Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
X
x393
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
x393
Commits
7c945dec
Commit
7c945dec
authored
Jan 27, 2015
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
command encoder for tiled memory read
parent
56006910
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
359 additions
and
0 deletions
+359
-0
cmd_encod_tiled_rd.v
memctrl/cmd_encod_tiled_rd.v
+359
-0
No files found.
memctrl/cmd_encod_tiled_rd.v
0 → 100644
View file @
7c945dec
/*******************************************************************************
* Module: cmd_encod_tiled_rd
* Date:2015-01-23
* Author: andrey
* Description: Command sequencer generator for reading a tiled aread
* up to 1 kB. Memory is mapped so 8 consecuitive rows have same RA, CA
* and alternating BA (0 to 7). Data will be read in columns 16 bytes wide,
* then proceding to the next column (if >1).
* If number of rows is less than 8 it is possible to use keep_open_in input,
* then there will be no ACTIVATE in other than first column and
* AUTO RECHARGE will be applied only to the last column (single column OK).
* if number of rows >=8, that port is ignored. If number of rows is less than
* 5 (less for slower clock) without keep_open_in tRTP may be not matched.
*
* Copyright (c) 2015 <set up in Preferences-Verilog/VHDL Editor-Templates> .
* cmd_encod_tiled_rd.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* cmd_encod_tiled_rd.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/> .
*******************************************************************************/
`timescale
1
ns
/
1
ps
module
cmd_encod_tiled_rd
#(
// parameter BASEADDR = 0,
parameter
ADDRESS_NUMBER
=
15
,
parameter
COLADDR_NUMBER
=
10
,
// parameter MIN_COL_INC= 3, // minimal number of zero column bits when incrementing row (after bank)
parameter
CMD_PAUSE_BITS
=
10
,
parameter
CMD_DONE_BIT
=
10
// VDT BUG: CMD_DONE_BIT is used in a function call parameter!
)
(
input
rst
,
input
clk
,
// programming interface
// input [7:0] cmd_ad, // byte-serial command address/data (up to 6 bytes: AL-AH-D0-D1-D2-D3
// input cmd_stb, // strobe (with first byte) for the command a/d
input
[
2
:
0
]
start_bank
,
// bank address
input
[
ADDRESS_NUMBER
-
1
:
0
]
start_row
,
// memory row
input
[
COLADDR_NUMBER
-
4
:
0
]
start_col
,
// start memory column in 8-bit bursts
input
[
ADDRESS_NUMBER
+
COLADDR_NUMBER
-
4
:
0
]
rowcol_inc_in
,
// increment {row.col} when bank rolls over, removed 3 LSBs (in 8-bursts)
input
[
5
:
0
]
num_rows_in_m1
,
// number of rows to read minus 1
input
[
5
:
0
]
num_cols_in_m1
,
// number of 16-pixel columns to read (rows first, then columns) - 1
input
keep_open_in
,
// keep banks open (for <=8 banks only
input
start
,
// start generating commands
output
reg
[
31
:
0
]
enc_cmd
,
// encoded commnad
output
reg
enc_wr
,
// write encoded command
output
reg
enc_done
// encoding finished
)
;
localparam
FULL_ADDR_NUMBER
=
ADDRESS_NUMBER
+
COLADDR_NUMBER
;
// excluding 3 CA lsb, but adding 3 bank
localparam
ROM_WIDTH
=
9
;
localparam
ROM_DEPTH
=
4
;
localparam
ENC_NOP
=
0
;
localparam
ENC_BUF_WR
=
1
;
localparam
ENC_DCI
=
2
;
localparam
ENC_SEL
=
3
;
localparam
ENC_CMD_SHIFT
=
4
;
// [5:4] - command: 0 -= NOP, 1 - READ, 2 - PRECHARGE, 3 - ACTIVATE
localparam
ENC_PAUSE_SHIFT
=
6
;
// [7:6] - 2- bit pause (for NOP commandes)
localparam
ENC_PRE_DONE
=
8
;
localparam
ENC_CMD_NOP
=
0
;
// 2-bit locally encoded commands
localparam
ENC_CMD_READ
=
1
;
// localparam ENC_CMD_PRECHARGE=2;
localparam
ENC_CMD_ACTIVATE
=
2
;
// using autoprecharge, so no PRECHARGE is needed. When en_act==0, ENC_CMD_ACTIVATE-> ENC_CMD_NOP (delay should be 0)
// localparam REPEAT_ADDR=3;
localparam
LOOP_FIRST
=
5
;
// address of the first word in a loop
localparam
LOOP_LAST
=
6
;
// address of the last word in a loop
localparam
CMD_NOP
=
0
;
// 3-bit normal memory RCW commands (positive logic)
localparam
CMD_READ
=
3
;
// localparam CMD_PRECHARGE=5;
localparam
CMD_ACTIVATE
=
4
;
// localparam AUTOPRECHARGE_BIT=COLADDR_NUMBER;
reg
[
ADDRESS_NUMBER
-
1
:
0
]
row
;
// memory row
reg
[
COLADDR_NUMBER
-
4
:
0
]
col
;
// start memory column in 8-bursts
reg
[
2
:
0
]
bank
;
// memory bank;
reg
[
5
:
0
]
num_rows_m1
;
// number of rows in a tile minus 1
reg
[
5
:
0
]
num_cols128_m1
;
// number of r16-byte columns in a tile -1
reg
[
FULL_ADDR_NUMBER
-
4
:
0
]
rowcol_inc
;
// increment {row.col} when bank rolls over, remove 3 LSBs (in 8-bursts)
reg
keep_open
;
reg
gen_run
;
reg
gen_run_d
;
reg
[
ROM_DEPTH
-
1
:
0
]
gen_addr
;
// will overrun as stop comes from ROM
reg
[
ROM_WIDTH
-
1
:
0
]
rom_r
;
wire
pre_done
;
wire
[
1
:
0
]
rom_cmd
;
wire
[
1
:
0
]
rom_skip
;
wire
[
2
:
0
]
full_cmd
;
reg
done
;
reg
[
FULL_ADDR_NUMBER
-
4
:
0
]
top_rc
;
// top combined row,column,bank burst address (excludes 3 CA LSBs), valid/modified @pre_act
reg
first_col
;
reg
last_col
;
wire
pre_act
;
//1 cycle before optional ACTIVATE
wire
pre_read
;
//1 cycle before READ command
reg
[
5
:
0
]
scan_row
;
// current row in a tile (valid @pre_act)
reg
[
5
:
0
]
scan_col
;
// current 16-byte column in a tile (valid @pre_act)
reg
start_d
;
// start, delayed by 1 clocks
wire
last_row
;
reg
[
FULL_ADDR_NUMBER
-
1
:
0
]
row_col_bank
;
// RA,CA, BA - valid @pre_act;
reg
[
FULL_ADDR_NUMBER
-
1
:
0
]
row_col_bank_inc
;
// incremented RA,CA, BA - valid @pre_act_d;
reg
[
COLADDR_NUMBER
-
1
:
0
]
col_bank
;
// CA, BA - valid @ pre_read;
wire
enable_act
;
// wire enable_autopre;
reg
enable_autopre
;
reg
pre_act_d
;
reg
other_row
;
// other than first row (valid/changed @pre_act)
wire
[
2
:
0
]
next_bank_w
;
wire
[
ADDRESS_NUMBER
+
COLADDR_NUMBER
-
4
:
0
]
next_rowcol_w
;
// next row/col when bank rolls over (in 8-bursts)
reg
loop_continue
;
reg
last_col_d
;
// delay by 1 pre_act cycles;
assign
pre_done
=
rom_r
[
ENC_PRE_DONE
]
&&
gen_run
;
assign
rom_cmd
=
rom_r
[
ENC_CMD_SHIFT
+:
2
]
&
{
enable_act
,
1'b0
};
// disable bit 1 if activate is disabled (not the first column)
assign
rom_skip
=
rom_r
[
ENC_PAUSE_SHIFT
+:
2
]
;
assign
full_cmd
=
rom_cmd
[
1
]
?
CMD_ACTIVATE
:
(
rom_cmd
[
0
]
?
CMD_READ
:
CMD_NOP
)
;
assign
last_row
=
(
scan_row
==
num_rows_m1
)
;
assign
enable_act
=
first_col
||
!
keep_open
;
// TODO: do not forget to zero addresses too (or they will become pause/done)
assign
next_bank_w
=
bank
+
1
;
assign
next_rowcol_w
=
row_col_bank
[
FULL_ADDR_NUMBER
-
1
:
3
]
+
rowcol_inc
;
assign
pre_act
=
rom_r
[
ENC_CMD_SHIFT
+
1
]
;
//1 cycle before optional ACTIVATE
assign
pre_read
=
rom_r
[
ENC_CMD_SHIFT
]
;
//1 cycle before READ command
always
@
(
posedge
rst
or
posedge
clk
)
begin
if
(
rst
)
gen_run
<=
0
;
else
if
(
start
)
gen_run
<=
1
;
else
if
(
pre_done
)
gen_run
<=
0
;
if
(
rst
)
gen_run_d
<=
0
;
else
gen_run_d
<=
gen_run
;
if
(
rst
)
num_rows_m1
<=
0
;
else
if
(
start
)
num_rows_m1
<=
num_rows_in_m1
;
// number of rows
if
(
rst
)
num_cols128_m1
<=
0
;
else
if
(
start
)
num_cols128_m1
<=
num_cols_in_m1
;
// number of r16-byte columns
if
(
rst
)
start_d
<=
0
;
else
start_d
<=
start
;
if
(
rst
)
top_rc
<=
0
;
else
if
(
start_d
)
top_rc
<=
{
row
,
col
};
else
if
(
pre_act
&&
last_row
)
top_rc
<=
top_rc
+
1
;
// may increment RA
if
(
rst
)
pre_act_d
<=
0
;
else
if
(
start_d
)
pre_act_d
<=
0
;
else
pre_act_d
<=
pre_act
;
if
(
rst
)
other_row
<=
0
;
else
if
(
pre_act
)
other_row
<=
~
last_row
;
if
(
rst
)
row_col_bank
<=
0
;
else
if
(
start_d
)
row_col_bank
<=
{
row
,
col
,
bank
};
else
if
(
pre_act_d
&&
~
other_row
)
row_col_bank
<=
{
top_rc
,
bank
};
else
if
(
pre_act_d
)
row_col_bank
<=
row_col_bank_inc
;
if
(
rst
)
row_col_bank_inc
<=
0
;
else
row_col_bank_inc
<=
(
&
row_col_bank_inc
[
2
:
0
]
!=
0
)
?
{
row_col_bank_inc
[
FULL_ADDR_NUMBER
-
1
:
3
]
,
next_bank_w
}:
{
next_rowcol_w
,
row_col_bank_inc
[
2
:
0
]
};
if
(
rst
)
scan_row
<=
0
;
else
if
(
start_d
)
scan_row
<=
0
;
else
if
(
pre_act
)
scan_row
<=
last_row
?
0
:
scan_row
+
1
;
if
(
rst
)
scan_col
<=
0
;
else
if
(
start_d
)
scan_col
<=
0
;
else
if
(
pre_act
&&
last_row
)
scan_col
<=
scan_col
+
1
;
// for ACTIVATE, not for READ
if
(
rst
)
first_col
<=
0
;
else
if
(
start_d
)
first_col
<=
1
;
else
if
(
pre_act
&&
last_row
)
first_col
<=
0
;
if
(
rst
)
last_col
<=
0
;
else
if
(
start_d
)
last_col
<=
num_cols128_m1
==
0
;
// if single column - will start with 1'b1;
else
if
(
pre_act
)
last_col
<=
(
scan_col
==
num_cols128_m1
)
;
// too early for READ ?
if
(
rst
)
last_col_d
<=
0
;
else
if
(
start_d
)
last_col_d
<=
0
;
else
if
(
pre_act
)
last_col_d
<=
last_col
;
if
(
rst
)
enable_autopre
<=
0
;
else
if
(
start_d
)
enable_autopre
<=
0
;
else
if
(
pre_act
)
enable_autopre
<=
last_col_d
||
!
keep_open
;
// delayed by 2 pre_act tacts form last_col, OK with a single column
if
(
rst
)
col_bank
<=
0
;
else
if
(
start_d
)
col_bank
<=
{
col
,
bank
};
else
if
(
pre_read
)
col_bank
<=
row_col_bank
[
COLADDR_NUMBER
-
1
:
0
]
;
if
(
rst
)
loop_continue
<=
0
;
else
loop_continue
<=
(
scan_col
==
num_cols128_m1
)
&&
last_row
;
if
(
rst
)
gen_addr
<=
0
;
else
if
(
!
start
&&
!
gen_run
)
gen_addr
<=
0
;
else
if
((
gen_addr
==
LOOP_LAST
)
&&
!
loop_continue
)
gen_addr
<=
LOOP_FIRST
;
// skip loop alltogeter
else
gen_addr
<=
gen_addr
+
1
;
// not in a loop
end
always
@
(
posedge
clk
)
if
(
start
)
begin
row
<=
start_row
;
col
<=
start_col
;
bank
<=
start_bank
;
rowcol_inc
<=
rowcol_inc_in
;
keep_open
<=
keep_open_in
&&
(
|
num_cols_in_m1
[
5
:
3
]
!=
0
)
;
end
// ROM-based (registered output) encoded sequence
always
@
(
posedge
rst
or
posedge
clk
)
begin
if
(
rst
)
rom_r
<=
0
;
else
case
(
gen_addr
)
4'h0
:
rom_r
<=
(
ENC_CMD_ACTIVATE
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_NOP
)
;
4'h1
:
rom_r
<=
(
ENC_CMD_ACTIVATE
<<
ENC_CMD_SHIFT
)
;
4'h2
:
rom_r
<=
(
ENC_CMD_READ
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h3
:
rom_r
<=
(
ENC_CMD_ACTIVATE
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h4
:
rom_r
<=
(
ENC_CMD_READ
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_BUF_WR
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h5
:
rom_r
<=
(
ENC_CMD_ACTIVATE
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_BUF_WR
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h6
:
rom_r
<=
(
ENC_CMD_READ
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_BUF_WR
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h7
:
rom_r
<=
(
ENC_CMD_NOP
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_BUF_WR
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h8
:
rom_r
<=
(
ENC_CMD_READ
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_BUF_WR
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h9
:
rom_r
<=
(
ENC_CMD_NOP
<<
ENC_CMD_SHIFT
)
|
(
2
<<
ENC_PAUSE_SHIFT
)
|
(
1
<<
ENC_BUF_WR
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h10
:
rom_r
<=
(
ENC_CMD_NOP
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_DCI
)
|
(
1
<<
ENC_SEL
)
;
4'h11
:
rom_r
<=
(
ENC_CMD_NOP
<<
ENC_CMD_SHIFT
)
|
(
3
<<
ENC_PAUSE_SHIFT
)
|
(
1
<<
ENC_DCI
)
;
4'h12
:
rom_r
<=
(
ENC_CMD_NOP
<<
ENC_CMD_SHIFT
)
|
(
1
<<
ENC_PRE_DONE
)
;
default:
rom_r
<=
0
;
endcase
end
always
@
(
posedge
rst
or
posedge
clk
)
begin
if
(
rst
)
done
<=
0
;
else
done
<=
pre_done
;
if
(
rst
)
enc_wr
<=
0
;
else
enc_wr
<=
gen_run
||
gen_run_d
;
if
(
rst
)
enc_done
<=
0
;
else
enc_done
<=
enc_wr
||
!
gen_run_d
;
if
(
rst
)
enc_cmd
<=
0
;
else
if
(
rom_cmd
==
0
)
enc_cmd
<=
func_encode_skip
(
// encode pause
{{
CMD_PAUSE_BITS
-
2
{
1'b0
}},
rom_skip
[
1
:
0
]
},
// skip; // number of extra cycles to skip (and keep all the other outputs)
done
,
// end of sequence
3'b0
,
// bank (here OK to be any)
1'b0
,
// odt_en; // enable ODT
1'b0
,
// cke; // disable CKE
rom_r
[
ENC_SEL
]
,
// sel; // first/second half-cycle, other will be nop (cke+odt applicable to both)
1'b0
,
// dq_en; // enable (not tristate) DQ lines (internal timing sequencer for 0->1 and 1->0)
1'b0
,
// dqs_en; // enable (not tristate) DQS lines (internal timing sequencer for 0->1 and 1->0)
1'b0
,
// dqs_toggle; // enable toggle DQS according to the pattern
rom_r
[
ENC_DCI
]
,
// dci; // DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0)
rom_r
[
ENC_BUF_WR
]
,
// buf_wr; // connect to external buffer (but only if not paused)
1'b0
)
;
// buf_rd; // connect to external buffer (but only if not paused)
else
enc_cmd
<=
func_encode_cmd
(
// encode non-NOP command
rom_cmd
[
1
]
?
// activate
row_col_bank
[
FULL_ADDR_NUMBER
-
1
:
COLADDR_NUMBER
]
:
// top combined row,column,bank burst address (excludes 3 CA LSBs), valid/modified @pre_act
{{
ADDRESS_NUMBER
-
COLADDR_NUMBER
-
1
{
1'b0
}},
enable_autopre
,
col_bank
[
COLADDR_NUMBER
-
1
:
3
]
,
3'b0
},
// [14:0] addr; // 15-bit row/column adderss
rom_cmd
[
1
]
?
row_col_bank
[
2
:
0
]
:
col_bank
[
2
:
0
]
,
// bank (here OK to be any)
full_cmd
[
2
:
0
]
,
// rcw; // RAS/CAS/WE, positive logic
1'b0
,
// odt_en; // enable ODT
1'b0
,
// cke; // disable CKE
rom_r
[
ENC_SEL
]
,
// sel; // first/second half-cycle, other will be nop (cke+odt applicable to both)
1'b0
,
// dq_en; // enable (not tristate) DQ lines (internal timing sequencer for 0->1 and 1->0)
1'b0
,
// dqs_en; // enable (not tristate) DQS lines (internal timing sequencer for 0->1 and 1->0)
1'b0
,
// dqs_toggle; // enable toggle DQS according to the pattern
rom_r
[
ENC_DCI
]
,
// dci; // DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0)
rom_r
[
ENC_BUF_WR
]
,
// buf_wr; // connect to external buffer (but only if not paused)
1'b0
,
// buf_rd; // connect to external buffer (but only if not paused)
rom_r
[
ENC_NOP
])
;
// nop; // add NOP after the current command, keep other data
end
// move to include?
function
[
31
:
0
]
func_encode_skip
;
input
[
CMD_PAUSE_BITS
-
1
:
0
]
skip
;
// number of extra cycles to skip (and keep all the other outputs)
input
done
;
// end of sequence
input
[
2
:
0
]
bank
;
// bank (here OK to be any)
input
odt_en
;
// enable ODT
input
cke
;
// disable CKE
input
sel
;
// first/second half-cycle, other will be nop (cke+odt applicable to both)
input
dq_en
;
// enable (not tristate) DQ lines (internal timing sequencer for 0->1 and 1->0)
input
dqs_en
;
// enable (not tristate) DQS lines (internal timing sequencer for 0->1 and 1->0)
input
dqs_toggle
;
// enable toggle DQS according to the pattern
input
dci
;
// DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0)
input
buf_wr
;
// connect to external buffer (but only if not paused)
input
buf_rd
;
// connect to external buffer (but only if not paused)
begin
func_encode_skip
=
func_encode_cmd
(
{{
14
-
CMD_DONE_BIT
{
1'b0
}},
done
,
skip
[
CMD_PAUSE_BITS
-
1
:
0
]
},
// 15-bit row/column adderss
bank
[
2
:
0
]
,
// bank (here OK to be any)
3'b0
,
// RAS/CAS/WE, positive logic
odt_en
,
// enable ODT
cke
,
// disable CKE
sel
,
// first/second half-cycle, other will be nop (cke+odt applicable to both)
dq_en
,
// enable (not tristate) DQ lines (internal timing sequencer for 0->1 and 1->0)
dqs_en
,
// enable (not tristate) DQS lines (internal timing sequencer for 0->1 and 1->0)
dqs_toggle
,
// enable toggle DQS according to the pattern
dci
,
// DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0)
buf_wr
,
// connect to external buffer (but only if not paused)
buf_rd
,
// connect to external buffer (but only if not paused)
1'b0
)
;
end
endfunction
function
[
31
:
0
]
func_encode_cmd
;
input
[
14
:
0
]
addr
;
// 15-bit row/column adderss
input
[
2
:
0
]
bank
;
// bank (here OK to be any)
input
[
2
:
0
]
rcw
;
// RAS/CAS/WE, positive logic
input
odt_en
;
// enable ODT
input
cke
;
// disable CKE
input
sel
;
// first/second half-cycle, other will be nop (cke+odt applicable to both)
input
dq_en
;
// enable (not tristate) DQ lines (internal timing sequencer for 0->1 and 1->0)
input
dqs_en
;
// enable (not tristate) DQS lines (internal timing sequencer for 0->1 and 1->0)
input
dqs_toggle
;
// enable toggle DQS according to the pattern
input
dci
;
// DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0)
input
buf_wr
;
// connect to external buffer (but only if not paused)
input
buf_rd
;
// connect to external buffer (but only if not paused)
input
nop
;
// add NOP after the current command, keep other data
begin
func_encode_cmd
={
addr
[
14
:
0
]
,
// 15-bit row/column adderss
bank
[
2
:
0
]
,
// bank
rcw
[
2
:
0
]
,
// RAS/CAS/WE
odt_en
,
// enable ODT
cke
,
// may be optimized (removed from here)?
sel
,
// first/second half-cycle, other will be nop (cke+odt applicable to both)
dq_en
,
// enable (not tristate) DQ lines (internal timing sequencer for 0->1 and 1->0)
dqs_en
,
// enable (not tristate) DQS lines (internal timing sequencer for 0->1 and 1->0)
dqs_toggle
,
// enable toggle DQS according to the pattern
dci
,
// DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0)
buf_wr
,
// phy_buf_wr, // connect to external buffer (but only if not paused)
buf_rd
,
// phy_buf_rd, // connect to external buffer (but only if not paused)
nop
,
// add NOP after the current command, keep other data
1'b0
// Reserved for future use
};
end
endfunction
endmodule
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment