJ,JT)
# print("jByJT=",jByJT)
for i,_ in enumerate(jByJT):
jByJT[i,i] += lmbda*jByJT[i,i]
jByDiff= -np.dot(wJ,fxj['fx'])
delta=np.linalg.solve(jByJT,jByDiff)
# print("*****delta=",delta)
return delta
"""
......@@ -1415,6 +1497,216 @@ class X393LMA(object):
s=if-ir+of-or
d=ir-if+of-or
"""
def lma_fit_dqsi_phase(self,
lane, # byte lane
bin_size_ps,
clk_period,
# phase_step, # ~22ps
# dly_step_ds,
# primary_set,
dqsi_dqi_parameters,
data_set,
compare_prim_steps,
scale_w,
numPhaseSteps,
quiet=1):
def show_input_data(filtered):
print(('unfiltered','filtered')[filtered])
for phase,d in enumerate(data_set):
print ("%d"%(phase),end=" ")
if not d is None:
for lane,dl in enumerate(d):
if (not dl is None) and (not dl[0] is None) and ((not filtered) or (not dl[1] is None)):
dly = dl[0]
if dl[1] is None:
dly+=halfStep
# print ("%f %f"%(dly, dly-phase*phase_step/dbg_tSDQS[lane]), end=" ")
# print ("%f %f"%(dly*dbg_tSDQS[lane]/phase_step, dly*dbg_tSDQS[lane]/phase_step-phase), end=" ")
print ("%f %f"%(dly*dbg_tSDQS[lane], dly*dbg_tSDQS[lane]-phase*phase_step), end=" ")
else:
print ("? ?", end=" ")
print()
def get_shift_by_hist(span=5):
for phase,d in enumerate(data_set):
if not d is None:
dl=d[lane]
if (not dl is None) and (not dl[0] is None):
dly = dl[0]
if dl[1] is None:
dly+=halfStep
diff_ps=dly*tSDQS-phase*phase_step
binArr[int((diff_ps-minVal)/bin_size_ps)]+=1
if quiet < 3:
for i,h in enumerate(binArr):
print ("%d %d"%(i,h))
indx=0
for i,h in enumerate(binArr):
if h > binArr[indx]:
indx=i
low = max(0,indx-span)
high = min(len(binArr)-1,indx+span)
S0=0
SX=0.0
for i in range (low, high+1):
S0+=binArr[i]
SX+=binArr[i]*i
if S0>0:
SX/=S0
print ("SX=",SX)
return minVal+bin_size_ps*(SX+0.5) # ps
if not isinstance(lane,(int, long)): # ignore content, process both lanes
rslt_names=("dqsi_optimal_ps","dqsi_phase")
rslt= {}
for name in rslt_names:
rslt[name] = []
for lane in range(2):
rslt_lane=self.lma_fit_dqsi_phase(lane, # byte lane
bin_size_ps,
clk_period,
dqsi_dqi_parameters,
data_set,
compare_prim_steps,
scale_w,
numPhaseSteps,
quiet=1)
for name in rslt_names:
rslt[name].append(rslt_lane[name])
if quiet<3:
print ('dqsi_optimal_ps=%s'%(str(rslt['dqsi_optimal_ps'])))
print ('dqsi_phase=[')
for lane in rslt['dqsi_phase']:
print(" [",end=" ")
for i,d in enumerate(lane):
last= i == (len(lane)-1)
print("%s"%(str(d)), end=" ")
if not last:
print(",",end=" ")
if ((i+1) % 16) ==0:
print("\n ",end="")
else:
print('],')
print(']')
# print(rslt)
return rslt
phase_step= clk_period/ numPhaseSteps
tSDQS=dqsi_dqi_parameters[lane]['tSDQS'] # ~16.081739769147354
dbg_tSDQS=(dqsi_dqi_parameters[0]['tSDQS'],dqsi_dqi_parameters[1]['tSDQS'])
halfStep=0.5*(1,compare_prim_steps)[compare_prim_steps]
#phase_step/tSDQS
print (phase_step,dbg_tSDQS)
if quiet < 2:
for filtered in range(2):
show_input_data(filtered)
# all preliminary teset above
maxVal= DLY_STEPS*tSDQS
minVal= -clk_period
num_bins=int((maxVal-minVal)/bin_size_ps)+1
binArr=[0]*num_bins
print("minVal=",minVal)
print("maxVal=",maxVal)
print("num_bins=",num_bins)
#find main max
dly_max0=get_shift_by_hist() # delay in ps, corresponding to largest maximum
print("max0=%f, (%f)"%(dly_max0,dly_max0/tSDQS))
periods=[None]*len(data_set)
for phase,d in enumerate(data_set):
if not d is None:
dl=d[lane]
if (not dl is None) and (not dl[0] is None):
dly = dl[0]
if dl[1] is None:
dly+=halfStep
periods[phase]=int(round((dly*tSDQS-phase*phase_step)/clk_period))
w=[0.0]*len(data_set)
if quiet < 2:
for i,p in enumerate(periods):
print ("%d %s"%(i,str(p)))
tFDQS=dqsi_dqi_parameters[lane]['tFDQS'] # [-21.824409224001187, -10.830180678770162, 1.5698858542328959, 11.267851084349177]
tFDQS.append(-tFDQS[0]-tFDQS[1]-tFDQS[2]-tFDQS[3])
SY=0.0
S0=0.0
for phase,d in enumerate(data_set):
if not d is None:
dl=d[lane]
if (not dl is None) and (not dl[0] is None):
dly = dl[0]
w[i]=1.0
if dl[1] is None:
dly+=halfStep
w[i]=scale_w
d=dly*tSDQS-periods[phase]*clk_period-tFDQS[dl[0] % FINE_STEPS]
y=d-phase*phase_step
S0+=w[i]
SY+=w[i]*y
if S0 > 0.0:
SY /= S0
print ("shift=",SY," ps")
if quiet < 2:
for phase,d in enumerate(data_set):
print ("%d"%(phase),end=" ")
if not d is None:
dl=d[lane]
if (not dl is None) and (not dl[0] is None):
dly = dl[0]
if dl[1] is None:
dly+=halfStep
d=dly*tSDQS-periods[phase]*clk_period-tFDQS[dl[0] % FINE_STEPS]
print ("%f %f"%(d, w[i]), end=" ")
if not dl[1] is None:
print(d,end=" ")
else:
print("?",end=" ")
else:
print ("? ?", end=" ")
print("%f"%(SY+phase*phase_step),end=" ")
print()
# Now shift SY by clk_period/2.0, for each phase find the closest DQSI match (None if does not exist)
dqsi_range=tSDQS*DLY_STEPS# full range of the DQSI delay for this lane
# dqsi_middle_in_ps = SY-clk_period*round(SY/clk_period)-0.5
# dqsi_middle_in_ps = (SY-clk_period/2)-clk_period*round((SY-clk_period/2)/clk_period)
# dqsi_middle_in_ps = (SY-clk_period/2)-clk_period*round(SY/clk_period -0.5)
dqsi_middle_in_ps = SY-clk_period*(round(SY/clk_period -0.5)+0.5)
dqsi_phase=[None]*numPhaseSteps
for phase in range(numPhaseSteps):
dly_ps=phase_step*phase+dqsi_middle_in_ps
dly_ps-=clk_period*round(dly_ps/clk_period - 0.5) # positive, <clk_period
#Using lowest delay branch if multiple are possible
if dly_ps > dqsi_range:
continue # no valid dqs_idelay for this phase
idly = int (round(dly_ps/tSDQS))
low= max(0,idly-FINE_STEPS)
high=min(DLY_STEPS-1,idly+FINE_STEPS)
idly=low
for i in range(low,high+1):
if abs(i*tSDQS-tFDQS[i % FINE_STEPS]-dly_ps) < abs(idly*tSDQS-tFDQS[idly % FINE_STEPS]-dly_ps):
idly=i
dqsi_phase[phase]=idly
if quiet < 3:
for phase,d in enumerate(data_set):
print ("%d"%(phase),end=" ")
if (not d is None) and (not d[lane] is None) and (not d[lane][0] is None):
dly = d[lane][0]
if d[lane][1] is None:
dly+=halfStep
print ("%f"%(dly), end=" ")
else:
print ("?", end=" ")
if not dqsi_phase[phase] is None:
print("%f"%(dqsi_phase[phase]),end=" ")
else:
print ("?", end=" ")
print()
return {"dqsi_optimal_ps":dqsi_middle_in_ps,
"dqsi_phase":dqsi_phase}
......
......@@ -51,6 +51,7 @@ import x393_lma
#import vrlg
NUM_FINE_STEPS= 5
NUM_DLY_STEPS =NUM_FINE_STEPS * 32 # =160
class X393McntrlAdjust(object):
DRY_MODE= True # True
......@@ -208,7 +209,28 @@ class X393McntrlAdjust(object):
mem16.append(((w32[i]>>24) & 0xff) | (((w32[i+1] >> 24) & 0xff) << 8))
return mem16
def set_phase_with_refresh(self, # check result for not None
phase,
quiet=2):
"""
Set specified phase and matching cmda_odelay while temporarily turning off refresh
@phase phase to set, signed short
@quiet reduce output
@return cmda_odelay linear value or None if there is no valid cmda output delay for this phase
"""
if not "cmda_bspe" in self.adjustment_state:
raise Exception ("No cmda_odelay data is available. 'adjust_cmda_odelay 0 1 0.1 3' command should run first.")
dly_steps=self.x393_mcntrl_timing.get_dly_steps()
numPhaseSteps= int(dly_steps['SDCLK_PERIOD']/dly_steps['PHASE_STEP']+0.5)
cmda_odly_data=self.adjustment_state['cmda_bspe'][phase % numPhaseSteps]
if (not cmda_odly_data): # phase is invalid for CMDA
return None
cmda_odly_lin=cmda_odly_data['ldly']
self.x393_axi_tasks.enable_refresh(0)
self.x393_mcntrl_timing.axi_set_phase(phase,quiet=quiet)
self.x393_mcntrl_timing.axi_set_cmda_odelay(self.combine_delay(cmda_odly_lin),quiet=quiet)
self.x393_axi_tasks.enable_refresh(1)
return cmda_odly_lin
def scan_dqs(self,
low_delay,
......@@ -1026,7 +1048,7 @@ class X393McntrlAdjust(object):
if start_phase >=128:
start_phase -= 256 # -128..+127
recover_cmda_dly_step=0x20 # subtract/add from cmda_odelay (hardware!!!) and retry (same as 20 decimal)
max_lin_dly=159
max_lin_dly=NUM_DLY_STEPS-1
wlev_address_bit=7
wlev_max_bad=0.01 # <= OK, > bad
def phase_step(phase,cmda_dly):
......@@ -1318,6 +1340,11 @@ class X393McntrlAdjust(object):
print()
#TODO: Add 180 shift to get center, not marginal cmda_odelay
self.adjustment_state.update(rdict)
if (quiet <3):
print ("rdict={")
for k,v in rdict.items():
print("'%s':%s,"%(k,str(v)))
print ("}")
return rdict
def adjust_write_levelling(self,
......@@ -1331,12 +1358,14 @@ class X393McntrlAdjust(object):
Find DQS output delay for each phase value
Depends on adjust_cmda_odelay results
"""
if not self.adjustment_state['cmda_bspe']:
try:
self.adjustment_state['cmda_bspe']
except:
raise Exception("Command/Address delay calibration data is not found - please run 'adjust_cmda_odelay' command first")
start_phase &= 0xff
if start_phase >=128:
start_phase -= 256 # -128..+127
max_lin_dly=159
max_lin_dly=NUM_DLY_STEPS-1
wlev_max_bad=0.01 # <= OK, > bad
numPhaseSteps=len(self.adjustment_state['cmda_bspe'])
if quiet < 2:
......@@ -1650,11 +1679,16 @@ class X393McntrlAdjust(object):
else:
print("X X X",end=" ")
print()
self.adjustment_state.update(rdict)
# print (self.adjustment_state)
if (quiet <3):
print ("rdict={")
for k,v in rdict.items():
print("'%s':%s,"%(k,str(v)))
print ("}")
return rdict
def adjust_pattern(self,
def measure_pattern(self,
compare_prim_steps=True, # while scanning, compare this delay with 1 less by primary(not fine) step,
# save None for fraction in unknown (previous -0.5, next +0.5)
limit_step=0.125, # initial delay step as a fraction of the period
......@@ -1668,11 +1702,11 @@ class X393McntrlAdjust(object):
(late 0->1, early 1->0) for each of the DQ and DQS
"""
nrep=8
max_lin_dly=159
max_lin_dly=NUM_DLY_STEPS-1#159
timing=self.x393_mcntrl_timing.get_dly_steps()
#steps={'DLY_FINE_STEP': 0.01, 'DLY_STEP': 0.078125, 'PHASE_STEP': 0.022321428571428572, 'SDCLK_PERIOD': 2.5}
dly_step=int(5*limit_step*timing['SDCLK_PERIOD']/timing['DLY_STEP']+0.5)
step180= int(5*0.5* timing['SDCLK_PERIOD'] / timing['DLY_STEP'] +0.5)
dly_step=int(NUM_FINE_STEPS*limit_step*timing['SDCLK_PERIOD']/timing['DLY_STEP']+0.5)
step180= int(NUM_FINE_STEPS*0.5* timing['SDCLK_PERIOD'] / timing['DLY_STEP'] +0.5)
if quiet<2:
print ("timing)=%s, dly_step=%d step180=%d"%(str(timing),dly_step,step180))
self.x393_pio_sequences.set_read_pattern(nrep+3) # set sequence once
......@@ -1879,16 +1913,6 @@ class X393McntrlAdjust(object):
diffs_prev_this=(patt_prev[b]-0.5,patt[b]-0.5)
else:
diffs_prev_this=(0.5-patt_prev[b],0.5-patt[b])
"""
if abs(patt_prev[b]-0.5) < abs(patt[b]-0.5): # store previos sample
best_dly[inPhase][b]=dly_prev # dly-1
best_diff[inPhase][b]=patt_prev[b]-0.5
else:
best_dly[inPhase][b]=dly
best_diff[inPhase][b]=patt[b]-0.5
if not positiveJump:
best_diff[inPhase][b] *= -1 # invert sign, so sign always means <0 - delay too low, >0 - too high
"""
if abs(diffs_prev_this[0]) <= abs(diffs_prev_this[1]): # store previos sample
if (best_diff[inPhase][b] is None) or (abs (diffs_prev_this[0])<abs(best_diff[inPhase][b])):
best_dly[inPhase][b]=dly_prev # dly-1
......@@ -2025,39 +2049,349 @@ class X393McntrlAdjust(object):
for d in meas_data:
print("%s,"%(str(d)))
print("]")
rdict={"patt_prim_steps": compare_prim_steps,
"patt_meas_data": meas_data} # TODO: May delete after LMA fitting
self.adjustment_state.update(rdict)
def measure_dqs_idly_phase(self,
compare_prim_steps = True, # while scanning, compare this delay with 1 less by primary(not fine) step,
# save None for fraction in unknown (previous -0.5, next +0.5)
frac_step=0.125,
sel=1,
quiet=1):
"""
Scan phase and find DQS input delay value to find when
the result changes (it is caused by crossing clock boundarty from extrenal memory device derived
to system-synchronous one
cmda_odelay should be already calibrated, refresh will be turned on.
Uses random/previously written pattern in one memory block (should have some varying data
"""
"""
TODO: write block of data: 0xffff, 0xffff, 0x0000, 0x0000, 0xffff, 0xffff, ...(dqs_odelay set by wlev)
All bits will alternate, even if the DQ_ODELAY vs DQS_ODELAY will be wrong
"""
try:
dqi_dqsi=self.adjustment_state['dqi_dqsi']
except:
print ("No DQ IDELAY vs. DQS IDELAY data available, exiting")
return
# Mark DQS idelay values that have all DQ delays valid
dqsi_valid={} #[None]*NUM_DLY_STEPS
for k,v in dqi_dqsi.items():
if v:
dqsi_valid[k]=[False]*NUM_DLY_STEPS
for dly in range(NUM_DLY_STEPS):
if v[dly]:
for d in v[dly]:
if d is None:
break
else: # All values are not None
dqsi_valid[k][dly]=True
if not dqsi_valid:
print ("No Valid DQ IDELAY vs. DQS IDELAY data is available, exiting")
return
if quiet <1:
print ('dqi_dqsi=%s'%(str(dqi_dqsi)))
print("\n\n")
if quiet <2:
print ('dqsi_valid=%s'%(str(dqsi_valid)))
dqsi_lohi={}
for k,vdly in dqsi_valid.items():
if quiet <2:
print ("k='%s', vdly=%s"%(k,str(vdly)))
for i,v in enumerate(vdly):
if v:
low=i
break
else:
print ("Could not find valid data in dqsi_valid[%s]=%s"%(k,str(vdly)))
continue
for i in range(low+1,NUM_DLY_STEPS):
if not vdly[i]:
high=i
break
else:
high= NUM_DLY_STEPS-1
dqsi_lohi[k]=(low,high)
if quiet <2:
print ('dqsi_valid=%s'%(str(dqsi_valid)))
if quiet <3:
print ('dqsi_lohi=%s'%(str(dqsi_lohi)))
brc=(5, # 3'h5, # bank
0x1234, # 15'h1234, # row address
0x100) # 10'h100 # column address
nrep=8 # number of 8-bursts to compare (actual will have 3 more, first/last will be discarded
timing=self.x393_mcntrl_timing.get_dly_steps()
#steps={'DLY_FINE_STEP': 0.01, 'DLY_STEP': 0.078125, 'PHASE_STEP': 0.022321428571428572, 'SDCLK_PERIOD': 2.5}
dly_step=int(NUM_FINE_STEPS*frac_step*timing['SDCLK_PERIOD']/timing['DLY_STEP']+0.5)
numPhaseSteps= int(timing['SDCLK_PERIOD']/timing['PHASE_STEP']+0.5)
step180= int(NUM_FINE_STEPS*0.5* timing['SDCLK_PERIOD'] / timing['DLY_STEP'] +0.5)
if quiet<2:
print ("timing)=%s, dly_step=%d step180=%d"%(str(timing),dly_step,step180))
self.x393_pio_sequences.set_read_block(*(brc+(nrep+3,sel))) # set sequence once
# def read_blk(): #return array of 16-bit words to compare for bit diffs
# pass
def dqsi_phase_step (phase):
dqsi_cache=[None]*NUM_DLY_STEPS # cache for holding already measured delays. None - not measured, 0 - no data, [[]..[]]
def measure_dqsi(dqs_idly,branch,force_meas=False):
if not dqsi_valid[branch]:
return None
if (dqs_idly > len(dqsi_cache)) or (dqs_idly <0 ):
print ("dqs_idly=%d, dqsi_cache=%s"%(dqs_idly,str(dqsi_cache)))
try:
dqsi_cache[dqs_idly]
except:
print ("dqs_idly=%d, dqsi_cache=%s"%(dqs_idly,str(dqsi_cache)))
if (dqsi_cache[dqs_idly] is None) or force_meas:
self.x393_mcntrl_timing.axi_set_dqs_idelay(self.combine_delay(dqs_idly),quiet=quiet)
self.x393_mcntrl_timing.axi_set_dq_idelay(self.combine_delay(dqi_dqsi[branch][dqs_idly]),quiet=quiet)
buf=self.x393_pio_sequences.read_block(4 * (nrep+1) +2,
(0,1)[quiet<1], #show_rslt,
1) # wait_complete=1)
buf= buf[4:(nrep*4)+4] # discard first 4*32-bit words and the "tail" after nrep*4 words32
patt=self.convert_w32_to_mem16(buf)# will be nrep*8 items
dqsi_cache[dqs_idly]=patt
if quiet < 1:
print ('measure_phase(%d,%s) - new measurement'%(phase,str(force_meas)))
else:
patt=dqsi_cache[dqs_idly]
if quiet < 1:
print ('measure_patt(%d,%s) - using cache'%(phase,str(force_meas)))
return patt
def get_bit_diffs(dqs_idly0,dqs_idly1,branch):
patt0=measure_dqsi(dqs_idly0,branch)
patt1=measure_dqsi(dqs_idly1,branch)
if (patt0 is None) or (patt1 is None):
raise Exception("Tried to compare invalid(s): dqs_idly0=%d, dqs_idly1=%d, branch=%s"%(dqs_idly0, dqs_idly1, branch))
rslt=[0]*16
for i in range (nrep*8): # with 8 nursts - 64 x16-bit words
diffs=patt0[i] ^ patt1[i]
for b in range(len(rslt)):
rslt[b]+= (diffs >> b) & 1
return rslt
def get_lane_diffs(dqs_idly0,dqs_idly1,branch):
diffs= get_bit_diffs(dqs_idly0,dqs_idly1,branch)
# lane_diffs=[0]*(len(diffs)//8)
lane_diffs=[]
for lane in range(len(diffs)//8):
num_diffs=0
for b in range(8):
num_diffs += (0,1)[diffs[8*lane+b] != 0]
lane_diffs.append(num_diffs)
if quiet <3:
print ("%d ? %d : %s"%(dqs_idly0,dqs_idly1,lane_diffs))
return lane_diffs
def get_lane_adiffs(dqs_idly0,dqs_idly1,branch): # Assuming all 8 bits differ in the read data - check it in a single block? Write pattern?
diffs=get_lane_diffs(dqs_idly0,dqs_idly1,branch)
return ((diffs[0]-4)/4.0,(diffs[1]-4)/4.0)
# Set phase
phase_ok=self.set_phase_with_refresh( # check result for not None
phase,
quiet)
if not phase_ok:
return None # no vlaid CMDA ODELAY exists for this phase
# try branches (will exit on first match)
for branch in dqsi_lohi.keys():
low=dqsi_lohi[branch][0]
high=dqsi_lohi[branch][1]
# start with low dqs idelay and increase it by 1 primary step until getting 2 results with no bit differences
# (using both byte lanes now)
for idly1 in range(low+NUM_FINE_STEPS,high,NUM_FINE_STEPS):
diffs=get_lane_diffs(idly1-NUM_FINE_STEPS,idly1,branch)
if diffs == [0,0]: # no bit diffs in both byte lanes
low=idly1
break
else: #failed to find two delays to get the same read results (no bit differences in both lanes)
continue
# got both byte lanes with no difference, now try to find dqs_idelay delay where both bytes differ
for idly in range(low,high,dly_step):
idly1=min(idly+dly_step,high)
diffs=get_lane_diffs(low,idly1,branch)
if (diffs[0] != 0) and (diffs[1] != 0):
high=idly1
break
elif (diffs[0] == 0) and (diffs[1] == 0):
low=idly1 # move low higher
else: #failed to find another delay to get different read results (both myte lanes have bit differences
continue
if quiet <3:
print ("0: low=%d, high=%d"%(low,high))
low_safe=low # safe low
# now find marginal dqs idelay for each byte lane by dividing (low,high) interval
#reduce low,high range for combined lanes
dly = high
while low < dly: # first adjust low
dly_next = (low+dly) // 2
diffs=get_lane_diffs(low,dly_next,branch)
if (diffs[0] != 0) and (diffs[1] != 0):
dly = dly_next
high= dly
elif (diffs[0] == 0) and (diffs[1] == 0):
if low == dly_next:
break
low = dly_next # move low higher
else: # one byte matches, other - not (uncertain)
dly = dly_next
dly = low
while dly < high: # now adjust high
dly_next = (high+dly) // 2
diffs=get_lane_diffs(low_safe,dly_next,branch)
if (diffs[0] != 0) and (diffs[1] != 0):
high= dly_next
else:
if dly == dly_next:
break
dly = dly_next # move low higher
#low, high are now closer, now scan and store (delay,num_bits) for each lane
#May be check maximal number of bits that mismatch for each lane? Now assuming that it can be up to all 8
# low -= NUM_FINE_STEPS
# low = max(dqsi_lohi[branch][0], low - NUM_FINE_STEPS ) # try to move lower by the fine steps interval, if possible
# high = min(dqsi_lohi[branch][1], high+ NUM_FINE_STEPS ) # try to move higher by the fine steps interval, if possible
if quiet <3:
print ("1: low=%d(%d), high=%d"%(low,low_safe,high))
high = min(dqsi_lohi[branch][1], high+ NUM_FINE_STEPS ) # try to move higher by the fine steps interval, if possible
if quiet <3:
print ("2: low=%d(%d), high=%d"%(low,low_safe,high))
rslt=[]
bestDly=[None]*2 # [low_safe]*2 # otherwise may fail - check it?
bestDiffs=[None]*2
comp_step=(1,NUM_FINE_STEPS)[compare_prim_steps]
for dly in range (low, high+1):
ref_dly= dly-comp_step
if ref_dly < low_safe:
continue
if quiet <2:
print ("dly=%d, ref_dly=%d"%(dly, ref_dly),end=" ")
adiffs= get_lane_adiffs(low_safe,dly,branch)
adiffs_ref=get_lane_adiffs(low_safe,ref_dly,branch)
for lane in range(len(adiffs)):
diffs_prev_this=(adiffs_ref[lane],adiffs[lane])
if (diffs_prev_this[0] <= 0) and (diffs_prev_this[1] >= 0):
if abs(diffs_prev_this[0]) <= abs(diffs_prev_this[1]): # store previos sample
if (bestDiffs[lane] is None) or (abs (diffs_prev_this[0]) < abs(bestDiffs[lane])):
bestDly[lane]=ref_dly # dly-1/dly-NUM_FINE_STEPS
bestDiffs[lane]=diffs_prev_this[0]
else:
if (bestDiffs[lane] is None) or (abs (diffs_prev_this[1])<abs(bestDiffs[lane])):
bestDly[lane]=dly # dly-1
bestDiffs[lane]=diffs_prev_this[1]
if (adiffs[0] > 0) and (adiffs[1] > 0):
break # no need to continue, data got already
for lane in range(len(adiffs)):
if bestDiffs[lane] == -1.0:
bestDiffs[lane] = None # single step jumps from none to all
rslt.append((bestDly[lane],bestDiffs[lane],branch[0])) # adding first letter of branch name
if quiet <3:
print ("bestDly[%d]=%s, bestDiffs[%d]=%s, branch=%s"%(lane,str(bestDly[lane]),lane,str(bestDiffs[lane]),branch))
if quiet <3:
print ('dly=%d rslt=%s'%(dly,str(rslt)))
if quiet < 2:
for i,d in enumerate(dqsi_cache):
if d:
print ("%d %s %d: %s"%(phase,branch,i,str(d)))
return rslt
return None # All Early/Nominal/Late variants were exhausted, did not find critical DQS inoput delay for this phase value
# body of the measure_dqs_idly_phase()
dqsi_vs_phase=[]
for phase in range (numPhaseSteps):
if quiet <3:
print ("====== PHASE=%d ======"%(phase))
elif quiet <4:
print ("%d:"%(phase),end=" ")
sys.stdout.flush()
dqsi_vs_phase.append(dqsi_phase_step (phase))
if quiet < 4 :
print ("dqsi_vs_phase=%s"%(str(dqsi_vs_phase)))
print("Phase DQSI0 DQSI1 diff0 diff1 branch0 branch1")
for phase,v in enumerate(dqsi_vs_phase):
print("%d"%(phase), end=" ")
if v:
print ("%s %s %s %s %s %s"%(str(v[0][0]),str(v[1][0]),str(v[0][1]),str(v[1][1]), v[0][2], v[1][2]))
else:
print()
self.adjustment_state['dqsi_vs_phase']= dqsi_vs_phase
self.adjustment_state['dqsi_vs_phase_steps']=compare_prim_steps
return dqsi_vs_phase
#dly_step
# compare_prim_steps
#meas_data=[
'''
adjust_cmda_odelay 0 1 0.1 3
adjust_write_levelling 0 1 0 .1 3
adjust_pattern 0.125 0.1 1
'''
def proc_test_data(self,
lane=0,
def load_hardcoded_data(self):
"""
Debug feature - load hard-coded previously acquired/processed data
to reduce debugging time for nest stages
"""
self.adjustment_state["dqi_dqsi"]= get_test_dq_dqs_data.get_dqi_dqsi()
self.adjustment_state["dqi_dqsi_parameters"]=get_test_dq_dqs_data.get_dqi_dqsi_parameters()
self.adjustment_state.update(get_test_dq_dqs_data.get_adjust_cmda_odelay())
self.adjustment_state.update(get_test_dq_dqs_data.get_wlev_data())
self.adjustment_state.update(get_test_dq_dqs_data.get_dqsi_phase())
def proc_dqi_dqsi(self,
lane="all",
bin_size=5,
primary_set=2,
# compare_prim_steps=True, # while scanning, compare this delay with 1 less by primary(not fine) step,
# # save None for fraction in unknown (previous -0.5, next +0.5)
data_set_number=2,
scale_w=0.2, # weight for "uncertain" values (where samples chane from all 0 to all 1 in one step)
data_set_number=2, # not number - use measured data
scale_w=0.0, # weight for "uncertain" values (where samples chane from all 0 to all 1 in one step)
quiet=1):
"""
Run DQ vs DQS fitting for one data lane (0 or 1) using earlier acquired hard-coded data
@lane byte lane to process
@lane byte lane to process (or non-number - process all byte lanes of the device)
@bin_size bin size for the histograms (should be 5/10/20/40)
@primary_set which of the data edge series to use as leading (other will be trailing by 180)
@data_set_number select one of the hard-coded data sets (sets 0 and 1 use comparing with the data 1 fine step below
set #2 (default) used measurement with previous primary step measurement (will not suffer from
fine range wider than on primary step)
If not number or <0 - use measured data
@scale_w weight for "uncertain" values (where samples change from all 0 to all 1 in one step)
For sufficient data 0.0 is OK (and seems to work better)- only "analog" samples are considered
@return 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
each element being either None, or a list of 3 best DQ delay values for the DQS delay (some mey be None too)
"""
if quiet < 3:
print ("proc_test_data(): scale_w=%f"%(scale_w))
print ("proc_dqi_dqsi(): scale_w=%f"%(scale_w))
if isinstance (data_set_number,(int,long)) and (data_set_number>=0) :
if quiet < 4:
print("Using hard-coded data set #%d"%data_set_number)
compare_prim_steps=get_test_dq_dqs_data.get_compare_prim_steps(data_set_number)
meas_data=get_test_dq_dqs_data.get_data(data_set_number)
else:
if quiet < 4:
print("Using measured data set")
try:
compare_prim_steps=self.adjustment_state["patt_prim_steps"]
meas_data= self.adjustment_state["patt_meas_data"]
except:
print ("Pattern-measured data is not available, exiting")
return
meas_delays=[]
for data in meas_data:
if data:
......@@ -2074,13 +2408,80 @@ class X393McntrlAdjust(object):
if quiet<1:
x393_lma.test_data(meas_delays,compare_prim_steps,quiet)
lma=x393_lma.X393LMA()
return lma.lma_fit(lane,
rslt = lma.lma_fit_dqi_dqsi(lane,
bin_size,
2500.0, # clk_period,
1000.0*self.x393_mcntrl_timing.get_dly_steps()['SDCLK_PERIOD'], # 2500.0, # clk_period,
78.0, # dly_step_ds,
primary_set,
meas_delays,
compare_prim_steps,
scale_w,
quiet)
if quiet<5:
lma.showENLresults(rslt)
if quiet<5:
print ("dqi_dqsi={")
for k,v in rslt.items():
print ("'%s':%s,"%(k,str(v)))
print ("}")
self.adjustment_state["dqi_dqsi_parameters"]=rslt.pop('parameters')
self.adjustment_state["dqi_dqsi"]=rslt
return rslt
def proc_dqsi_phase(self,
lane=0, # "all",
bin_size_ps=50,
data_set_number=0, # not number - use measured data
scale_w=0.1, # weight for "uncertain" values (where samples chane from all 0 to all 1 in one step)
quiet=1):
"""
Run DQSI vs PHASE fitting for one data lane (0 or 1) using earlier acquired hard-coded data
@lane byte lane to process (or non-number - process all byte lanes of the device)
@bin_size_ps histogram bin size (in ps)
@data_set_number select one of the hard-coded data sets (sets 0 and 1 use comparing with the data 1 fine step below
set #0 (default) used measurement with previous primary step measurement (will not suffer from
fine range wider than on primary step)
If not number or <0 - use measured data
@scale_w weight for "uncertain" values (where samples change from all 0 to all 1 in one step)
For sufficient data 0.0 is OK (and seems to work better)- only "analog" samples are considered
@return 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
each element being either None, or a list of 3 best DQ delay values for the DQS delay (some mey be None too)
"""
if quiet < 3:
print ("proc_dqsi_phase(): scale_w=%f"%(scale_w))
if isinstance (data_set_number,(int,long)) and (data_set_number>=0) :
self.load_hardcoded_data()
if quiet < 4:
print("Using hard-coded data set #%d"%data_set_number)
compare_prim_steps= get_test_dq_dqs_data.get_dqsi_vs_phase_prim_steps(data_set_number)
dqsi_phase_data= get_test_dq_dqs_data.get_dqsi_vs_phase(data_set_number)
dqsi_dqi_parameters=get_test_dq_dqs_data.get_dqi_dqsi_parameters()
else:
if quiet < 4:
print("Using measured data set")
try:
compare_prim_steps= self.adjustment_state["dqsi_vs_phase_steps"]
dqsi_phase_data= self.adjustment_state["dqsi_vs_phase"]
dqsi_dqi_parameters= self.adjustment_state["dqi_dqsi_parameters"]
except:
print ("DQS input delay vs. phase measured data is not available, exiting")
return
timing=self.x393_mcntrl_timing.get_dly_steps()
numPhaseSteps= int(timing['SDCLK_PERIOD']/timing['PHASE_STEP']+0.5)
lma=x393_lma.X393LMA() # use persistent one?
dqsi_phase=lma.lma_fit_dqsi_phase(lane, # byte lane
bin_size_ps,
1000.0*self.x393_mcntrl_timing.get_dly_steps()['SDCLK_PERIOD'], # 2500.0, # clk_period,
# 1000.0*self.x393_mcntrl_timing.get_dly_steps()['PHASE_STEP'],# phase_step,
# dly_step_ds,
# primary_set,
dqsi_dqi_parameters,
dqsi_phase_data, # data_set,
compare_prim_steps,
scale_w,
numPhaseSteps,
quiet=1)
self.adjustment_state.update(dqsi_phase)
return dqsi_phase
......@@ -441,13 +441,17 @@ class X393PIOSequences(object):
ba, # input [ 2:0] ba;
ra, # input [14:0] ra;
ca, #input [ 9:0] ca;
num8=64,
sel=1,
verbose=0):
"""
Setup read block sequence at parameter defined address in the sequencer memory
<ba> 3-bit memory bank address
<ra> 15-bit memory row address
<ca> 10-bit memory column address
<verbose> print data being written (default: False)
@ba 3-bit memory bank address
@ra 15-bit memory row address
@ca 10-bit memory column address
@num8 - number of 8-bursts to read (maximal 64, min- 2)
@sel - 0 - early, 1 - late read command
@verbose print data being written (default: False)
"""
cmd_addr = vrlg.MCONTR_CMD_WR_ADDR + vrlg.READ_BLOCK_OFFSET
......@@ -464,34 +468,34 @@ class X393PIOSequences(object):
# first read
# read
# addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST
data=self.func_encode_cmd(ca&0x3ff, ba, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0)
data=self.func_encode_cmd(ca&0x3ff, ba, 2, 0, 0, sel, 0, 0, 0, 1, 1, 0, 0, 0)
self.x393_mem.axi_write_single_w(cmd_addr, data, verbose)
cmd_addr += 1
# nop
# skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST
data=self.func_encode_skip( 0, 0, ba, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0)
data=self.func_encode_skip( 0, 0, ba, 0, 0, sel, 0, 0, 0, 1, 1, 0, 0)
self.x393_mem.axi_write_single_w(cmd_addr, data, verbose)
cmd_addr += 1
#repeat remaining reads
for i in range(1,64):
for i in range(1,num8):
# read
# addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST
data=self.func_encode_cmd((ca & 0x3ff)+(i<<3),ba, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0)
data=self.func_encode_cmd((ca & 0x3ff)+(i<<3),ba, 2, 0, 0, sel, 0, 0, 0, 1, 1, 0, 1, 0)
self.x393_mem.axi_write_single_w(cmd_addr, data, verbose)
cmd_addr += 1
# nop - all 3 below are the same? - just repeat?
# skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST
data=self.func_encode_skip( 0, 0, ba, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
data=self.func_encode_skip( 0, 0, ba, 0, 0, sel, 0, 0, 0, 1, 0, 0, 0)
self.x393_mem.axi_write_single_w(cmd_addr, data, verbose)
cmd_addr += 1
# nop
# skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST
data=self.func_encode_skip( 0, 0, ba, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
data=self.func_encode_skip( 0, 0, ba, 0, 0, sel, 0, 0, 0, 1, 0, 0, 0)
self.x393_mem.axi_write_single_w(cmd_addr, data, verbose)
cmd_addr += 1
# nop
# skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST
data=self.func_encode_skip( 0, 0, ba, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
data=self.func_encode_skip( 0, 0, ba, 0, 0, sel, 0, 0, 0, 1, 0, 0, 0)
self.x393_mem.axi_write_single_w(cmd_addr, data, verbose)
cmd_addr += 1
# tRTP = 4*tCK is already satisfied, no skip here
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment