Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
X
x393
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
x393
Commits
ca269a20
Commit
ca269a20
authored
Oct 25, 2015
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implemented parallel 32-bit escaping of 0xff bytes
parent
3a04a2c6
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
270 additions
and
18 deletions
+270
-18
bit_stuffer_27_32.v
compressor_jp/bit_stuffer_27_32.v
+26
-18
bit_stuffer_escape.v
compressor_jp/bit_stuffer_escape.v
+244
-0
No files found.
compressor_jp/bit_stuffer_27_32.v
View file @
ca269a20
...
...
@@ -28,11 +28,11 @@ module bit_stuffer_27_32#(
input
[
DIN_LEN
-
1
:
0
]
din
,
// input data, MSB aligned
input
[
4
:
0
]
dlen
,
// input data width
input
ds
,
// input data valid
input
flush_in
,
// flush remaining data
input
flush_in
,
// flush remaining data
- should be after last ds. Also prepares for the next block
output
[
31
:
0
]
d_out
,
// outpt 32-bit data
output
reg
[
2
:
0
]
bytes_out
,
// bytes left when flush?
output
reg
[
1
:
0
]
bytes_out
,
// (0 means 4) valid with dv
output
reg
dv
,
// output data valid
output
flush_out
// delayed flush in matching the data latency
output
reg
flush_out
// delayed flush in matching the data latency
)
;
localparam
DATA1_LEN
=
DIN_LEN
+
32
-
8
;
localparam
DATA2_LEN
=
DIN_LEN
+
32
-
2
;
...
...
@@ -40,31 +40,33 @@ module bit_stuffer_27_32#(
reg
[
DATA1_LEN
-
1
:
0
]
data1
;
// first stage of the barrel shifter
reg
[
DATA2_LEN
-
1
:
0
]
data2
;
// second stage of the barrel shifter
reg
[
DATA3_LEN
-
1
:
0
]
data3
;
// second stage of the barrel shifter/ output register
// reg dv_r;
// assign dv = dv_r;
reg
[
5
:
0
]
early_length
;
// number of bits in the last word (mod 32)
reg
[
5
:
0
]
dlen1
;
// use for the stage 2, MSB - carry out
reg
[
5
:
0
]
dlen2
;
// use for the satge 3
reg
[
5
:
0
]
dlen2
;
// use for the stege 3
reg
[
31
:
0
]
dmask2_rom
;
// data mask (sync with data2) - 1 use new data, 0 - use old data. Use small ROM?
reg
[
2
:
0
]
stage
;
// enable shifter stage
wire
[
5
:
0
]
pre_bits_out_w
=
dlen2
[
4
:
0
]
+
5'h7
;
reg
[
1
:
0
]
stage
;
// delayed ds or flush
reg
[
1
:
0
]
ds_stage
;
reg
[
2
:
0
]
flush_stage
;
wire
[
4
:
0
]
pre_bits_out_w
=
dlen2
[
4
:
0
]
+
5'h7
;
assign
d_out
=
data3
[
DATA3_LEN
-
1
-:
32
]
;
always
@
(
posedge
xclk
)
begin
if
(
rst
)
bytes_out
<=
0
;
else
if
(
stage
[
1
])
bytes_out
<=
pre_bits_out_w
[
5
:
3
]
;
if
(
rst
)
stage
<=
0
;
else
stage
<=
{
stage
[
1
:
0
]
,
ds
};
else
stage
<=
{
stage
[
0
]
,
ds
|
flush_in
};
if
(
rst
)
ds_stage
<=
0
;
else
ds_stage
<=
{
ds_stage
[
0
]
,
ds
};
if
(
rst
)
flush_stage
<=
0
;
else
flush_stage
<=
{
flush_stage
[
1
:
0
]
,
ds
};
if
(
rst
)
early_length
<=
0
;
else
if
(
ds
)
early_length
<=
early_length
[
4
:
0
]
+
dlen
;
// early_length[5] is not used in calculations, it is just carry out
if
(
rst
||
flush_in
)
early_length
<=
0
;
else
if
(
ds
)
early_length
<=
early_length
[
4
:
0
]
+
dlen
;
// early_length[5] is not used in calculations, it is just carry out
if
(
rst
)
dlen1
<=
0
;
else
if
(
ds
)
dlen1
<=
early_length
;
// previous value
...
...
@@ -72,6 +74,7 @@ module bit_stuffer_27_32#(
if
(
rst
)
dlen2
<=
0
;
else
if
(
stage
[
0
])
dlen2
<=
dlen1
;
// previous value (position)
// barrel shifter stage 1 (0/8/16/24)
if
(
ds
)
case
(
early_length
[
4
:
3
])
2'h0
:
data1
<=
{
din
,
24'b0
};
...
...
@@ -122,13 +125,18 @@ module bit_stuffer_27_32#(
5'h1f
:
dmask2_rom
<=
32'h80000000
;
endcase
// barrel shifter stage 3 (0/1), combined with output/hold register
if
(
stage
[
1
])
begin
if
(
ds_
stage
[
1
])
begin
data3
[
DATA3_LEN
-
1
-:
32
]
<=
(
~
dmask2_rom
&
(
dlen2
[
5
]
?
{
data3
[
DATA3_LEN
-
1
-
32
:
0
]
,
6'b0
}:
data3
[
DATA3_LEN
-
1
-:
32
]))
|
(
dmask2_rom
&
(
dlen2
[
0
]
?
{
1'b0
,
data2
[
DATA2_LEN
-
1
-:
31
]
}
:
data2
[
DATA2_LEN
-
1
-:
32
]))
;
data3
[
DATA3_LEN
-
1
-
32
:
0
]
<=
dlen2
[
0
]
?
data2
[
DATA2_LEN
-
31
-
1
:
0
]
:
{
data2
[
DATA2_LEN
-
32
-
1
:
0
]
,
1'b0
};
end
dv
<=
stage
[
1
]
&&
dlen2
[
5
]
;
dv
<=
(
ds_stage
[
1
]
&&
dlen2
[
5
])
||
(
flush_stage
[
1
]
&&
!
(
|
data3
[
DATA3_LEN
-
1
-:
32
]))
;
if
(
rst
||
ds_stage
[
1
])
bytes_out
<=
0
;
// if the dv was caused by 32 bits full - output 4 bytes
else
if
(
flush_stage
[
1
])
bytes_out
<=
pre_bits_out_w
[
4
:
3
]
;
flush_out
<=
flush_stage
[
2
]
;
end
...
...
compressor_jp/bit_stuffer_escape.v
0 → 100644
View file @
ca269a20
/*******************************************************************************
* Module: bit_stuffer_escape
* Date:2015-10-24
* Author: andrey
* Description: Escapes each 0xff with 0x00, 32-bit input and output
*
* Copyright (c) 2015 Elphel, Inc .
* bit_stuffer_escape.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* bit_stuffer_escape.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/> .
*******************************************************************************/
`timescale
1
ns
/
1
ps
module
bit_stuffer_escape
(
input
xclk
,
// pixel clock, sync to incoming data
input
rst
,
// @xclk
// data from external FIFO (35x16 should be OK)
input
[
31
:
0
]
din
,
// input data, MSB aligned
input
[
1
:
0
]
bytes_in
,
// number of bytes, valid @ ds (0 means 4)
input
flush_in
,
// end of input data (ignore din/bytes_in)
input
in_stb
,
// input data/bytes_in/flush_in strobe
output
reg
[
31
:
0
]
d_out
,
// output 32-bit data
output
reg
[
1
:
0
]
bytes_out
,
// valid @dv(only), 0 means 4 bytes
output
reg
dv
,
// output data valid
output
reg
flush_out
// delayed flush in matching the data latency
)
;
wire
[
3
:
0
]
in_ff
=
{&
din
[
31
:
24
]
,&
din
[
23
:
16
]
,&
din
[
15
:
8
]
,&
din
[
7
:
0
]
};
wire
[
3
:
0
]
fifo_nempty
;
wire
[
3
:
0
]
fifo_ff
;
wire
[
3
:
0
]
fifo_re
;
wire
[
31
:
0
]
fifo_pre_out
;
// mask output for flushing
wire
[
31
:
0
]
fifo_out
=
fifo_pre_out
&
{{
8
{
fifo_nempty
[
3
]
}},{
8
{
fifo_nempty
[
2
]
}},{
8
{
fifo_nempty
[
1
]
}},{
8
{
fifo_nempty
[
0
]
}}};
reg
[
2
:
0
]
flush_pend
;
reg
[
3
:
0
]
bytes_in_mask_w
;
always
@*
case
(
bytes_in
)
2'h0
:
bytes_in_mask_w
<=
4'b1111
;
2'h1
:
bytes_in_mask_w
<=
4'b1000
;
2'h2
:
bytes_in_mask_w
<=
4'b1100
;
2'h3
:
bytes_in_mask_w
<=
4'b1110
;
endcase
generate
genvar
i
;
for
(
i
=
0
;
i
<
4
;
i
=
i
+
1
)
begin
:
byte_fifo_block
fifo_same_clock
#(
.
DATA_WIDTH
(
9
)
,
.
DATA_DEPTH
(
4
)
)
fifo_same_clock_i
(
.
rst
(
1'b0
)
,
// input
.
clk
(
xclk
)
,
// input
.
sync_rst
(
rst
)
,
// input
.
we
(
in_stb
&&
bytes_in_mask_w
[
i
])
,
// input
.
re
(
fifo_re
[
i
])
,
// input
.
data_in
(
{
in_ff
[
i
]
,
din
[
8
*
i
+:
8
]
}
)
,
// input[15:0]
.
data_out
(
{
fifo_ff
[
i
]
,
fifo_pre_out
[
8
*
i
+:
8
]
}
)
,
// output[15:0]
.
nempty
(
fifo_nempty
[
i
])
,
// output
.
half_full
()
// output reg
)
;
end
endgenerate
reg
cry_ff
;
// 0xff was the last byte in the previous word
reg
[
1
:
0
]
fifo_byte_pntr
;
// byte pointer in fifo output, starting from MSB (0)
wire
[
3
:
0
]
fifo_ff_barrel_w
=
fifo_byte_pntr
[
1
]
?
(
fifo_byte_pntr
[
0
]
?{
fifo_ff
[
0
]
,
fifo_ff
[
3
:
1
]
}:{
fifo_ff
[
1
:
0
]
,
fifo_ff
[
3
:
2
]
}
)
:
(
fifo_byte_pntr
[
0
]
?{
fifo_ff
[
2
:
0
]
,
fifo_ff
[
3
]
}:
fifo_ff
[
3
:
0
])
;
wire
[
3
:
0
]
fifo_nempty_barrel_w
=
fifo_byte_pntr
[
1
]
?
(
fifo_byte_pntr
[
0
]
?{
fifo_nempty
[
0
]
,
fifo_nempty
[
3
:
1
]
}:{
fifo_nempty
[
1
:
0
]
,
fifo_nempty
[
3
:
2
]
}
)
:
(
fifo_byte_pntr
[
0
]
?{
fifo_nempty
[
2
:
0
]
,
fifo_nempty
[
3
]
}:
fifo_nempty
[
3
:
0
])
;
wire
[
31
:
0
]
fifo_out_barrel_w
=
fifo_byte_pntr
[
1
]
?
(
fifo_byte_pntr
[
0
]
?{
fifo_out
[
7
:
0
]
,
fifo_out
[
31
:
8
]
}:{
fifo_out
[
15
:
0
]
,
fifo_out
[
31
:
16
]
}
)
:
(
fifo_byte_pntr
[
0
]
?{
fifo_out
[
23
:
0
]
,
fifo_out
[
31
:
24
]
}:
fifo_out
[
31
:
0
])
;
// folowing registers are combinatorial signals
reg
sel3_w
;
// select source for byte3 (MSB) from the barrel-shifted:0, it's own, 1 - zero (escape)
reg
[
1
:
0
]
sel2_w
;
// select source for byte2 from the barrel-shifted: 0, it's own, 1 - next higher byte, 3 - zero (escape)
reg
[
1
:
0
]
sel1_w
;
// select source for byte1 from the barrel-shifted: 0, it's own, 1 - next higher byte, 3 - zero (escape)
reg
[
1
:
0
]
sel0_w
;
// select source for byte0 (LSB) from the barrel-shifted: 0, it's own, 1 - next higher byte, 2 - two bytes higher,
// 3 - zero (escape)
reg
cry_ff_w
;
// next value for cry_ff
reg
[
3
:
0
]
bytes_rdy_w
;
// data is available to generate an output word
wire
rdy_w
=
&
bytes_rdy_w
;
reg
[
1
:
0
]
num_zeros_w
;
// number of escape zeros in the output word
reg
[
3
:
0
]
fifo_re_mask_w
;
// which fifo to read, bitmask (to be AND-ed with &bytes_rdy_w[3:0]}
always
@*
casex
(
{
cry_ff
,
fifo_ff_barrel_w
}
)
5'b0xxxx
:
sel3_w
<=
0
;
default:
sel3_w
<=
1
;
endcase
always
@*
casex
(
{
cry_ff
,
fifo_ff_barrel_w
}
)
5'b00xxx
:
sel2_w
<=
0
;
5'b1xxxx
:
sel2_w
<=
1
;
default:
sel2_w
<=
3
;
endcase
always
@*
casex
(
{
cry_ff
,
fifo_ff_barrel_w
}
)
5'b000xx
:
sel1_w
<=
0
;
5'b01xxx
:
sel1_w
<=
1
;
5'b10xxx
:
sel1_w
<=
1
;
default:
sel1_w
<=
3
;
endcase
always
@*
casex
(
{
cry_ff
,
fifo_ff_barrel_w
}
)
5'b0000x
:
sel0_w
<=
0
;
5'b001xx
:
sel0_w
<=
1
;
5'b010xx
:
sel0_w
<=
1
;
5'b100xx
:
sel0_w
<=
1
;
5'b11xxx
:
sel0_w
<=
2
;
default:
sel0_w
<=
3
;
endcase
always
@*
casex
(
{
cry_ff
,
fifo_ff_barrel_w
}
)
5'b00001
:
cry_ff_w
<=
1
;
5'b0011x
:
cry_ff_w
<=
1
;
5'b0101x
:
cry_ff_w
<=
1
;
5'b1001x
:
cry_ff_w
<=
1
;
5'b111xx
:
cry_ff_w
<=
1
;
default:
cry_ff_w
<=
0
;
endcase
always
@*
case
(
sel3_w
)
1'b0
:
bytes_rdy_w
[
3
]
<=
fifo_nempty_barrel_w
[
3
]
;
1'b1
:
bytes_rdy_w
[
3
]
<=
1
;
endcase
always
@*
case
(
sel2_w
)
2'b00
:
bytes_rdy_w
[
2
]
<=
fifo_nempty_barrel_w
[
2
]
;
2'b01
:
bytes_rdy_w
[
2
]
<=
fifo_nempty_barrel_w
[
3
]
;
2'b11
:
bytes_rdy_w
[
2
]
<=
1
;
default
:
bytes_rdy_w
[
2
]
<=
'bx
;
endcase
always
@*
case
(
sel1_w
)
2'b00
:
bytes_rdy_w
[
1
]
<=
fifo_nempty_barrel_w
[
1
]
;
2'b01
:
bytes_rdy_w
[
1
]
<=
fifo_nempty_barrel_w
[
2
]
;
2'b11
:
bytes_rdy_w
[
1
]
<=
1
;
default
:
bytes_rdy_w
[
1
]
<=
'bx
;
endcase
always
@*
case
(
sel0_w
)
2'b00
:
bytes_rdy_w
[
0
]
<=
fifo_nempty_barrel_w
[
0
]
;
2'b01
:
bytes_rdy_w
[
0
]
<=
fifo_nempty_barrel_w
[
1
]
;
2'b10
:
bytes_rdy_w
[
0
]
<=
fifo_nempty_barrel_w
[
2
]
;
2'b11
:
bytes_rdy_w
[
0
]
<=
1
;
endcase
always
@*
casex
(
{
cry_ff
,
fifo_ff_barrel_w
}
)
5'b0001x
:
num_zeros_w
<=
1
;
5'b001xx
:
num_zeros_w
<=
1
;
5'b010xx
:
num_zeros_w
<=
1
;
5'b011xx
:
num_zeros_w
<=
2
;
5'b100xx
:
num_zeros_w
<=
1
;
5'b101xx
:
num_zeros_w
<=
2
;
5'b110xx
:
num_zeros_w
<=
2
;
default:
num_zeros_w
<=
0
;
endcase
always
@*
casex
(
{
num_zeros_w
,
fifo_byte_pntr
}
)
4'b00xx
:
fifo_re_mask_w
<=
4'b1111
;
4'b0100
:
fifo_re_mask_w
<=
4'b1110
;
4'b0101
:
fifo_re_mask_w
<=
4'b0111
;
4'b0110
:
fifo_re_mask_w
<=
4'b1011
;
4'b0111
:
fifo_re_mask_w
<=
4'b1101
;
4'b1000
:
fifo_re_mask_w
<=
4'b1100
;
4'b1001
:
fifo_re_mask_w
<=
4'b0110
;
4'b1010
:
fifo_re_mask_w
<=
4'b0011
;
4'b1011
:
fifo_re_mask_w
<=
4'b1001
;
default:
fifo_re_mask_w
<=
'bx
;
// impossible num_zeros_w
endcase
assign
fifo_re
=
flush_pend
[
1
]
?
fifo_nempty
:
(
rdy_w
?
fifo_re_mask_w
:
4'b0
)
;
// when flushing read whatever is left
always
@
(
posedge
xclk
)
begin
if
(
rst
)
cry_ff
<=
0
;
else
if
(
rdy_w
)
cry_ff
<=
cry_ff_w
;
if
(
rst
)
fifo_byte_pntr
<=
0
;
else
if
(
rdy_w
)
fifo_byte_pntr
<=
fifo_byte_pntr
-
num_zeros_w
;
dv
<=
rdy_w
||
(
flush_pend
[
1
]
&&
(
cry_ff
||
(
|
fifo_nempty
)))
;
if
(
rdy_w
||
(
flush_pend
[
1
]
&&
(
cry_ff
||
(
|
fifo_nempty
))))
begin
case
(
sel3_w
)
1'b0
:
d_out
[
31
:
24
]
<=
fifo_out_barrel_w
[
31
:
24
]
;
1'b1
:
d_out
[
31
:
24
]
<=
8'b0
;
endcase
case
(
sel2_w
)
2'b00
:
d_out
[
23
:
16
]
<=
fifo_out_barrel_w
[
23
:
16
]
;
2'b01
:
d_out
[
23
:
16
]
<=
fifo_out_barrel_w
[
31
:
24
]
;
2'b11
:
d_out
[
23
:
16
]
<=
8'b0
;
default
:
d_out
[
23
:
16
]
<=
'bx
;
endcase
case
(
sel1_w
)
2'b00
:
d_out
[
15
:
8
]
<=
fifo_out_barrel_w
[
15
:
8
]
;
2'b01
:
d_out
[
15
:
8
]
<=
fifo_out_barrel_w
[
23
:
16
]
;
2'b11
:
d_out
[
15
:
8
]
<=
8'b0
;
default
:
d_out
[
15
:
8
]
<=
'bx
;
endcase
case
(
sel0_w
)
2'b00
:
d_out
[
7
:
0
]
<=
fifo_out_barrel_w
[
7
:
0
]
;
2'b01
:
d_out
[
7
:
0
]
<=
fifo_out_barrel_w
[
15
:
8
]
;
2'b01
:
d_out
[
7
:
0
]
<=
fifo_out_barrel_w
[
23
:
16
]
;
2'b11
:
d_out
[
7
:
0
]
<=
8'b0
;
default
:
d_out
[
7
:
0
]
<=
'bx
;
endcase
end
if
(
rst
)
flush_pend
[
0
]
<=
0
;
else
if
(
flush_in
)
flush_pend
[
0
]
<=
1
;
else
if
(
flush_pend
[
1
])
flush_pend
[
0
]
<=
0
;
if
(
rst
)
flush_pend
[
1
]
<=
0
;
else
flush_pend
[
1
]
<=
flush_pend
[
0
]
&&!
flush_pend
[
1
]
&&
!
rdy_w
;
flush_pend
[
2
]
<=
flush_pend
[
1
]
;
flush_out
<=
flush_pend
[
2
]
;
if
(
rdy_w
||
flush_pend
[
1
])
casex
(
bytes_rdy_w
[
3
:
0
])
4'b10xx
:
bytes_out
<=
1
;
4'b110x
:
bytes_out
<=
2
;
4'b1110
:
bytes_out
<=
3
;
default
:
bytes_out
<=
0
;
// all 4 bytes
endcase
end
endmodule
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment