Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
X
x393
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
x393
Commits
50aca841
Commit
50aca841
authored
Mar 26, 2015
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Made LMA work with numpy libraries
parent
6989d804
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
513 additions
and
26 deletions
+513
-26
x393_lma.py
py393/x393_lma.py
+513
-26
No files found.
py393/x393_lma.py
View file @
50aca841
...
@@ -28,7 +28,8 @@ __version__ = "3.0+"
...
@@ -28,7 +28,8 @@ __version__ = "3.0+"
__maintainer__
=
"Andrey Filippov"
__maintainer__
=
"Andrey Filippov"
__email__
=
"andrey@elphel.com"
__email__
=
"andrey@elphel.com"
__status__
=
"Development"
__status__
=
"Development"
import
math
import
numpy
as
np
"""
"""
For each byte lane:
For each byte lane:
tSDQS delay ps/step (~1/5 of datasheet value) - 1
tSDQS delay ps/step (~1/5 of datasheet value) - 1
...
@@ -71,14 +72,16 @@ def test_data(meas_delays,
...
@@ -71,14 +72,16 @@ def test_data(meas_delays,
print
()
print
()
PARAMETER_TYPES
=
(
PARAMETER_TYPES
=
(
{
"name"
:
"tSDQS"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS input delay per step (1/5 of the datasheet value)"
,
"en"
:
1
},
{
"name"
:
"tSDQS"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS input delay per step (1/5 of the datasheet value)"
,
"en"
:
1
},
{
"name"
:
"tSDQ"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQ input delay per step (1/5 of the datasheet value)"
,
"en"
:
1
},
{
"name"
:
"tSDQ"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQ input delay per step (1/5 of the datasheet value)"
,
"en"
:
1
},
{
"name"
:
"tDQSHL"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS HIGH minus LOW difference"
,
"en"
:
1
},
{
"name"
:
"tDQSHL"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS HIGH minus LOW difference"
,
"en"
:
1
},
{
"name"
:
"tDQHL"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQi HIGH minus LOW difference"
,
"en"
:
1
},
{
"name"
:
"tDQHL"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQi HIGH minus LOW difference"
,
"en"
:
1
},
{
"name"
:
"tDQS"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS delay (not adjusted)"
,
"en"
:
0
},
{
"name"
:
"tDQS"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS delay (not adjusted)"
,
"en"
:
0
},
{
"name"
:
"tDQ"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQi delay"
,
"en"
:
1
},
{
"name"
:
"tDQ"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQi delay"
,
"en"
:
1
},
{
"name"
:
"tFDQS"
,
"size"
:
4
,
"units"
:
"ps"
,
"description"
:
"DQS fine delays (mod 5)"
,
"en"
:
1
},
#only 4 are independent, 5-th is -sum of 4
{
"name"
:
"tFDQS"
,
"size"
:
4
,
"units"
:
"ps"
,
"description"
:
"DQS fine delays (mod 5)"
,
"en"
:
1
},
#only 4 are independent, 5-th is -sum of 4
{
"name"
:
"tFDQ"
,
"size"
:
32
,
"units"
:
"ps"
,
"description"
:
"DQ fine delays (mod 5)"
,
"en"
:
1
})
{
"name"
:
"tFDQ"
,
"size"
:
32
,
"units"
:
"ps"
,
"description"
:
"DQ fine delays (mod 5)"
,
"en"
:
1
},
{
"name"
:
"anaScale"
,
"size"
:
1
,
"dflt"
:
20
,
"units"
:
"ps"
,
"description"
:
"Scale for non-binary measured results"
,
"en"
:
0
},
)
FINE_STEPS
=
5
FINE_STEPS
=
5
DLY_STEPS
=
FINE_STEPS
*
32
# =160
DLY_STEPS
=
FINE_STEPS
*
32
# =160
def
make_repeat
(
value
,
nRep
):
def
make_repeat
(
value
,
nRep
):
...
@@ -88,9 +91,36 @@ def make_repeat(value,nRep):
...
@@ -88,9 +91,36 @@ def make_repeat(value,nRep):
return
(
value
,)
*
nRep
return
(
value
,)
*
nRep
class
X393LMA
(
object
):
class
X393LMA
(
object
):
lambdas
=
{
"initial"
:
0.1
,
"current"
:
0.1
,
"max"
:
100.0
}
maxNumSteps
=
25
finalDiffRMS
=
0.0001
parameters
=
None
parameters
=
None
parameterMask
=
None
# parameterMask={}
parameterMask
=
{
'tSDQS'
:
True
,
'tSDQ'
:
[
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
],
'tDQSHL'
:
True
,
'tDQHL'
:
[
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
],
'tDQS'
:
False
,
'tDQ'
:
[
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
],
'tFDQS'
:
[
True
,
True
,
True
,
True
],
'tFDQ'
:
[
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
,
True
],
'anaScale'
:
False
}
"""
parameterMask={'tSDQS': True,
'tSDQ': [True, True, True, True, True, True, True, True],
'tDQSHL': True, # False, # True,
'tDQHL': [True, True, True, True, True, True, True, True], # False, # [True, True, True, True, True, True, True, True], #OK
'tDQS': False,
'tDQ': [True, True, True, True, True, True, True, True], #BAD - without it 0 in JTbyJ for tFDQ
'tFDQS': [True, True, True, True], # False, # [True, True, True, True], # OK
'tFDQ': True, # False, # [True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True],
'anaScale': False
}
"""
parameterVector
=
None
parameterVector
=
None
clk_period
=
None
analog_scale
=
20
# ps when there is analog result -0.5...+0.5, multiply it by analog_scale and add to result
# hist_estimated=None # DQ/DQS delay period,
# hist_estimated=None # DQ/DQS delay period,
# # DQ-DQS shift (and number of periods later) for averaged and individual bits,
# # DQ-DQS shift (and number of periods later) for averaged and individual bits,
# # for each of 4 edge types
# # for each of 4 edge types
...
@@ -102,10 +132,16 @@ class X393LMA(object):
...
@@ -102,10 +132,16 @@ class X393LMA(object):
data_set
,
data_set
,
periods
=
None
):
periods
=
None
):
n
=
len
(
data_set
)
*
32
n
=
len
(
data_set
)
*
32
y
=
[
0
]
*
n
# fx=np.zeros((DLY_STEPS*32,))
w
=
[
0
]
*
n
"""
use np.nan instead of the None data
np.isnan() test
, dtype=np.float
"""
y
=
np
.
zeros
((
n
,),
dtype
=
np
.
int
)
#[0]*n
w
=
np
.
zeros
((
n
,))
#[0]*n
if
not
periods
is
None
:
if
not
periods
is
None
:
p
=
[
0
]
*
n
p
=
np
.
zeros
((
n
),
dtype
=
np
.
int
)
#
[0]*n
for
dly
,
data
in
enumerate
(
data_set
):
for
dly
,
data
in
enumerate
(
data_set
):
if
data
:
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
...
@@ -152,11 +188,64 @@ class X393LMA(object):
...
@@ -152,11 +188,64 @@ class X393LMA(object):
print
(
"?"
,
end
=
" "
)
print
(
"?"
,
end
=
" "
)
print
()
print
()
def
normalizeParameters
(
self
,
parameters
,
isMask
=
False
):
"""
Convert single/lists as needed
"""
if
parameters
is
None
:
parameters
=
self
.
parameters
for
par
in
PARAMETER_TYPES
:
name
=
par
[
'name'
]
size
=
par
[
"size"
]
try
:
v
=
parameters
[
name
]
except
:
if
isMask
:
v
=
par
[
'en'
]
else
:
try
:
v
=
par
[
'dflt'
]
except
:
raise
Exception
(
"parameter['
%
s'] is not defined and PARAMETER_TYPES['
%
s'] does not provide default value"
%
(
name
,
name
))
if
size
==
1
:
if
isinstance
(
v
,(
list
,
tuple
)):
v
=
v
[
0
]
if
isMask
:
if
v
:
v
=
True
else
:
v
=
False
else
:
if
isinstance
(
v
,
tuple
):
v
=
list
(
v
)
elif
not
isinstance
(
v
,
list
):
v
=
[
v
]
*
size
if
isMask
:
for
i
in
range
(
size
):
if
v
[
i
]:
v
[
i
]
=
True
else
:
v
[
i
]
=
False
parameters
[
name
]
=
v
return
parameters
def
copyParameters
(
self
,
parameters
):
newPars
=
{}
for
k
,
v
in
parameters
.
items
():
if
isinstance
(
v
,(
list
,
tuple
)):
newPars
[
k
]
=
list
(
v
)
else
:
newPars
[
k
]
=
v
return
newPars
def
createParameterVector
(
self
,
def
createParameterVector
(
self
,
parameters
=
None
,
parameters
=
None
,
parameterMask
=
None
):
parameterMask
=
None
):
global
PARAMETER_TYPES
#
global PARAMETER_TYPES
if
parameters
is
None
:
if
parameters
is
None
:
parameters
=
self
.
parameters
parameters
=
self
.
parameters
if
parameterMask
is
None
:
if
parameterMask
is
None
:
...
@@ -181,7 +270,49 @@ class X393LMA(object):
...
@@ -181,7 +270,49 @@ class X393LMA(object):
for
m
,
p
in
zip
(
mask
,
parVal
):
for
m
,
p
in
zip
(
mask
,
parVal
):
if
m
:
if
m
:
vector
.
append
(
p
)
vector
.
append
(
p
)
return
vector
return
np
.
array
(
vector
)
def
createParameterIndex
(
self
,
parameters
=
None
,
parameterMask
=
None
):
"""
create dict as parameters, but instead of values - index in the parameter vector, or -1
"""
if
parameters
is
None
:
parameters
=
self
.
parameters
if
parameterMask
is
None
:
parameterMask
=
self
.
parameterMask
indices
=
{}
parIndex
=
0
for
par
in
PARAMETER_TYPES
:
name
=
par
[
'name'
]
size
=
par
[
"size"
]
if
par
[
'en'
]:
try
:
mask
=
parameterMask
[
name
]
except
:
mask
=
True
if
mask
:
if
size
==
1
:
indices
[
name
]
=
parIndex
parIndex
+=
1
else
:
if
not
isinstance
(
mask
,(
list
,
tuple
)):
mask
=
[
mask
]
*
size
indices
[
name
]
=
[]
for
m
in
mask
:
if
m
:
indices
[
name
]
.
append
(
parIndex
)
parIndex
+=
1
else
:
indices
[
name
]
.
append
(
-
1
)
if
not
name
in
indices
:
if
size
==
1
:
indices
[
name
]
=-
1
else
:
indices
[
name
]
=
[
-
1
]
*
size
indices
[
'numPars'
]
=
parIndex
# extra key with total number of parameters
return
indices
def
getParametersFromVector
(
self
,
def
getParametersFromVector
(
self
,
vector
=
None
,
vector
=
None
,
...
@@ -212,10 +343,10 @@ class X393LMA(object):
...
@@ -212,10 +343,10 @@ class X393LMA(object):
else
:
else
:
if
not
name
in
parameters
:
if
not
name
in
parameters
:
parameters
[
name
]
=
[
None
]
*
size
parameters
[
name
]
=
[
None
]
*
size
for
i
,
m
in
enumerate
(
mask
):
for
i
,
m
in
enumerate
(
mask
):
if
m
:
if
m
:
parameters
[
name
][
i
]
=
vector
[
index
]
parameters
[
name
][
i
]
=
vector
[
index
]
index
+=
1
index
+=
1
return
parameters
return
parameters
def
estimate_from_histograms
(
self
,
def
estimate_from_histograms
(
self
,
...
@@ -543,6 +674,8 @@ class X393LMA(object):
...
@@ -543,6 +674,8 @@ class X393LMA(object):
@data_set measured data set
@data_set measured data set
@quiet reduce output
@quiet reduce output
"""
"""
self
.
clk_period
=
clk_period
hist_estimated
=
self
.
estimate_from_histograms
(
lane
,
# byte lane
hist_estimated
=
self
.
estimate_from_histograms
(
lane
,
# byte lane
bin_size
,
bin_size
,
clk_period
,
clk_period
,
...
@@ -550,7 +683,8 @@ class X393LMA(object):
...
@@ -550,7 +683,8 @@ class X393LMA(object):
primary_set
,
primary_set
,
data_set
,
data_set
,
quiet
)
quiet
)
print
(
"hist_estimated=
%
s"
%
(
str
(
hist_estimated
)))
if
quiet
<
3
:
print
(
"hist_estimated=
%
s"
%
(
str
(
hist_estimated
)))
data_periods_map
=
self
.
get_periods_map
(
lane
,
data_periods_map
=
self
.
get_periods_map
(
lane
,
data_set
,
data_set
,
hist_estimated
,
hist_estimated
,
...
@@ -560,10 +694,12 @@ class X393LMA(object):
...
@@ -560,10 +694,12 @@ class X393LMA(object):
data_set
,
data_set
,
data_periods_map
)
data_periods_map
)
# print("ywp=%s"%(str(ywp)))
# print("ywp=%s"%(str(ywp)))
print
(
"
\n
Y-vector:"
)
if
quiet
<
2
:
self
.
showYOrVector
(
ywp
)
print
(
"
\n
Y-vector:"
)
print
(
"
\n
periods map:"
)
self
.
showYOrVector
(
ywp
)
self
.
showYOrVector
(
ywp
,
ywp
[
'p'
])
if
quiet
<
2
:
print
(
"
\n
periods map:"
)
self
.
showYOrVector
(
ywp
,
ywp
[
'p'
])
...
@@ -591,9 +727,93 @@ class X393LMA(object):
...
@@ -591,9 +727,93 @@ class X393LMA(object):
"tDQS"
:
0.0
,
"tDQS"
:
0.0
,
"tDQ"
:
tDQ
,
"tDQ"
:
tDQ
,
"tFDQS"
:
(
0.0
,)
*
4
,
"tFDQS"
:
(
0.0
,)
*
4
,
"tFDQ"
:
(
0.0
,)
*
32
"tFDQ"
:
(
0.0
,)
*
32
#,
# "anaScale":self.analog_scale
}
}
print
(
"parameters=
%
s"
%
(
str
(
parameters
)))
print
(
"parameters=
%
s"
%
(
str
(
parameters
)))
self
.
normalizeParameters
(
parameters
)
#isMask=False)
print
(
"normalized parameters=
%
s"
%
(
str
(
parameters
)))
"""
both ways work:
self.parameterMask={}
self.normalizeParameters(self.parameterMask,isMask=True)
and
"""
# self.parameterMask=self.normalizeParameters({},isMask=True)
self
.
parameterMask
=
self
.
normalizeParameters
(
self
.
parameterMask
,
isMask
=
True
)
print
(
"parameters mask=
%
s"
%
(
str
(
self
.
parameterMask
)))
create_jacobian
=
True
fxj
=
self
.
createFxAndJacobian
(
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
jacobian
=
create_jacobian
,
parMask
=
None
,
quiet
=
1
)
if
create_jacobian
:
fx
=
fxj
[
'fx'
]
else
:
fx
=
fxj
if
quiet
<
2
:
print
(
"
\n
fx:"
)
self
.
showYOrVector
(
ywp
,
fx
)
SX
=
0.0
SX2
=
0.0
S0
=
0.0
for
d
,
w
in
zip
(
fx
,
ywp
[
'w'
]):
if
w
>
0
:
S0
+=
w
SX
+=
w
*
d
SX2
+=
w
*
d
*
d
avg
=
SX
/
S0
rms
=
math
.
sqrt
(
SX2
/
S0
)
print
(
"average(fx)=
%
fps, rms(fx)=
%
fps"
%
(
avg
,
rms
))
jByJT
=
np
.
dot
(
fxj
[
'jacob'
],
np
.
transpose
(
fxj
[
'jacob'
]))
if
quiet
<
3
:
print
(
"
\n
jByJT:"
)
for
i
,
l
in
enumerate
(
jByJT
):
print
(
"
%
d"
%
(
i
),
end
=
" "
)
for
d
in
l
:
print
(
"
%
f"
%
(
d
),
end
=
" "
)
print
()
self
.
lambdas
[
'current'
]
=
self
.
lambdas
[
'initial'
]
for
_
in
range
(
self
.
maxNumSteps
):
OK
,
finished
=
self
.
LMA_step
(
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
# prima
None
,
# parMask= None,
self
.
lambdas
,
self
.
finalDiffRMS
,
quiet
)
if
OK
:
print
(
"parameters=
%
s"
%
(
str
(
parameters
)))
if
finished
:
break
fx
=
self
.
createFxAndJacobian
(
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
False
,
parMask
=
None
,
quiet
=
1
)
if
quiet
<
3
:
print
(
"
\n
fx:"
)
self
.
showYOrVector
(
ywp
,
fx
)
# print("delta=%s"%(str(delta)))
# for i,d in enumerate(delta):
# print ("%d %f"%(i,d))
"""
"""
ir = ir0 - s/4 + d/4 # ir - convert to ps from steps
ir = ir0 - s/4 + d/4 # ir - convert to ps from steps
if = if0 + s/4 - d/4
if = if0 + s/4 - d/4
...
@@ -603,6 +823,273 @@ class X393LMA(object):
...
@@ -603,6 +823,273 @@ class X393LMA(object):
(s+d)/2=of-or
(s+d)/2=of-or
s=if-ir+of-or
s=if-ir+of-or
d=ir-if+of-or
d=ir-if+of-or
"""
def
createFxAndJacobian
(
self
,
parameters
,
y_data
,
# keep in self.variable?
primary_set
,
# prima
jacobian
=
False
,
# create jacobian, False - only fx
parMask
=
None
,
quiet
=
1
):
def
pythIsNone
(
obj
):
return
obj
is
None
isNone
=
pythIsNone
# swithch to np.isnan
y_vector
=
y_data
[
'y'
]
periods_vector
=
y_data
[
'p'
]
period
=
self
.
clk_period
try
:
y_fractions
=
y_data
[
'f'
]
except
:
y_fractions
=
None
try
:
w_vector
=
y_data
[
'w'
]
except
:
w_vector
=
None
anaScale
=
parameters
[
'anaScale'
]
if
y_fractions
is
None
:
anaScale
=
0
elif
isinstance
(
y_fractions
,
np
.
ndarray
):
isNone
=
np
.
isnan
# fx=[0.0]*DLY_STEPS*32
fx
=
np
.
zeros
((
DLY_STEPS
*
32
,))
#self.clk_period
tFDQS5
=
list
(
parameters
[
'tFDQS'
])
tFDQS5
.
append
(
-
tFDQS5
[
0
]
-
tFDQS5
[
1
]
-
tFDQS5
[
2
]
-
tFDQS5
[
3
])
tFDQ
=
[]
for
b
in
range
(
8
):
tFDQi
=
list
(
parameters
[
'tFDQ'
][
4
*
b
:
4
*
(
b
+
1
)])
tFDQi
.
append
(
-
tFDQi
[
0
]
-
tFDQi
[
1
]
-
tFDQi
[
2
]
-
tFDQi
[
3
])
tFDQ
.
append
(
tFDQi
)
tSDQS
=
parameters
[
'tSDQS'
]
tSDQ
=
parameters
[
'tSDQ'
]
# list
tDQS
=
parameters
[
'tDQS'
]
#single value
tDQ
=
parameters
[
'tDQ'
]
# list
tDQSHL
=
parameters
[
'tDQSHL'
]
#single value
tDQHL
=
parameters
[
'tDQHL'
]
# list
for
dly
in
range
(
DLY_STEPS
):
tdqs
=
dly
*
tSDQS
-
tDQS
-
tFDQS5
[
dly
%
FINE_STEPS
]
# t - time from DQS pad to internal DQS clock with zero setup/hold times to DQ FFs
tdqs_r
=
tdqs
+
0.25
*
tDQSHL
# sign opposite from: ir = ir0 - s/4 + d/4; or = or0 - s/4 - d/4
tdqs_f
=
tdqs
-
0.25
*
tDQSHL
# sign opposite from: if = if0 + s/4 - d/4; of = of0 + s/4 + d/4
tdqs_rf
=
(
tdqs_r
,
tdqs_f
)
#correct for DQS edge type
for
b
in
range
(
8
):
# use all 4 variants
for
t
in
range
(
4
):
indx
=
32
*
dly
+
t
*
8
+
b
if
(
w_vector
is
None
)
or
(
w_vector
[
indx
]
>
0
):
tdq
=
y_vector
[
indx
]
*
tSDQ
[
b
]
-
tDQ
[
b
]
-
tFDQ
[
b
][
y_vector
[
indx
]
%
FINE_STEPS
]
# correct for periods
tdq
-=
period
*
periods_vector
[
indx
]
# or should it be minus here?
# correct for edge types
if
(
t
==
0
)
or
(
t
==
3
):
tdq
-=
0.25
*
tDQHL
[
b
]
else
:
tdq
+=
0.25
*
tDQHL
[
b
]
if
anaScale
:
# if y_fractions[indx] is None:
if
isNone
(
y_fractions
[
indx
]):
tdq
+=
2.5
else
:
tdq
+=
anaScale
*
y_fractions
[
indx
]
if
(
t
^
primary_set
)
&
2
:
tdq
-=
0.5
*
period
fx
[
indx
]
=
tdq
-
tdqs_rf
[
t
&
1
]
# odd are falling DQS, even are rising DQS
if
not
jacobian
:
return
fx
if
parMask
is
None
:
parMask
=
self
.
normalizeParameters
(
self
.
parameterMask
,
isMask
=
True
)
# pv= self.createParameterVector(parameters,parMask)
# numPars=len(pv)
# print("pv=%s"%(str(pv)))
parInd
=
self
.
createParameterIndex
(
parameters
,
parMask
)
print
(
"parInd=
%
s"
%
(
str
(
parInd
)))
numPars
=
parInd
[
'numPars'
]
jacob
=
np
.
zeros
((
numPars
,
DLY_STEPS
*
32
))
fineM5
=
((
1.0
,
0.0
,
0.0
,
0.0
,
-
0.25
),
(
0.0
,
1.0
,
0.0
,
0.0
,
-
0.25
),
(
0.0
,
0.0
,
1.0
,
0.0
,
-
0.25
),
(
0.0
,
0.0
,
0.0
,
1.0
,
-
0.25
))
dqs_finedelay_en
=
parInd
[
'tFDQS'
]
for
e
in
dqs_finedelay_en
:
if
e
>=
0
:
break
else
:
dqs_finedelay_en
=
None
dq_finedelay_en
=
[
None
]
*
8
for
b
in
range
(
8
):
dq_finedelay_en
[
b
]
=
parInd
[
'tFDQ'
][
4
*
b
:
4
*
(
b
+
1
)]
for
e
in
dq_finedelay_en
[
b
]:
if
e
>=
0
:
break
else
:
dq_finedelay_en
[
b
]
=
None
for
dly
in
range
(
DLY_STEPS
):
dlyMod5
=
dly
%
FINE_STEPS
dtdqs_dtSDQS
=
dly
dtdqs_dtDQS
=
-
1.0
dtdqs_dtFDQS
=
(
-
fineM5
[
0
][
dlyMod5
],
-
fineM5
[
1
][
dlyMod5
],
-
fineM5
[
2
][
dlyMod5
],
-
fineM5
[
3
][
dlyMod5
])
dtdqs_dtDQSHL_rf
=
(
0.25
,
-
0.25
)
#correct for DQS edge type
for
b
in
range
(
8
):
# use all 4 variants
for
t
in
range
(
4
):
indx
=
32
*
dly
+
t
*
8
+
b
if
(
w_vector
is
None
)
or
(
w_vector
[
indx
]
>
0
):
#dependencies of DQS delays
if
parInd
[
'tSDQS'
]
>=
0
:
jacob
[
parInd
[
'tSDQS'
],
indx
]
=-
dtdqs_dtSDQS
if
parInd
[
'tDQS'
]
>=
0
:
jacob
[
parInd
[
'tDQS'
],
indx
]
=-
dtdqs_dtDQS
if
dqs_finedelay_en
:
for
i
,
pIndx
in
enumerate
(
dqs_finedelay_en
):
if
pIndx
>=
0
:
jacob
[
pIndx
,
indx
]
=-
dtdqs_dtFDQS
[
i
]
if
parInd
[
'tDQSHL'
]
>=
0
:
jacob
[
parInd
[
'tDQSHL'
],
indx
]
=-
dtdqs_dtDQSHL_rf
[
t
&
1
]
#dependencies of DQ delays
# tdq=y_vector[indx] * tSDQ[b] - tDQ[b] - tFDQ[b][y_vector[indx] % FINE_STEPS]
if
parInd
[
'tSDQ'
][
b
]
>=
0
:
jacob
[
parInd
[
'tSDQ'
][
b
],
indx
]
=
y_vector
[
indx
]
if
parInd
[
'tDQ'
][
b
]
>=
0
:
jacob
[
parInd
[
'tDQ'
][
b
],
indx
]
=
-
1
if
dq_finedelay_en
[
b
]:
yMod5
=
y_vector
[
indx
]
%
FINE_STEPS
dtdq_dtFDQ
=
(
-
fineM5
[
0
][
yMod5
],
-
fineM5
[
1
][
yMod5
],
-
fineM5
[
2
][
yMod5
],
-
fineM5
[
3
][
yMod5
])
for
i
,
pIndx
in
enumerate
(
dq_finedelay_en
[
b
]):
if
pIndx
>=
0
:
jacob
[
pIndx
,
indx
]
=
dtdq_dtFDQ
[
i
]
if
parInd
[
'tDQHL'
][
b
]
>=
0
:
if
(
t
==
0
)
or
(
t
==
3
):
jacob
[
parInd
[
'tDQHL'
][
b
],
indx
]
=-
0.25
else
:
jacob
[
parInd
[
'tDQHL'
][
b
],
indx
]
=+
0.25
if
parInd
[
'anaScale'
]
>=
0
:
if
anaScale
and
not
isNone
(
y_fractions
[
indx
]):
jacob
[
parInd
[
'anaScale'
],
indx
]
=
y_fractions
[
indx
]
return
{
'fx'
:
fx
,
'jacob'
:
jacob
}
def
getParAvgRMS
(
self
,
parameters
,
ywp
,
primary_set
,
# prima
quiet
=
1
):
fx
=
self
.
createFxAndJacobian
(
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
False
,
# jacobian
None
,
quiet
)
SX
=
0.0
SX2
=
0.0
S0
=
0.0
for
d
,
w
in
zip
(
fx
,
ywp
[
'w'
]):
if
w
>
0
:
S0
+=
w
SX
+=
w
*
d
SX2
+=
w
*
d
*
d
avg
=
SX
/
S0
rms
=
math
.
sqrt
(
SX2
/
S0
)
return
{
"avg"
:
avg
,
"rms"
:
rms
}
def
LMA_step
(
self
,
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
# prima
parMask
,
lambdas
,
#single-element list to update value
finalDiffRMS
,
quiet
=
1
):
parVector0
=
self
.
createParameterVector
(
parameters
,
parMask
)
# initial parameter vector
arms0
=
self
.
getParAvgRMS
(
parameters
,
ywp
,
primary_set
,
# prima
quiet
+
1
)
if
quiet
<
3
:
print
(
"LMA_step <start>: average(fx)=
%
fps, rms(fx)=
%
fps"
%
(
arms0
[
'avg'
],
arms0
[
'rms'
]))
delta
=
self
.
LMA_solve
(
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
# prima
parMask
,
lambdas
[
"current"
],
quiet
)
parVector
=
parVector0
+
delta
# print ("\nparVector0=%s"%(str(parVector0)))
# print ("\ndelta=%s"%(str(delta)))
# print ("\nparVector=%s"%(str(parVector)))
# newPars = {}.update(parameters) # so fixed parameters will appear in the newPars
newPars
=
self
.
copyParameters
(
parameters
)
# so fixed parameters will appear in the newPars
# newPars = self.getParametersFromVector(parVector,
if
quiet
<
2
:
print
(
"
\n
parameters=
%
s"
%
(
str
(
parameters
)))
# print ("\n1: newPars=%s"%(str(newPars)))
self
.
getParametersFromVector
(
parVector
,
parMask
,
newPars
)
# parameters=None):# if not None, will be updated
if
quiet
<
2
:
print
(
"
\n
2: newPars=
%
s"
%
(
str
(
newPars
)))
print
(
"
\n
parameters=
%
s"
%
(
str
(
parameters
)))
arms1
=
self
.
getParAvgRMS
(
newPars
,
ywp
,
primary_set
,
# prima
quiet
+
1
)
finished
=
False
if
arms1
[
'rms'
]
<
arms0
[
'rms'
]:
parameters
.
update
(
newPars
)
lambdas
[
"current"
]
*=
.5
success
=
True
if
(
arms0
[
'rms'
]
-
arms1
[
'rms'
])
<
finalDiffRMS
:
finished
=
True
else
:
lambdas
[
"current"
]
*=
8.0
success
=
False
if
lambdas
[
"current"
]
>
lambdas
[
"max"
]:
finished
=
True
if
quiet
<
3
:
print
(
"LMA_step
%
s: average(fx)=
%
fps, rms(fx)=
%
fps, lambda=
%
f"
%
((
'FAILURE'
,
'SUCCESS'
)[
success
],
arms1
[
'avg'
],
arms1
[
'rms'
],
lambdas
[
"current"
]))
return
(
success
,
finished
)
def
LMA_solve
(
self
,
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
# prima
parMask
=
None
,
lmbda
=
0.001
,
quiet
=
1
):
fxj
=
self
.
createFxAndJacobian
(
parameters
,
ywp
,
# keep in self.variable?
primary_set
,
True
,
# jacobian
parMask
,
quiet
)
JT
=
np
.
transpose
(
fxj
[
'jacob'
])
jByJT
=
np
.
dot
(
fxj
[
'jacob'
],
JT
)
for
i
,
_
in
enumerate
(
jByJT
):
jByJT
[
i
,
i
]
+=
lmbda
*
jByJT
[
i
,
i
]
jByDiff
=
-
np
.
dot
(
fxj
[
'jacob'
],
fxj
[
'fx'
])
delta
=
np
.
linalg
.
solve
(
jByJT
,
jByDiff
)
return
delta
"""
"""
ir = ir0 - s/4 + d/4 # ir - convert to ps from steps
\ No newline at end of file
if = if0 + s/4 - d/4
or = or0 - s/4 - d/4 # ir - convert to ps from steps
of = of0 + s/4 + d/4
(s-d)/2=if-ir
(s+d)/2=of-or
s=if-ir+of-or
d=ir-if+of-or
"""
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment