Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
X
x393
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
x393
Commits
d8a31b5f
Commit
d8a31b5f
authored
Dec 08, 2017
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
continue on mclt
parent
d054697e
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
346 additions
and
20 deletions
+346
-20
mclt16x16.v
dsp/mclt16x16.v
+346
-20
No files found.
dsp/mclt16x16.v
View file @
d8a31b5f
...
@@ -41,12 +41,17 @@
...
@@ -41,12 +41,17 @@
module
mclt16x16
#(
module
mclt16x16
#(
parameter
SHIFT_WIDTH
=
8
,
// bits in shift (1 bit - integer, 7 bits - fractional
parameter
SHIFT_WIDTH
=
8
,
// bits in shift (1 bit - integer, 7 bits - fractional
parameter
COORD_WIDTH
=
10
,
// bits in full coordinate 10 for 18K RAM
parameter
COORD_WIDTH
=
10
,
// bits in full coordinate 10 for 18K RAM
parameter
PIXEL_WIDTH
=
18
,
// input pixel width (unsigned)
parameter
PIXEL_WIDTH
=
16
,
// input pixel width (unsigned)
parameter
OUT_WIDTH
=
18
// bits in window value (positive)
parameter
WND_WIDTH
=
18
,
// input pixel width (unsigned)
parameter
OUT_WIDTH
=
24
,
// bits in dtt output
parameter
DTT_IN_WIDTH
=
24
,
// bits in DTT input
parameter
TRANSPOSE_WIDTH
=
24
,
// width of the transpose memory (intermediate results)
parameter
OUT_RSHIFT
=
2
,
// overall right shift of the result from input, aligned by MSB (>=3 will never cause saturation)
parameter
OUT_RSHIFT2
=
0
// overall right shift for the second (vertical) pass
)(
)(
input
clk
,
//!< system clock, posedge
input
clk
,
//!< system clock, posedge
input
rst
,
//!< sync reset
input
rst
,
//!< sync reset
input
en
,
//!< re (both re and ren - just for power)
input
start
,
//!< start convertion of the next 256 samples
input
start
,
//!< start convertion of the next 256 samples
input
[
SHIFT_WIDTH
-
1
:
0
]
x_shft
,
//!< tile pixel X fractional shift (valid @ start)
input
[
SHIFT_WIDTH
-
1
:
0
]
x_shft
,
//!< tile pixel X fractional shift (valid @ start)
input
[
SHIFT_WIDTH
-
1
:
0
]
y_shft
,
//!< tile pixel Y fractional shift (valid @ start)
input
[
SHIFT_WIDTH
-
1
:
0
]
y_shft
,
//!< tile pixel Y fractional shift (valid @ start)
...
@@ -59,14 +64,335 @@ module mclt16x16#(
...
@@ -59,14 +64,335 @@ module mclt16x16#(
output
pre_last_out
,
//!< next will be last output of DST/DST coefficients
output
pre_last_out
,
//!< next will be last output of DST/DST coefficients
output
[
7
:
0
]
out_addr
,
//!< address to save coefficients, 2 MSBs - mode (CC,SC,CS,SS), others - down first
output
[
7
:
0
]
out_addr
,
//!< address to save coefficients, 2 MSBs - mode (CC,SC,CS,SS), others - down first
output
dv
,
//!< output data valid
output
dv
,
//!< output data valid
output
[
OUT_WIDTH
-
1
:
0
]
dout
//
<frequency domain data output
output
signed
[
OUT_WIDTH
-
1
:
0
]
dout
//!
<frequency domain data output
)
;
)
;
reg
[
SHIFT_WIDTH
-
1
:
0
]
x_shft_r
;
reg
[
SHIFT_WIDTH
-
1
:
0
]
x_shft_r
;
reg
[
SHIFT_WIDTH
-
1
:
0
]
y_shft_r
;
reg
[
SHIFT_WIDTH
-
1
:
0
]
y_shft_r
;
reg
[
SHIFT_WIDTH
-
1
:
0
]
x_shft_r2
;
reg
[
SHIFT_WIDTH
-
1
:
0
]
y_shft_r2
;
reg
[
3
:
0
]
bayer_r
;
reg
[
3
:
0
]
bayer_r
;
reg
[
3
:
0
]
bayer_d
;
// same latency as mpix_a_w
reg
[
7
:
0
]
in_cntr
;
// input counter
reg
[
16
:
0
]
in_busy
;
wire
[
17
:
0
]
fold_rom_out
;
wire
[
7
:
0
]
mpix_a_w
=
fold_rom_out
[
7
:
0
]
;
wire
[
3
:
0
]
mpix_sgn_w
=
fold_rom_out
[
11
:
8
]
;
wire
[
3
:
0
]
bayer_1hot
=
{
mpix_a_w
[
4
]
&
mpix_a_w
[
0
]
,
mpix_a_w
[
4
]
&
~
mpix_a_w
[
0
]
,
~
mpix_a_w
[
4
]
&
mpix_a_w
[
0
]
,
~
mpix_a_w
[
4
]
&
~
mpix_a_w
[
0
]
};
wire
mpix_use
=
|
(
bayer_d
&
bayer_1hot
)
;
//not disabled by bayer, valid with mpix_a_w
wire
mpix_use_d
;
// delayed
reg
mpix_use_r
;
// delayed
wire
[
3
:
0
]
mpix_sgn_d
;
reg
[
3
:
0
]
mpix_sgn_r
;
wire
[
WND_WIDTH
-
1
:
0
]
window_w
;
reg
[
WND_WIDTH
-
1
:
0
]
window_r
;
reg
[
PIXEL_WIDTH
-
1
:
0
]
mpixel_d_r
;
// registered pixel data (to be absorbed by MPY)
reg
[
PIXEL_WIDTH
+
WND_WIDTH
-
1
:
0
]
pix_wnd_r
;
reg
[
DTT_IN_WIDTH
-
1
:
0
]
pix_wnd_r2
;
// pixels (positive) multiplied by window(positive), two MSBs == 2'b0 to prevent overflow
// parameter DTT_IN_WIDTH = 24
// wire [DTT_IN_WIDTH-3:0] pix_wnd = pix_wnd_r[PIXEL_WIDTH + WND_WIDTH - 1 -: DTT_IN_WIDTH-2];
reg
[
DTT_IN_WIDTH
-
1
:
0
]
data_cc_r
;
reg
[
DTT_IN_WIDTH
-
1
:
0
]
data_sc_r
;
reg
[
DTT_IN_WIDTH
-
1
:
0
]
data_cs_r
;
reg
[
DTT_IN_WIDTH
-
1
:
0
]
data_ss_r
;
// delay data to appear at different time slots from data_cc_r
wire
[
DTT_IN_WIDTH
-
1
:
0
]
data_sc_w0
;
// delayed by 1 cycle
wire
[
DTT_IN_WIDTH
-
1
:
0
]
data_cs_w1
;
// delayed by 2 cycles
wire
[
DTT_IN_WIDTH
-
1
:
0
]
data_ss_w2
;
// delayed by 3 cycles
reg
[
DTT_IN_WIDTH
-
1
:
0
]
data_dtt_in
;
// multiplexed DTT input data
reg
[
1
:
0
]
mode_mux
;
reg
[
7
:
0
]
dtt_in_cntr
;
//
reg
dtt_in_page
;
wire
[
8
:
0
]
dtt_in_wa
=
{
dtt_in_page
,
dtt_in_cntr
[
1
:
0
]
,
dtt_in_cntr
[
7
:
2
]
};
wire
dtt_we
=
in_busy
[
16
]
;
wire
var_first_d
;
// adding subtracting first variant of 4 folds
reg
var_first_r
;
// adding subtracting first variant of 4 folds
wire
var_last
;
// next cycle the data_xx_r will have data (in_busy[14], ...)
// reading/converting DTT
wire
start_dtt
=
dtt_in_cntr
==
196
;
// fune tune? ~= 3/4 of 256
reg
[
7
:
0
]
dtt_r_cntr
;
//
reg
dtt_r_page
;
reg
dtt_r_re
;
reg
dtt_r_regen
;
reg
dtt_start
;
wire
[
1
:
0
]
dtt_mode
=
{
dtt_r_cntr
[
7
]
,
dtt_r_cntr
[
6
]
};
// TODO: or reverse?
wire
[
8
:
0
]
dtt_r_ra
=
{
dtt_r_page
,
dtt_r_cntr
};
wire
[
35
:
0
]
dtt_r_data_w
;
// high bits are not used
wire
[
DTT_IN_WIDTH
-
1
:
0
]
dtt_r_data
=
dtt_r_data_w
[
DTT_IN_WIDTH
-
1
:
0
]
;
always
@
(
posedge
clk
)
begin
always
@
(
posedge
clk
)
begin
if
(
start
)
begin
x_shft_r
<=
x_shft
;
y_shft_r
<=
y_shft
;
bayer_r
<=
bayer
;
end
if
(
in_busy
[
2
])
begin
// same latency as mpix_a_w
x_shft_r2
<=
x_shft_r
;
y_shft_r2
<=
y_shft_r
;
end
if
(
in_busy
[
2
])
bayer_d
<=
bayer_r
;
if
(
rst
)
in_busy
<=
0
;
else
if
(
start
)
in_busy
<=
1
;
else
in_busy
<=
{
in_busy
[
15
:
0
]
,
in_busy
[
0
]
&
~
(
&
in_cntr
)
};
if
(
start
)
in_cntr
<=
0
;
else
if
(
in_busy
[
0
])
in_cntr
[
7
:
0
]
<=
in_cntr
[
7
:
0
]
+
1
;
if
(
in_busy
[
8
])
begin
mpixel_d_r
<=
mpixel_d
;
window_r
<=
window_w
;
end
if
(
in_busy
[
9
])
pix_wnd_r
<=
mpixel_d_r
*
window_r
;
if
(
in_busy
[
10
])
pix_wnd_r2
<=
{
2'b00
,
pix_wnd_r
[
PIXEL_WIDTH
+
WND_WIDTH
-
1
-:
DTT_IN_WIDTH
-
2
]
};
if
(
in_busy
[
10
])
begin
mpix_use_r
<=
mpix_use_d
;
var_first_r
<=
var_first_d
;
mpix_sgn_r
<=
mpix_sgn_d
;
end
end
if
(
in_busy
[
11
])
begin
data_cc_r
<=
(
var_first_r
?
{
DTT_IN_WIDTH
{
1'b0
}}
:
data_cc_r
)
+
mpix_use_r
?
(
mpix_sgn_r
[
0
]
?
(
-
pix_wnd_r2
)
:
pix_wnd_r2
)
:
{
DTT_IN_WIDTH
{
1'b0
}}
;
data_sc_r
<=
(
var_first_r
?
{
DTT_IN_WIDTH
{
1'b0
}}
:
data_sc_r
)
+
mpix_use_r
?
(
mpix_sgn_r
[
1
]
?
(
-
pix_wnd_r2
)
:
pix_wnd_r2
)
:
{
DTT_IN_WIDTH
{
1'b0
}}
;
data_cs_r
<=
(
var_first_r
?
{
DTT_IN_WIDTH
{
1'b0
}}
:
data_cs_r
)
+
mpix_use_r
?
(
mpix_sgn_r
[
2
]
?
(
-
pix_wnd_r2
)
:
pix_wnd_r2
)
:
{
DTT_IN_WIDTH
{
1'b0
}}
;
data_ss_r
<=
(
var_first_r
?
{
DTT_IN_WIDTH
{
1'b0
}}
:
data_ss_r
)
+
mpix_use_r
?
(
mpix_sgn_r
[
3
]
?
(
-
pix_wnd_r2
)
:
pix_wnd_r2
)
:
{
DTT_IN_WIDTH
{
1'b0
}}
;
end
if
(
var_last
)
mode_mux
<=
0
;
else
if
(
in_busy
[
15
])
mode_mux
<=
mode_mux
+
1
;
if
(
in_busy
[
15
])
case
(
mode_mux
)
2'b00
:
data_dtt_in
<=
data_cc_r
;
2'b01
:
data_dtt_in
<=
data_sc_w0
;
2'b10
:
data_dtt_in
<=
data_cs_w1
;
2'b11
:
data_dtt_in
<=
data_ss_w2
;
endcase
if
(
!
in_busy
[
16
])
dtt_in_cntr
<=
0
;
else
dtt_in_cntr
<=
dtt_in_cntr
+
1
;
if
(
rst
)
dtt_in_page
<=
0
;
else
if
(
&
dtt_in_cntr
)
dtt_in_page
<=
dtt_in_page
+
1
;
// reading memory and running DTT
if
(
start_dtt
)
dtt_r_page
<=
dtt_in_page
;
if
(
rst
)
dtt_r_re
<=
1'b0
;
else
if
(
start_dtt
)
dtt_r_re
<=
1'b1
;
else
if
(
&
dtt_r_cntr
)
dtt_r_re
<=
1'b0
;
dtt_r_regen
<=
dtt_r_re
;
if
(
!
dtt_r_re
)
dtt_r_cntr
<=
0
;
else
dtt_r_cntr
<=
dtt_r_cntr
+
1
;
dtt_start
<=
dtt_r_cntr
[
5
:
0
]
==
0
;
end
/*
Calculate ROM for MCLT fold indices:
A0..A1 - variant, folding to the same 8x8 sample
A2..A4 - sample column in folded 8x8 tile
A5..A7 - sample row in folded 8x8 tile
D0..D4 - pixel column in 16x16 tile
D5..D7 - pixel row in 16x16 tile
D8 - negate for mode 0 (CC)
D9 - negate for mode 1 (SC)
D10 - negate for mode 2 (CS)
D11 - negate for mode 3 (SS)
*/
// May serve 2 mclt16x16 channels when using 2 ports
ram18tp_var_w_var_r
#(
.
REGISTERS_A
(
1
)
,
.
REGISTERS_B
(
1
)
,
.
LOG2WIDTH_A
(
4
)
,
.
LOG2WIDTH_B
(
4
)
`ifdef
PRELOAD_BRAMS
`include
"mclt_fold_rom.vh"
`endif
)
i_mclt_fold_rom
(
.
clk_a
(
clk
)
,
// input
.
addr_a
(
{
2'b0
,
in_cntr
[
1
:
0
]
,
in_cntr
[
7
:
2
]
}
)
,
// input[9:0]
.
en_a
(
in_busy
[
1
])
,
// input
.
regen_a
(
in_busy
[
2
])
,
// input
.
we_a
(
1'b0
)
,
// input
.
data_out_a
(
fold_rom_out
)
,
// output[17:0]
.
data_in_a
(
18'b0
)
,
// input[17:0]
// port B may be used for other mclt16x16
.
clk_b
(
1'b0
)
,
// input
.
addr_b
(
10'b0
)
,
// input[9:0]
.
en_b
(
1'b0
)
,
// input
.
regen_b
(
1'b0
)
,
// input
.
we_b
(
1'b0
)
,
// input
.
data_out_b
()
,
// output[17:0]
.
data_in_b
(
18'b0
)
// input[17:0]
)
;
// Latency = 5
mclt_wnd_mul
#(
.
SHIFT_WIDTH
(
SHIFT_WIDTH
)
,
.
COORD_WIDTH
(
COORD_WIDTH
)
,
.
OUT_WIDTH
(
WND_WIDTH
)
)
mclt_wnd_i
(
.
clk
(
clk
)
,
// input
.
en
(
in_busy
[
3
])
,
// input
.
x_in
(
mpix_a_w
[
3
:
0
])
,
// input[3:0]
.
y_in
(
mpix_a_w
[
7
:
4
])
,
// input[3:0]
.
x_shft
(
x_shft_r2
)
,
// input[7:0]
.
y_shft
(
y_shft_r2
)
,
// input[7:0]
.
wnd_out
(
window_w
)
// output[17:0] valid with in_busy[8]
)
;
// Matching window latency with pixel data latency
dly_var
#(
.
WIDTH
(
8
)
,
.
DLY_WIDTH
(
4
)
)
dly_pixel_data_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h2
)
,
// input[3:0] Delay for external memory latency = 2, reduce for higher
.
din
(
mpix_a_w
)
,
// input[0:0]
.
dout
(
mpixel_a
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
1
)
,
.
DLY_WIDTH
(
4
)
)
dly_var_first_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h8
)
,
// input[3:0]
.
din
(
in_busy
[
0
]
&&
(
in_cntr
[
1
:
0
]
==
0
))
,
// input[0:0]
.
dout
(
var_first_d
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
1
)
,
.
DLY_WIDTH
(
4
)
)
dly_mpix_use_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h6
)
,
// input[3:0]
.
din
(
mpix_use
)
,
// input[0:0]
.
dout
(
mpix_use_d
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
4
)
,
.
DLY_WIDTH
(
4
)
)
dly_mpix_sgn_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h6
)
,
// input[3:0]
.
din
(
mpix_sgn_w
)
,
// input[0:0]
.
dout
(
mpix_sgn_d
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
DTT_IN_WIDTH
)
,
.
DLY_WIDTH
(
4
)
)
dly_data_sc_w0_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h0
)
,
// input[3:0]
.
din
(
data_sc_r
)
,
// input[0:0]
.
dout
(
data_sc_w0
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
DTT_IN_WIDTH
)
,
.
DLY_WIDTH
(
4
)
)
dly_data_cs_w1_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h1
)
,
// input[3:0]
.
din
(
data_cs_r
)
,
// input[0:0]
.
dout
(
data_cs_w1
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
DTT_IN_WIDTH
)
,
.
DLY_WIDTH
(
4
)
)
dly_data_ss_w2_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h2
)
,
// input[3:0]
.
din
(
data_ss_r
)
,
// input[0:0]
.
dout
(
data_ss_w2
)
// output[0:0]
)
;
dly_var
#(
.
WIDTH
(
1
)
,
.
DLY_WIDTH
(
4
)
)
dly_var_last_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
dly
(
4'h2
)
,
// input[3:0]
.
din
(
var_first_r
&
in_busy
[
11
])
,
// input[0:0]
.
dout
(
var_last
)
// output[0:0]
)
;
ram18p_var_w_var_r
#(
.
REGISTERS
(
1
)
,
.
LOG2WIDTH_WR
(
5
)
,
.
LOG2WIDTH_RD
(
5
)
)
ram18p_var_w_var_r_dtt_in_i
(
.
rclk
(
clk
)
,
// input
.
raddr
(
dtt_r_ra
)
,
// input[8:0]
.
ren
(
dtt_r_re
)
,
// input
.
regen
(
dtt_r_regen
)
,
// input
.
data_out
(
dtt_r_data_w
)
,
// output[35:0]
.
wclk
(
clk
)
,
// input
.
waddr
(
dtt_in_wa
)
,
// input[8:0]
.
we
(
dtt_we
)
,
// input
.
web
(
4'hf
)
,
// input[3:0]
.
data_in
(
{{
(
36
-
DTT_IN_WIDTH
)
{
1'b0
}},
data_dtt_in
}
)
// input[35:0]
)
;
dtt_iv_8x8
#(
.
INPUT_WIDTH
(
DTT_IN_WIDTH
)
,
.
OUT_WIDTH
(
OUT_WIDTH
)
,
.
OUT_RSHIFT1
(
OUT_RSHIFT
)
,
.
OUT_RSHIFT2
(
OUT_RSHIFT2
)
,
.
TRANSPOSE_WIDTH
(
TRANSPOSE_WIDTH
)
,
.
DSP_B_WIDTH
(
18
)
,
.
DSP_A_WIDTH
(
25
)
,
.
DSP_P_WIDTH
(
48
)
)
dtt_iv_8x8_i
(
.
clk
(
clk
)
,
// input
.
rst
(
rst
)
,
// input
.
start
(
dtt_start
)
,
// input
.
mode
(
dtt_mode
)
,
// input[1:0]
.
xin
(
dtt_r_data
)
,
// input[24:0] signed
.
pre_last_in
()
,
// output reg
.
pre_first_out
(
pre_first_out_2d
)
,
// output
.
dv
(
dv
)
,
// output
.
d_out
(
dout
)
,
// output[24:0] signed
.
mode_out
(
mode_out
)
,
// output[1:0] reg
.
pre_busy
(
pre_busy_2d
)
// output reg
)
;
endmodule
endmodule
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment