Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
X
x393
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Commits
Open sidebar
Elphel
x393
Commits
4f1a1c28
Commit
4f1a1c28
authored
Mar 25, 2015
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
started module for LMA fitting
parent
2f9f2a8b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
608 additions
and
0 deletions
+608
-0
x393_lma.py
py393/x393_lma.py
+608
-0
No files found.
py393/x393_lma.py
0 → 100644
View file @
4f1a1c28
from
__future__
import
print_function
'''
# Copyright (C) 2015, Elphel.inc.
# Fit DQ/DQS timing parameters using Levenberg-Marquardt algorithm
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http:#www.gnu.org/licenses/>.
@author: Andrey Filippov
@copyright: 2015 Elphel, Inc.
@license: GPLv3.0+
@contact: andrey@elphel.coml
@deffield updated: Updated
'''
__author__
=
"Andrey Filippov"
__copyright__
=
"Copyright 2015, Elphel, Inc."
__license__
=
"GPL"
__version__
=
"3.0+"
__maintainer__
=
"Andrey Filippov"
__email__
=
"andrey@elphel.com"
__status__
=
"Development"
"""
For each byte lane:
tSDQS delay ps/step (~1/5 of datasheet value) - 1
tSDQi delay ps/step (~1/5 of datasheet value) - 8
tDQSHL=tDQSH-tDQSL (ps) - 1
tDQiHL=tDQiH-tDQiL (ps) - 8
tDQS=0 (not adjusted here) - 0
tDQi - DQi routing delay with respect to DQS - 8
tFDQS - array of 5 fine delay steps (here in ps) - 5
tFDQi - array of 5 fine delay steps (here in ps) for each bit - 5*8=40
error**2 here (y-tFDQi-fXi)**2
"""
def
test_data
(
meas_delays
,
quiet
=
1
):
if
quiet
<
2
:
print
(
"DQS"
,
end
=
" "
)
for
f
in
(
'ir'
,
'if'
,
'or'
,
'of'
):
for
b
in
range
(
16
):
print
(
"
%
s_
%
d"
%
(
f
,
b
),
end
=
" "
)
print
()
for
ldly
,
data
in
enumerate
(
meas_delays
):
print
(
"
%
d"
%
ldly
,
end
=
" "
)
if
data
:
"""
for typ in ((0,0),(0,1),(1,0),(1,1)):
for pData in data: # 16 DQs, each None nor a pair of lists for inPhase in (0,1), each a pair of edges, each a pair of (dly,diff)
if pData and (not pData[typ[0]][typ[1]] is None):
print ("
%
d"
%
pData[typ[0]][typ[1]],end=" ")
else:
print ("x",end=" ")
"""
for
typ
in
range
(
4
):
for
pData
in
data
:
# 16 DQs, each None nor a pair of lists for inPhase in (0,1), each a pair of edges, each a pair of (dly,diff)
if
pData
and
(
not
pData
[
typ
]
is
None
):
print
(
"
%
d"
%
pData
[
typ
],
end
=
" "
)
else
:
print
(
"x"
,
end
=
" "
)
print
()
PARAMETER_TYPES
=
(
{
"name"
:
"tSDQS"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS input delay per step (1/5 of the datasheet value)"
,
"en"
:
1
},
{
"name"
:
"tSDQ"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQ input delay per step (1/5 of the datasheet value)"
,
"en"
:
1
},
{
"name"
:
"tDQSHL"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS HIGH minus LOW difference"
,
"en"
:
1
},
{
"name"
:
"tDQHL"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQi HIGH minus LOW difference"
,
"en"
:
1
},
{
"name"
:
"tDQS"
,
"size"
:
1
,
"units"
:
"ps"
,
"description"
:
"DQS delay (not adjusted)"
,
"en"
:
0
},
{
"name"
:
"tDQ"
,
"size"
:
8
,
"units"
:
"ps"
,
"description"
:
"DQi delay"
,
"en"
:
1
},
{
"name"
:
"tFDQS"
,
"size"
:
4
,
"units"
:
"ps"
,
"description"
:
"DQS fine delays (mod 5)"
,
"en"
:
1
},
#only 4 are independent, 5-th is -sum of 4
{
"name"
:
"tFDQ"
,
"size"
:
32
,
"units"
:
"ps"
,
"description"
:
"DQ fine delays (mod 5)"
,
"en"
:
1
})
FINE_STEPS
=
5
DLY_STEPS
=
FINE_STEPS
*
32
# =160
def
make_repeat
(
value
,
nRep
):
if
isinstance
(
value
,(
list
,
tuple
)):
return
value
else
:
return
(
value
,)
*
nRep
class
X393LMA
(
object
):
parameters
=
None
parameterMask
=
None
parameterVector
=
None
# hist_estimated=None # DQ/DQS delay period,
# # DQ-DQS shift (and number of periods later) for averaged and individual bits,
# # for each of 4 edge types
def
__init__
(
self
):
pass
def
createYandWvectors
(
self
,
lane
,
data_set
,
periods
=
None
):
n
=
len
(
data_set
)
*
32
y
=
[
0
]
*
n
w
=
[
0
]
*
n
if
not
periods
is
None
:
p
=
[
0
]
*
n
for
dly
,
data
in
enumerate
(
data_set
):
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
pm
=
[
None
]
*
8
for
b
,
bData
in
enumerate
(
data_lane
):
# bdata for each bit is either None or has 4 (maybe None) DQ integer delay values
if
bData
:
pm
[
b
]
=
[
None
]
*
4
for
t
,
tData
in
enumerate
(
bData
):
if
not
tData
is
None
:
#[dly],[b],[t] tData - int value
i
=
32
*
dly
+
8
*
t
+
b
y
[
i
]
=
tData
w
[
i
]
=
1
if
not
periods
is
None
:
p
[
i
]
=
periods
[
dly
][
b
][
t
]
vectors
=
{
'y'
:
y
,
'w'
:
w
}
if
not
periods
is
None
:
vectors
[
'p'
]
=
p
return
vectors
def
showYOrVector
(
self
,
ywp
,
vector
=
None
):
pass
# If vector is None - print y vector (skipping zero mask),
# otherwise print vector (should be the same length, using the same 'w' weight mask
v
=
vector
if
v
is
None
:
v
=
ywp
[
'y'
]
w
=
ywp
[
'w'
]
print
(
"DQS_dly"
,
end
=
" "
)
for
f
in
(
'ir'
,
'if'
,
'or'
,
'of'
):
for
b
in
range
(
8
):
print
(
"
%
s_
%
d"
%
(
f
,
b
),
end
=
" "
)
print
()
n
=
len
(
v
)
/
32
for
dly
in
range
(
n
):
print
(
"
%
d"
%
dly
,
end
=
" "
)
for
t
in
range
(
4
):
for
b
in
range
(
8
):
i
=
32
*
dly
+
8
*
t
+
b
if
w
[
i
]:
print
(
"
%
s"
%
(
str
(
v
[
i
])),
end
=
" "
)
else
:
print
(
"?"
,
end
=
" "
)
print
()
def
createParameterVector
(
self
,
parameters
=
None
,
parameterMask
=
None
):
global
PARAMETER_TYPES
if
parameters
is
None
:
parameters
=
self
.
parameters
if
parameterMask
is
None
:
parameterMask
=
self
.
parameterMask
vector
=
[]
for
par
in
PARAMETER_TYPES
:
name
=
par
[
'name'
]
size
=
par
[
"size"
]
if
par
[
'en'
]:
try
:
mask
=
parameterMask
[
name
]
except
:
mask
=
True
try
:
parVal
=
parameters
[
name
]
except
:
parVal
=
None
# mask=False
if
mask
:
mask
=
make_repeat
(
mask
,
size
)
parVal
=
make_repeat
(
parVal
,
size
)
for
m
,
p
in
zip
(
mask
,
parVal
):
if
m
:
vector
.
append
(
p
)
return
vector
def
getParametersFromVector
(
self
,
vector
=
None
,
parameterMask
=
None
,
parameters
=
None
):
# if not None, will be updated
# global PARAMETER_TYPES
if
vector
is
None
:
vector
=
self
.
parameterVector
if
parameterMask
is
None
:
parameterMask
=
self
.
parameterMask
if
parameters
is
None
:
parameters
=
{}
index
=
0
for
par
in
PARAMETER_TYPES
:
name
=
par
[
'name'
]
size
=
par
[
"size"
]
if
par
[
'en'
]:
try
:
mask
=
parameterMask
[
name
]
except
:
mask
=
True
if
mask
:
mask
=
make_repeat
(
mask
,
size
)
if
size
==
1
:
if
mask
[
0
]:
parameters
[
name
]
=
vector
[
index
]
index
+=
1
else
:
if
not
name
in
parameters
:
parameters
[
name
]
=
[
None
]
*
size
for
i
,
m
in
enumerate
(
mask
):
if
m
:
parameters
[
name
][
i
]
=
vector
[
index
]
index
+=
1
return
parameters
def
estimate_from_histograms
(
self
,
lane
,
# byte lane
bin_size
,
clk_period
,
dly_step_ds
,
primary_set
,
data_set
,
quiet
=
1
):
"""
Prepare data by building and processing histograms to find
DQ/DQS period (in fine delay steps),
and for each data bit (and averaged) DQ-DQS shift (in fine steps) and
full periods - for primary set (and same phase) - starting from
closest to 0 (both signs) at DQS==0, for non-primary -
\
from DQ 180 degrees later tha primary
using datasheet delay/step (without fine step delay)
and the data set (for each DQS delay - list of 16 bits,
each of 2x2 elements (DQ delay values) or null
Create data set template - for each DQS delay and inPhase
- branch - number of full periods to add
@lane byte lane to process
@bin_size bin size for the histograms (should be 5/10/20/40)
@clk_period SDCLK period in ps
@dly_step_ds IDELAY step (from the datasheet)
@primary_set which of the data edge series to use as leading (other will be trailing by 180)
@data_set measured data set
@quiet reduce output
"""
num_hist_steps
=
2
*
((
DLY_STEPS
+
bin_size
-
1
)
//
bin_size
)
est_step_period
=
(
clk_period
/
dly_step_ds
)
*
FINE_STEPS
est_bin_period
=
est_step_period
/
bin_size
hist
=
[
0.0
]
*
num_hist_steps
hist4
=
[]
for
_
in
range
(
4
):
hist4
.
append
(
list
(
hist
))
hist8x4
=
[]
# [8][4][num_hist_steps]
for
_i
in
range
(
8
):
l
=
[]
for
_j
in
range
(
4
):
l
.
append
(
list
(
hist
))
hist8x4
.
append
(
l
)
for
dly
,
data
in
enumerate
(
data_set
):
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
for
b
,
bData
in
enumerate
(
data_lane
):
if
bData
:
for
t
,
tData
in
enumerate
(
bData
):
if
not
tData
is
None
:
binNum
=
(
tData
-
dly
+
DLY_STEPS
+
1
)
//
bin_size
hist8x4
[
b
][
t
][
binNum
]
+=
1
# lowest bin will be 1 count shy
if
binNum
==
0
:
hist8x4
[
b
][
t
][
binNum
]
+=
1.0
/
(
bin_size
-
1.0
)
for
t
in
range
(
4
):
for
i
in
range
(
num_hist_steps
):
for
b
in
range
(
8
):
hist4
[
t
][
i
]
+=
hist8x4
[
b
][
t
][
i
]
hist4
[
t
][
i
]
/=
8.0
if
quiet
<
1
:
for
i
in
range
(
num_hist_steps
):
print
(
"
%
d"
%
i
,
end
=
" "
)
for
t
in
range
(
4
):
for
b
in
range
(
8
):
print
(
"
%
f"
%
(
hist8x4
[
b
][
t
][
i
]),
end
=
" "
)
print
(
"
%
f"
%
(
hist4
[
t
][
i
]),
end
=
" "
)
print
()
#Correlate
corr
=
[
0.0
]
*
num_hist_steps
for
shft
in
range
(
num_hist_steps
):
for
x
in
range
(
0
,
num_hist_steps
-
shft
):
for
t
in
range
(
4
):
corr
[
shft
]
+=
hist4
[
t
][
x
]
*
hist4
[
t
][
x
+
shft
]
if
quiet
<
1
:
for
i
,
c
in
enumerate
(
corr
):
print
(
"
%
d
%
f"
%
(
i
,
c
))
if
quiet
<
2
:
print
(
"est_step_period=
%
f
\n
est_bin_period=
%
f"
%
(
est_step_period
,
est_bin_period
))
# find actual period using correlation
if
est_bin_period
>
(
0.8
*
len
(
corr
)):
raise
Exception
(
"Estimated DQS period
%
f is too high to measure with this data set correlation (
%
d)"
%
(
est_bin_period
,
len
(
corr
)))
corr_low
=
int
(
0.5
*
est_bin_period
)
corr_high
=
min
(
int
(
1.5
*
est_bin_period
),
len
(
corr
))
if
quiet
<
1
:
print
(
"corr_low=
%
d, corr_high=
%
d"
%
(
corr_low
,
corr_high
))
xmx
=
corr_low
for
x
in
range
(
corr_low
,
corr_high
+
1
):
if
corr
[
x
]
>
corr
[
xmx
]:
xmx
=
x
span
=
max
(
int
(
round
(
est_bin_period
/
8
)),
4
)
corr_low
=
max
(
corr_low
,
xmx
-
span
)
corr_high
=
min
(
corr_high
,
xmx
+
span
)
if
quiet
<
1
:
print
(
"corrected corr_low=
%
d, corr_high=
%
d, xmx=
%
d"
%
(
corr_low
,
corr_high
,
xmx
))
S0
=
0
SX
=
0
for
x
in
range
(
corr_low
,
corr_high
+
1
):
S0
+=
corr
[
x
]
SX
+=
corr
[
x
]
*
x
corr_bin_period
=
SX
/
S0
corr_period
=
corr_bin_period
*
bin_size
# in finedelay steps
if
quiet
<
2
:
print
(
"Period by correlation=
%
f, (in bin steps:
%
f)"
%
(
corr_period
,
corr_bin_period
))
xSpan
=
min
(
int
(
corr_bin_period
/
2
)
+
1
,
num_hist_steps
//
2
)
corr_low
=
-
xSpan
corr_high
=
xSpan
xmx
=
None
mx
=
0
if
quiet
<
1
:
print
(
"corr_low=
%
d, corr_high=
%
d"
%
(
corr_low
,
corr_high
))
for
x
in
range
(
corr_low
,
corr_high
+
1
):
y
=
hist4
[
primary_set
][
num_hist_steps
//
2
+
x
]
if
y
>
mx
:
mx
=
y
xmx
=
x
span
=
max
(
int
(
round
(
corr_bin_period
/
8
)),
4
)
corr_low
=
max
(
corr_low
,
xmx
-
span
)
corr_high
=
min
(
corr_high
,
xmx
+
span
)
if
quiet
<
1
:
print
(
"corrected corr_low=
%
d, corr_high=
%
d, xmx=
%
d"
%
(
corr_low
,
corr_high
,
xmx
))
S0
=
0
SX
=
0
for
x
in
range
(
corr_low
,
corr_high
+
1
):
y
=
hist4
[
primary_set
][
num_hist_steps
//
2
+
x
]
S0
+=
y
SX
+=
y
*
x
primary_dly_shift
=
(
SX
/
S0
)
*
bin_size
if
quiet
<
1
:
print
(
"tDQ-tDQS difference for primary set =
%
f (dly fine steps) (in bin steps
%
f)"
%
(
primary_dly_shift
,
primary_dly_shift
/
bin_size
))
# now for each of the other series find maximum closest to either primary or primary +-180 (sign here - opposite to the primary sign)
# do not forget to apply that sign later, so primary is always leading
b_series
=
[
None
]
*
4
for
t
in
range
(
4
):
if
t
==
primary_set
:
b_series
[
t
]
=
(
primary_dly_shift
,
0
)
else
:
b_start
=
primary_dly_shift
# will search around b_start
periods
=
0
if
((
t
^
primary_set
)
&
2
):
if
primary_dly_shift
>
0
:
b_start
-=
corr_period
/
2
periods
=-
1
else
:
b_start
+=
corr_period
/
2
periods
=
0
# as expected - primary is supposed to have lower DQ delay, than secondary
xSpan
=
corr_bin_period
/
2
#scanning in bin, not dly steps
corr_low
=
max
(
int
(
b_start
/
bin_size
-
xSpan
),
-
(
num_hist_steps
//
2
))
corr_high
=
min
(
int
(
b_start
/
bin_size
+
xSpan
),
(
num_hist_steps
//
2
))
xmx
=
None
mx
=
0
if
quiet
<
1
:
print
(
"series=
%
d, b_start=
%
f, corr_low=
%
d, corr_high=
%
d, xSpan=
%
f"
%
(
t
,
b_start
,
corr_low
,
corr_high
,
xSpan
))
for
x
in
range
(
corr_low
,
corr_high
+
1
):
y
=
hist4
[
t
][
num_hist_steps
//
2
+
x
]
if
y
>
mx
:
mx
=
y
xmx
=
x
span
=
max
(
int
(
round
(
corr_bin_period
/
8
)),
4
)
corr_low
=
max
(
corr_low
,
xmx
-
span
)
corr_high
=
min
(
corr_high
,
xmx
+
span
)
if
quiet
<
1
:
print
(
"series=
%
d corrected corr_low=
%
d, corr_high=
%
d, xmx=
%
d"
%
(
t
,
corr_low
,
corr_high
,
xmx
))
S0
=
0
SX
=
0
for
x
in
range
(
corr_low
,
corr_high
+
1
):
y
=
hist4
[
t
][
num_hist_steps
//
2
+
x
]
S0
+=
y
SX
+=
y
*
x
b_series
[
t
]
=
((
SX
/
S0
)
*
bin_size
,
periods
)
if
quiet
<
1
:
print
(
"tDQ-tDQS difference for set
%
d =
%
s (dly fine steps) (in bin steps
%
d)"
%
(
t
,
str
(
b_series
[
t
]),
b_series
[
t
][
0
]))
if
quiet
<
2
:
print
(
"b_series=
%
s"
%
(
str
(
b_series
)))
#Now find per-bit maximums closest to the average ones
b_indiv
=
[]
for
b
,
hst
in
enumerate
(
hist8x4
):
b_iseries
=
[
None
]
*
4
for
t
in
range
(
4
):
periods
=
b_series
[
t
][
1
]
# period shift of the averaged series
b_start
=
b_series
[
t
][
0
]
# will search around b_start
xSpan
=
corr_bin_period
/
2
#scanning in bin, not dly steps
corr_low
=
max
(
int
(
b_start
/
bin_size
-
xSpan
),
-
(
num_hist_steps
//
2
))
corr_high
=
min
(
int
(
b_start
/
bin_size
+
xSpan
),
(
num_hist_steps
//
2
))
xmx
=
None
mx
=
0
if
quiet
<
1
:
print
(
"DQ[
%
d], series=
%
d, b_start=
%
f, corr_low=
%
d, corr_high=
%
d, xSpan=
%
f"
%
(
b
,
t
,
b_start
,
corr_low
,
corr_high
,
xSpan
))
for
x
in
range
(
corr_low
,
corr_high
+
1
):
y
=
hst
[
t
][
num_hist_steps
//
2
+
x
]
if
y
>
mx
:
mx
=
y
xmx
=
x
span
=
max
(
int
(
round
(
corr_bin_period
/
8
)),
4
)
corr_low
=
max
(
corr_low
,
xmx
-
span
)
corr_high
=
min
(
corr_high
,
xmx
+
span
)
if
quiet
<
1
:
print
(
"DQ[
%
d], series=
%
d corrected corr_low=
%
d, corr_high=
%
d, xmx=
%
d"
%
(
b
,
t
,
corr_low
,
corr_high
,
xmx
))
S0
=
0
SX
=
0
for
x
in
range
(
corr_low
,
corr_high
+
1
):
y
=
hst
[
t
][
num_hist_steps
//
2
+
x
]
S0
+=
y
SX
+=
y
*
x
b_iseries
[
t
]
=
((
SX
/
S0
)
*
bin_size
,
periods
)
if
quiet
<
1
:
print
(
"DQ[
%
d], tDQ-tDQS difference for set
%
d =
%
s (dly fine steps) (in bin steps
%
d)"
%
(
b
,
t
,
str
(
b_iseries
[
t
]),
b_iseries
[
t
][
0
]))
b_indiv
.
append
(
b_iseries
)
if
quiet
<
2
:
print
(
"b_indiv=
%
s"
%
(
str
(
b_indiv
)))
return
{
'period'
:
corr_period
,
'b_series'
:
b_series
,
'b_indiv'
:
b_indiv
}
def
get_periods_map
(
self
,
lane
,
data_set
,
hist_estimated
,
quiet
=
1
):
#assign most likely period shift for each data sample
period
=
hist_estimated
[
'period'
]
data_periods_map
=
[]
for
dly
,
data
in
enumerate
(
data_set
):
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
pm
=
[
None
]
*
8
for
b
,
bData
in
enumerate
(
data_lane
):
# bdata for each bit is either None or has 4 (maybe None) DQ integer delay values
if
bData
:
pm
[
b
]
=
[
None
]
*
4
for
t
,
tData
in
enumerate
(
bData
):
if
not
tData
is
None
:
#[dly],[b],[t] tData - int value
he
=
hist_estimated
[
'b_indiv'
][
b
][
t
]
# tuple (b, periods)
#find most likely period shift
pm
[
b
][
t
]
=
int
(
round
((
tData
-
dly
-
he
[
0
])
/
period
))
+
he
[
1
]
data_periods_map
.
append
(
pm
)
else
:
data_periods_map
.
append
(
None
)
if
quiet
<
1
:
print
(
"
\n
DQS
%
d measured data"
%
lane
)
print
(
"DQS
%
d"
%
lane
,
end
=
" "
)
for
f
in
(
'ir'
,
'if'
,
'or'
,
'of'
):
for
b
in
range
(
8
):
print
(
"
%
s_
%
d"
%
(
f
,
b
),
end
=
" "
)
print
()
for
dly
,
data
in
enumerate
(
data_set
):
print
(
"
%
d"
%
dly
,
end
=
" "
)
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
for
typ
in
range
(
4
):
for
b
,
bData
in
enumerate
(
data_lane
):
# 8 DQs, each ...
if
bData
and
(
not
bData
[
typ
]
is
None
):
print
(
"
%
d"
%
(
bData
[
typ
]),
end
=
" "
)
else
:
print
(
"x"
,
end
=
" "
)
print
()
if
quiet
<
1
:
print
(
"
\n
DQS
%
d periods data"
%
lane
)
print
(
"DQS
%
d"
%
lane
,
end
=
" "
)
for
f
in
(
'ir'
,
'if'
,
'or'
,
'of'
):
for
b
in
range
(
8
):
print
(
"
%
s_
%
d"
%
(
f
,
b
),
end
=
" "
)
print
()
for
dly
,
data
in
enumerate
(
data_set
):
print
(
"
%
d"
%
dly
,
end
=
" "
)
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
for
typ
in
range
(
4
):
for
b
,
bData
in
enumerate
(
data_lane
):
# 8 DQs, each ...
if
bData
and
(
not
bData
[
typ
]
is
None
):
print
(
"
%
d"
%
(
data_periods_map
[
dly
][
b
][
typ
]),
end
=
" "
)
else
:
print
(
"x"
,
end
=
" "
)
print
()
if
quiet
<
2
:
print
(
"
\n
DQS
%
d combined data"
%
lane
)
print
(
"DQS
%
d"
%
lane
,
end
=
" "
)
for
f
in
(
'ir'
,
'if'
,
'or'
,
'of'
):
for
b
in
range
(
8
):
print
(
"
%
s_
%
d"
%
(
f
,
b
),
end
=
" "
)
print
()
for
dly
,
data
in
enumerate
(
data_set
):
print
(
"
%
d"
%
dly
,
end
=
" "
)
if
data
:
data_lane
=
data
[
lane
*
8
:(
lane
+
1
)
*
8
]
for
typ
in
range
(
4
):
for
b
,
bData
in
enumerate
(
data_lane
):
# 8 DQs, each ...
if
bData
and
(
not
bData
[
typ
]
is
None
):
print
(
"
%
f"
%
(
bData
[
typ
]
-
period
*
data_periods_map
[
dly
][
b
][
typ
]),
end
=
" "
)
else
:
print
(
"x"
,
end
=
" "
)
print
()
return
data_periods_map
def
init_parameters
(
self
,
lane
,
# byte lane
bin_size
,
clk_period
,
dly_step_ds
,
primary_set
,
data_set
,
quiet
=
1
):
"""
Initialize parameters and y-vector
using datasheet delay/step (without fine step delay)
and the data set (for each DQS delay - list of 16 bits,
each of 2x2 elements (DQ delay values) or null
Create data set template - for each DQS delay and inPhase
- branch - number of full periods to add
@lane byte lane to process
@bin_size bin size for the histograms (should be 5/10/20/40)
@clk_period SDCLK period in ps
@dly_step_ds IDELAY step (from the datasheet)
@primary_set which of the data edge series to use as leading (other will be trailing by 180)
@data_set measured data set
@quiet reduce output
"""
hist_estimated
=
self
.
estimate_from_histograms
(
lane
,
# byte lane
bin_size
,
clk_period
,
dly_step_ds
,
primary_set
,
data_set
,
quiet
)
print
(
"hist_estimated=
%
s"
%
(
str
(
hist_estimated
)))
data_periods_map
=
self
.
get_periods_map
(
lane
,
data_set
,
hist_estimated
,
quiet
)
#+1)
ywp
=
self
.
createYandWvectors
(
lane
,
data_set
,
data_periods_map
)
# print("ywp=%s"%(str(ywp)))
print
(
"
\n
Y-vector:"
)
self
.
showYOrVector
(
ywp
)
print
(
"
\n
periods map:"
)
self
.
showYOrVector
(
ywp
,
ywp
[
'p'
])
step_ps
=
clk_period
/
hist_estimated
[
'period'
]
#~15.6
tDQSHL
=
0
;
tDQHL
=
[
None
]
*
8
for
b
,
d
in
enumerate
(
hist_estimated
[
'b_indiv'
]):
tDQSHL
+=
(
d
[
1
][
0
]
-
d
[
0
][
0
]
+
d
[
3
][
0
]
-
d
[
2
][
0
])
*
step_ps
tDQHL
[
b
]
=
(
d
[
0
][
0
]
-
d
[
1
][
0
]
+
d
[
3
][
0
]
-
d
[
2
][
0
])
*
step_ps
print
(
"
%
d: S=
%
f, D=
%
f"
%
(
b
,
d
[
1
][
0
]
-
d
[
0
][
0
]
+
d
[
3
][
0
]
-
d
[
2
][
0
],
d
[
0
][
0
]
-
d
[
1
][
0
]
+
d
[
3
][
0
]
-
d
[
2
][
0
]))
tDQSHL
/=
8.0
# calculate primary tDQ delays (primary - for the edges selected by 'primary_set'
tDQ
=
[
0.0
]
*
8
for
b
,
d
in
enumerate
(
hist_estimated
[
'b_indiv'
]):
for
dp
in
d
:
tDQ
[
b
]
+=
dp
[
0
]
-
dp
[
1
]
*
hist_estimated
[
'period'
]
tDQ
[
b
]
=
step_ps
*
0.25
*
(
tDQ
[
b
]
-
hist_estimated
[
'period'
])
parameters
=
{
"tSDQS"
:
step_ps
,
"tSDQ"
:
(
step_ps
,)
*
8
,
"tDQSHL"
:
tDQSHL
,
# 0.0, # improve
"tDQHL"
:
tDQHL
,
# (0.0)*8, # improve
"tDQS"
:
0.0
,
"tDQ"
:
tDQ
,
"tFDQS"
:
(
0.0
,)
*
4
,
"tFDQ"
:
(
0.0
,)
*
32
}
print
(
"parameters=
%
s"
%
(
str
(
parameters
)))
"""
ir = ir0 - s/4 + d/4 # ir - convert to ps from steps
if = if0 + s/4 - d/4
or = or0 - s/4 - d/4 # ir - convert to ps from steps
of = of0 + s/4 + d/4
(s-d)/2=if-ir
(s+d)/2=of-or
s=if-ir+of-or
d=ir-if+of-or
"""
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment