Commit 4cf7bd61 authored by Andrey Filippov's avatar Andrey Filippov

debugging write levelling measuring/results approximation

parent e4dae58e
...@@ -225,10 +225,10 @@ USAGE ...@@ -225,10 +225,10 @@ USAGE
verbose = args.verbose verbose = args.verbose
if not verbose: if not verbose:
verbose=0 verbose=0
print("args=%s"%(str(args))) # print("args=%s"%(str(args)))
print("sys.argv=%s"%(str(sys.argv))) # print("sys.argv=%s"%(str(sys.argv)))
print("DEBUG=%s"%(str(DEBUG))) # print("DEBUG=%s"%(str(DEBUG)))
print ("verbose=%d"%verbose) # print ("verbose=%d"%verbose)
paths=[] paths=[]
......
...@@ -57,6 +57,7 @@ class X393McntrlAdjust(object): ...@@ -57,6 +57,7 @@ class X393McntrlAdjust(object):
x393_mcntrl_timing=None x393_mcntrl_timing=None
x393_mcntrl_buffers=None x393_mcntrl_buffers=None
verbose=1 verbose=1
adjustment_state={}
def __init__(self, debug_mode=1,dry_mode=True): def __init__(self, debug_mode=1,dry_mode=True):
self.DEBUG_MODE= debug_mode self.DEBUG_MODE= debug_mode
self.DRY_MODE= dry_mode self.DRY_MODE= dry_mode
...@@ -657,7 +658,7 @@ class X393McntrlAdjust(object): ...@@ -657,7 +658,7 @@ class X393McntrlAdjust(object):
for j in range (1,NUM_FINE_STEPS): for j in range (1,NUM_FINE_STEPS):
if ( (len(res_avg[index+j])>0)): if ( (len(res_avg[index+j])>0)):
v=res_avg[index+j][t]; v=res_avg[index+j][t];
#correction to the initila step==1 #correction to the initial step==1
d=(v-f)/(s-f)*NUM_FINE_STEPS-j d=(v-f)/(s-f)*NUM_FINE_STEPS-j
#average #average
corr[j]+=wd*d corr[j]+=wd*d
...@@ -1141,7 +1142,7 @@ class X393McntrlAdjust(object): ...@@ -1141,7 +1142,7 @@ class X393McntrlAdjust(object):
if d[1]>0: if d[1]>0:
numValid += 1 numValid += 1
if numValid < 2: if numValid < 2:
raise Exception("Too few points wioth measured marginal CMDA odelay: %d"%numValid) raise Exception("Too few points with measured marginal CMDA odelay: %d"%numValid)
maxPosSep=0 maxPosSep=0
firstIndex=None firstIndex=None
for i,d in enumerate(cmda_marg_dly): for i,d in enumerate(cmda_marg_dly):
...@@ -1192,6 +1193,7 @@ class X393McntrlAdjust(object): ...@@ -1192,6 +1193,7 @@ class X393McntrlAdjust(object):
fineCorr[i]/=fineCorrN[i] fineCorr[i]/=fineCorrN[i]
if (quiet <2): if (quiet <2):
print ("fineCorr = %s"%str(fineCorr)) print ("fineCorr = %s"%str(fineCorr))
variantStep=-a*numPhaseSteps #how much b changes when moving over the full SDCLK period variantStep=-a*numPhaseSteps #how much b changes when moving over the full SDCLK period
if (quiet <2): if (quiet <2):
print ("Delay matching the full SDCLK period = %f"%(variantStep)) print ("Delay matching the full SDCLK period = %f"%(variantStep))
...@@ -1208,6 +1210,7 @@ class X393McntrlAdjust(object): ...@@ -1208,6 +1210,7 @@ class X393McntrlAdjust(object):
b_period+=1 b_period+=1
if (quiet <2): if (quiet <2):
print ("a=%f, b=%f, b_period=%d"%(a,b,b_period)) print ("a=%f, b=%f, b_period=%d"%(a,b,b_period))
# Find best minimal delay (with higher SDCLK frequency delay range can exceed the period and there could # Find best minimal delay (with higher SDCLK frequency delay range can exceed the period and there could
# be more than one solution # be more than one solution
bestSolPerErr=[] #list ot tuples, each containing(best cmda_odelay,number of added periods,error) bestSolPerErr=[] #list ot tuples, each containing(best cmda_odelay,number of added periods,error)
...@@ -1304,75 +1307,340 @@ class X393McntrlAdjust(object): ...@@ -1304,75 +1307,340 @@ class X393McntrlAdjust(object):
else: else:
print() print()
#TODO: Add 180 shift to get center, not marginal cmda_odelay #TODO: Add 180 shift to get center, not marginal cmda_odelay
self.adjustment_state.update(rdict)
return rdict return rdict
def adjust_write_levelling(self,
start_phase=0,
reinits=1, #higher the number - more re-inits are used (0 - only where absolutely necessary
invert=0, # anti-align DQS (should be 180 degrees off from the normal one)
max_phase_err=0.1,
quiet=1
):
""" """
With 400MHz range of dealys approximately matches the full period, but with higher Find DQS odelay for each phase value
frequency it may be possible to use several cmda delays for the same phase shift Depends on adjust_cmda_odelay results
So we'll create a list for all the phase shifts (of the period), each having one or
several best pairs - cmda (integer 0..159) delays and error (in ns) that this delay
setting will cause for command/data setup/hold to SDCLK.
Actual optimal delays are shifted by numPhaseSteps/2 (180 degrees of SDCLK)
"""
""" """
#max_phase_err=0.1 if not self.adjustment_state['cmda_bspe']:
max_dly_err=a*max_phase_err*numPhaseSteps # maximal allowed delay error (in 160-step scale) raise Exception("Command/Address delay calibration data is not found - please run 'adjust_cmda_odelay' command first")
valid_cmda_delays=[[]]*numPhaseSteps start_phase &= 0xff
variantStep=a*numPhaseSteps # delay step to get the same phase (in normalized 160 step scale) if start_phase >=128:
minBranchIndex=None start_phase -= 256 # -128..+127
maxBranchIndex=None max_lin_dly=159
for phase in range(numPhaseSteps): wlev_max_bad=0.01 # <= OK, > bad
x=phase-firstIndex numPhaseSteps=len(self.adjustment_state['cmda_bspe'])
y0=a*x+b if quiet < 2:
print("cmda_bspe = %s"%str(self.adjustment_state['cmda_bspe']))
print ("numPhaseSteps=%d"%(numPhaseSteps))
def wlev_phase_step (phase):
def norm_wlev(wlev): #change results to invert wlev data
if invert:
return [1.0-wlev[0],1.0-wlev[1],wlev[2]]
else:
return wlev
dly90=int(0.25*numPhaseSteps*abs(self.adjustment_state['cmda_odly_a']) + 0.5) # linear delay step ~ SDCLK period/4
cmda_odly_data=self.adjustment_state['cmda_bspe'][phase % numPhaseSteps]
if (not cmda_odly_data): # phase is invalid for CMDA
return None
cmda_odly_lin=cmda_odly_data['ldly']
self.x393_mcntrl_timing.axi_set_phase(phase,quiet=quiet)
self.x393_mcntrl_timing.axi_set_cmda_odelay(self.combine_delay(cmda_odly_lin),quiet=quiet)
d_low=0
while d_low <= max_lin_dly:
self.x393_mcntrl_timing.axi_set_dqs_odelay(self.combine_delay(d_low),quiet=quiet)
wlev_rslt=norm_wlev(self.x393_pio_sequences.write_levelling(1, quiet+1))
if wlev_rslt[2]>wlev_max_bad: # should be 0 - otherwise wlev did not work (CMDA?)
raise Exception("Write levelling gave unespected data, aborting (may be wrong command/address delay, incorrectly initializaed")
if (wlev_rslt[0] <= wlev_max_bad) and (wlev_rslt[1] <= wlev_max_bad):
break
d_low+=dly90
else:
if quiet < 3:
print ("Failed to find d_low during initial quadrant search for phase=%d (0x%x)"%(phase,phase))
return None
# Now find d_high>d_low to get both bytes result above
d_high= d_low+dly90
while d_high <= max_lin_dly:
self.x393_mcntrl_timing.axi_set_dqs_odelay(self.combine_delay(d_high),quiet=quiet)
wlev_rslt=norm_wlev(self.x393_pio_sequences.write_levelling(1, quiet+1))
if wlev_rslt[2]>wlev_max_bad: # should be 0 - otherwise wlev did not work (CMDA?)
raise Exception("Write levelling gave unespected data, aborting (may be wrong command/address delay, incorrectly initializaed")
if (wlev_rslt[0] >= (1.0 -wlev_max_bad)) and (wlev_rslt[1] >= (1.0-wlev_max_bad)):
break
d_high+=dly90
else:
if quiet < 3:
print ("Failed to find d_high during initial quadrant search for phase=%d (0x%x)"%(phase,phase))
return None
# Narrow range while both bytes fit
if quiet < 2:
print ("After quadrant adjust d_low=%d, d_high=%d"%(d_low,d_high))
while d_high > d_low:
dly= (d_high + d_low)//2
self.x393_mcntrl_timing.axi_set_dqs_odelay(self.combine_delay(dly),quiet=quiet)
wlev_rslt=norm_wlev(self.x393_pio_sequences.write_levelling(1, quiet+1))
if wlev_rslt[2]>wlev_max_bad: # should be 0 - otherwise wlev did not work (CMDA?)
raise Exception("Write levelling gave unespected data, aborting (may be wrong command/address delay, incorrectly initializaed")
if (wlev_rslt[0] <= wlev_max_bad) and (wlev_rslt[1] <= wlev_max_bad):
if d_low == dly:
break
d_low=dly
elif (wlev_rslt[0] >= (1.0 -wlev_max_bad)) and (wlev_rslt[1] >= (1.0-wlev_max_bad)):
d_high=dly
else:
break #mixed results
# Now process each byte separately
if quiet < 2:
print ("After common adjust d_low=%d, d_high=%d"%(d_low,d_high))
d_low=[d_low,d_low]
d_high=[d_high,d_high]
for i in range(2):
while d_high[i] > d_low[i]:
dly= (d_high[i] + d_low[i])//2
if quiet < 1:
print ("i=%d, d_low=%d, d_high=%d, dly=%d"%(i,d_low[i],d_high[i],dly))
dly01=[d_low[0],d_low[1]]
dly01[i]=dly
self.x393_mcntrl_timing.axi_set_dqs_odelay(self.combine_delay(dly01),quiet=quiet)
wlev_rslt=norm_wlev(self.x393_pio_sequences.write_levelling(1, quiet+1))
if wlev_rslt[2]>wlev_max_bad: # should be 0 - otherwise wlev did not work (CMDA?)
raise Exception("Write levelling gave unespected data, aborting (may be wrong command/address delay, incorrectly initializaed")
if wlev_rslt[i] <= wlev_max_bad:
if d_low[i] == dly:
break
d_low[i]=dly
else:
d_high[i]=dly
return d_low
if (start_phase+numPhaseSteps)>128:
old_start_phase=start_phase
while (start_phase+numPhaseSteps)>128:
start_phase -= numPhaseSteps
print("Selected scan phase range (%d..%d) does not fit into -128..+127, changing it to %d..%d)"%
(old_start_phase,old_start_phase+numPhaseSteps-1,start_phase,start_phase+numPhaseSteps-1))
#start_phase
if reinits > 1: # Normally not needed (When started after adjust_cmda_odelay, but refresh should be off (init will do that)
self.x393_pio_sequences.restart_ddr3()
wlev_dqs_delays=[None]*numPhaseSteps
for phase in range(start_phase,start_phase+numPhaseSteps):
phase_mod=phase % numPhaseSteps
if quiet <3:
print ("%d(%d):"%(phase,phase_mod),end=" ")
sys.stdout.flush()
dlys=wlev_phase_step(phase)
wlev_dqs_delays[phase_mod]=dlys
if quiet <3:
print ("%s"%str(dlys),end=" ")
sys.stdout.flush()
if quiet <2:
print()
if quiet <2:
for i,d in enumerate(wlev_dqs_delays):
if d:
print ("%d %d %d"%(i, d[0], d[1]))
else:
print ("%d"%(i))
#find the largest positive step of cmda_marg_dly while cyclically increasing phase
numValid=0
for i,d in enumerate(wlev_dqs_delays):
if d:
numValid += 1
if numValid < 2:
raise Exception("Too few points with DQS output delay in write levelling mode: %d"%numValid)
firstIndex=[None]*2
for lane in range(2):
maxPosSep=0
for i,d in enumerate(wlev_dqs_delays):
if d>0:
for j in range(1,numPhaseSteps):
d1=wlev_dqs_delays[(i + j) % numPhaseSteps]
if d1: # valid data
if (d1[lane] - d[lane]) > maxPosSep:
maxPosSep = d1[lane] - d[lane]
firstIndex[lane]=(i + j) % numPhaseSteps
break;
#now data from firstIndex to (firstIndex+numPhaseSteps)%numPhaseSteps is ~monotonic - apply linear approximation
if quiet <2:
print ("firstIndices=[%d,%d]"%(firstIndex[0],firstIndex[1]))
#Linear approximate each lane
a=[None]*2
b=[None]*2
for lane in range(2):
S0=0
SX=0
SY=0
SX2=0
SXY=0
for x in range(numPhaseSteps):
dlys=wlev_dqs_delays[(x+firstIndex[lane]) % numPhaseSteps]
if dlys:
y=dlys[lane]+0.5
S0+=1
SX+=x
SY+=y
SX2+=x*x
SXY+=x*y
# print("x=%f, index=%d, y=%f, S0=%f, SX=%f, SY=%f, SX2=%f, SXY=%f"%(x, (x+firstIndex) % numPhaseSteps, y, S0, SX, SY, SX2, SXY))
a[lane] = (SXY*S0 - SY*SX) / (SX2*S0 - SX*SX)
b[lane] = (SY*SX2 - SXY*SX) / (SX2*S0 - SX*SX)
if quiet < 2:
print ("a=[%f, %f], b=[%f, %f]"%(a[0],a[1],b[0],b[1]))
# fine delay corrections
fineCorr= [[0.0]*5,[0.0]*5] # not [[0.0]*5]*2 ! - they will poin to the same top element
fineCorrN=[[0]*5,[0]*5] # not [[0]*5]*2 !
for lane in range(2):
for x in range(numPhaseSteps):
dlys=wlev_dqs_delays[(x+firstIndex[lane]) % numPhaseSteps]
if dlys:
y=dlys[lane]
i=y % 5
y+=0.5
diff=y- (a[lane] * x + b[lane])
fineCorr[lane][i] += diff
fineCorrN[lane][i] += 1
# print("lane,x,y,i,diff,fc,fcn= %d, %d, %f, %d, %f, %f, %d"%(lane,x,y,i,diff,fineCorr[lane][i],fineCorrN[lane][i]))
# print ("lane=%d, fineCorr=%s, fineCorrN=%s"%(lane, fineCorr[lane], fineCorrN[lane]))
for i in range(5):
if fineCorrN[lane][i]>0:
fineCorr[lane][i]/=fineCorrN[lane][i]
# print ("lane=%d, fineCorr=%s, fineCorrN=%s"%(lane, fineCorr[lane], fineCorrN[lane]))
if (quiet <2):
print ("fineCorr lane0 = %s"%str(fineCorr[0])) # Why ar they both the same?
print ("fineCorr lane1 = %s"%str(fineCorr[1]))
variantStep=[-a[0]*numPhaseSteps,-a[1]*numPhaseSteps] #how much b changes when moving over the full SDCLK period
if (quiet <2):
print ("Delay matching the full SDCLK period = [%f, %f]"%(variantStep[0],variantStep[1]))
b_period=[None]*2
for lane in range(2):
b[lane]-=a[lane]*firstIndex[lane] # recalculate b for phase=0
b_period[lane]=0
if (quiet <2):
print ("a[%d]=%f, b[%d]=%f"%(lane,a[lane],lane,b[lane]))
#Make b fit into 0..max_lin_dly range
while (b[lane] > max_lin_dly):
b[lane]-=variantStep[lane]
b_period[lane]-=1
while (b[lane] < 0):
b[lane] += variantStep[lane] # can end up having b>max_lin_dly - if the phase adjust by delay is lower than full period
b_period[lane] += 1
if (quiet <2):
print ("a[0]=%f, b[0]=%f, b_period[0]=%d"%(a[0],b[0],b_period[0]))
print ("a[1]=%f, b[1]=%f, b_period[1]=%d"%(a[1],b[1],b_period[1]))
# Find best minimal delay (with higher SDCLK frequency delay range can exceed the period and there could
# be more than one solution
bestSolPerErr=[[],[]] # pair (for two lanes) of lists ot tuples, each containing(best cmda_odelay,number of added periods,error)
max_dly_err=[abs(a[0])*max_phase_err*numPhaseSteps, # maximal allowed delay error (in 160-step scale)
abs(a[1])*max_phase_err*numPhaseSteps]
if (quiet <2):
print("Max dly error=%s"%(str(max_dly_err)))
for lane in range(2):
for phase in range (numPhaseSteps):
periods=0 # b_period[lane]
y=a[lane]*phase+b[lane]
y0=y
#find the lowest approximate solution to consider #find the lowest approximate solution to consider
if y0 > (-max_dly_err): if y0 > (-max_dly_err[lane]):
while (y0 >= (variantStep-max_dly_err)): while (y0 >= (variantStep[lane]-max_dly_err[lane])):
y0 -= variantStep y0 -= variantStep[lane]
periods -= 1
else: else:
while (y0<(-max_dly_err)): while (y0<(-max_dly_err[lane])):
y0 += variantStep y0 += variantStep[lane]
while y0 <= (159+max_dly_err): #May be never when using higher delay reference clock (300MHz) with the same SDCLK periods += 1
#try delays in the range of +/- 5 steps from "ideal" and find the lowest error
dly_min= max(0,int(y0-4.5)) dly_min= max(0,int(y0-4.5))
dly_max= max(159,int(y0+5.5)) dly_max= min(max_lin_dly,int(y0+5.5))
dly_to_try=[]
for d in range(dly_min,dly_max+1):
dly_to_try.append((d,periods))
if (y0<0): # add a second range to try (higher delay values
y0+=variantStep[lane]
periods += 1
dly_min= max(0,int(y0-4.5))
dly_max= min(max_lin_dly,int(y0+5.5))
for d in range(dly_min,dly_max+1):
dly_to_try.append((d,periods))
bestDly=None bestDly=None
bestDiff=None bestDiff=None
for dly in range(dly_min,dly_max+1): bestPeriods=None
actualDelay=dly-fineCorr[dly % 5] # delay corrected for the non-uniform 160-scale for dp in dly_to_try:
diff=actualDelay-y0 actualDelay=dp[0]-fineCorr[lane][dp[0] % 5] # delay corrected for the non-uniform 160-scale
diff=actualDelay-(y+variantStep[lane]*dp[1]) # dp[1] - number of added/removed full periods
if (bestDiff is None) or (abs(bestDiff) > abs(diff)): if (bestDiff is None) or (abs(bestDiff) > abs(diff)):
bestDiff = diff bestDiff = diff
bestDly = dly bestDly = dp[0]
bestPeriods= dp[1]
phase_rslt=() #Default, if nothing was found
if not bestDiff is None: if not bestDiff is None:
branchIndex=int(((y0-(a*x+b))/variantStep) + 0.5) phase_rslt=(bestDly,bestPeriods,bestDiff)
valid_cmda_delays[phase].append((bestDly,bestDiff,branchIndex)) if (quiet <2):
if (minBranchIndex is None) or (branchIndex < minBranchIndex): print ("%d:%d: %s %s"%(lane, phase, str(dly_to_try), str(phase_rslt)) )
minBranchIndex = branchIndex
if (maxBranchIndex is None) or (branchIndex > maxBranchIndex): bestSolPerErr[lane].append(phase_rslt)
maxBranchIndex = branchIndex if (quiet <2):
y0+=variantStep for i in range(numPhaseSteps): # enumerate(cmda_marg_dly):
#print for plotting - find min/max for d=wlev_dqs_delays[i]
for phase in range(numPhaseSteps): if d:
x=phase-firstIndex print ("%d %d %d"%(i, d[0], d[1]),end=" ")
y0=a*x+b
dlys={}
diffs={}
for i,v in enumerate(valid_cmda_delays[phase]):
dlys[v[2]]= v[0]
diffs[v[2]]=v[1]
print ("%3d: %3d"%(phase,cmda_marg_dly[phase][1]),end=" ")
for branch in range(minBranchIndex, maxBranchIndex+1):
if branch in dlys:
print("%d"%dlys[branch],end=" ")
else: else:
print("",end=" ") print ("%d X X"%(i),end=" ")
for branch in range(minBranchIndex, maxBranchIndex+1): for lane in range(2):
if branch in diffs: bspe=bestSolPerErr[lane][i]
print("%f"%diffs[branch],end=" ") if bspe:
print("%d %d %f"%(bspe[0], bspe[1], bspe[2]),end=" ")
else: else:
print("",end=" ") print("X X X",end=" ")
print()
wlev_bspe=[[],[]]
for lane in range (2):
for phase in range (numPhaseSteps):
bspe=bestSolPerErr[lane][phase]
if bspe:
wlev_bspe[lane].append({'ldly':bspe[0],
'period':bspe[1]+b_period[lane], # b_period - shift from the branch
# where phase starts from the longest cmda_odelay and goes down
'err':bspe[2]})
else:
wlev_bspe[lane].append({})
rdict={"wlev_dqs_odly_a": a, #[,]
"wlev_dqs_odly_b": b,#[,]
"wlev_dqs_period": b_period, #
"wlev_dqs_fine_corr": fineCorr,
"wlev_dqs_bspe": wlev_bspe}
if (quiet <3):
print("\nwrite levelling DQS output delay adjustmet results:")
print('wlev_dqs0_odly_a: %f'%(rdict['wlev_dqs_odly_a'][0]))
print('wlev_dqs1_odly_a: %f'%(rdict['wlev_dqs_odly_a'][1]))
print('wlev_dqs0_odly_b: %f'%(rdict['wlev_dqs_odly_b'][0]))
print('wlev_dqs1_odly_b: %f'%(rdict['wlev_dqs_odly_b'][1]))
print('wlev_dqs0_period: %d'%(rdict['wlev_dqs_period'][0]))
print('wlev_dqs1_period: %d'%(rdict['wlev_dqs_period'][1]))
print('wlev_dqs0_fine_corr: %s'%(rdict['wlev_dqs_fine_corr'][0]))
print('wlev_dqs1_fine_corr: %s'%(rdict['wlev_dqs_fine_corr'][1]))
print("\nPhase Measured_DQS0 Measured_DQS1 DQS0 PERIODS0*10 ERR0*10 DQS1 PERIODS1*10 ERR1*10")
for i in range(numPhaseSteps): # enumerate(cmda_marg_dly):
d=wlev_dqs_delays[i]
if d:
print ("%d %d %d"%(i, d[0], d[1]),end=" ")
else:
print ("%d X X"%(i),end=" ")
for lane in range(2):
bspe=rdict['wlev_dqs_bspe'][lane][i] # bestSolPerErr[lane][i]
if bspe:
print("%d %d %f"%(bspe['ldly'], 10*bspe['period'], 10*bspe['err']),end=" ")
else:
print("X X X",end=" ")
print()
self.adjustment_state.update(rdict)
# print (self.adjustment_state)
return rdict
## TODO: add 0.5 to result, split low/high bits (as done in adjust_random
"""
\ No newline at end of file
...@@ -222,51 +222,58 @@ class X393McntrlTiming(object): ...@@ -222,51 +222,58 @@ class X393McntrlTiming(object):
self.x393_axi_tasks.write_contol_register(vrlg.DLY_SET,0); # set all delays self.x393_axi_tasks.write_contol_register(vrlg.DLY_SET,0); # set all delays
def axi_set_dqs_idelay(self, def axi_set_dqs_idelay(self,
delay=None): # input [7:0] delay; delay=None, # input [7:0] delay;
quiet=1):
""" """
Set all DQs input delays to the same value Set all DQs input delays to the same value
<delay> 8-bit (5+3) delay value to use or a tuple/list with a pair for (lane0, lane1) <delay> 8-bit (5+3) delay value to use or a tuple/list with a pair for (lane0, lane1)
if delay is None will restore default values if delay is None will restore default values
<quiet> reduce output
""" """
if delay is None: if delay is None:
delay=(vrlg.get_default_field("DLY_LANE0_IDELAY",8),vrlg.get_default_field("DLY_LANE1_IDELAY",8)) delay=(vrlg.get_default_field("DLY_LANE0_IDELAY",8),vrlg.get_default_field("DLY_LANE1_IDELAY",8))
if isinstance(delay,(int,long)): if isinstance(delay,(int,long)):
delay=(delay,delay) delay=(delay,delay)
if self.DEBUG_MODE > 1: if quiet < 2:
print("SET DQS IDELAY="+hexMultiple(delay)) # hexMultiple print("SET DQS IDELAY="+hexMultiple(delay)) # hexMultiple
self.axi_set_multiple_delays(vrlg.LD_DLY_LANE0_IDELAY, 8, 1, delay[0], "DLY_LANE0_IDELAY") self.axi_set_multiple_delays(vrlg.LD_DLY_LANE0_IDELAY, 8, 1, delay[0], "DLY_LANE0_IDELAY")
self.axi_set_multiple_delays(vrlg.LD_DLY_LANE1_IDELAY, 8, 1, delay[1], "DLY_LANE1_IDELAY") self.axi_set_multiple_delays(vrlg.LD_DLY_LANE1_IDELAY, 8, 1, delay[1], "DLY_LANE1_IDELAY")
self.x393_axi_tasks.write_contol_register(vrlg.DLY_SET,0); # set all delays self.x393_axi_tasks.write_contol_register(vrlg.DLY_SET,0); # set all delays
def axi_set_dqs_odelay(self, def axi_set_dqs_odelay(self,
delay=None): # input [7:0] delay; delay=None, # input [7:0] delay;
quiet=1):
""" """
Set all DQs OUTput delays to the same value Set all DQs OUTput delays to the same value
<delay> 8-bit (5+3) delay value to use or a tuple/list with a pair for (lane0, lane1) <delay> 8-bit (5+3) delay value to use or a tuple/list with a pair for (lane0, lane1)
if delay is None will restore default values if delay is None will restore default values
<quiet> reduce output
""" """
if delay is None: if delay is None:
delay=(vrlg.get_default_field("DLY_LANE0_ODELAY",8),vrlg.get_default_field("DLY_LANE1_ODELAY",8)) delay=(vrlg.get_default_field("DLY_LANE0_ODELAY",8),vrlg.get_default_field("DLY_LANE1_ODELAY",8))
if isinstance(delay,(int,long)): if isinstance(delay,(int,long)):
delay=(delay,delay) delay=(delay,delay)
if self.DEBUG_MODE > 1: if quiet < 2:
print("SET DQS ODELAY="+hexMultiple(delay)) # hexMultiple print("SET DQS ODELAY="+hexMultiple(delay)) # hexMultiple
self.axi_set_multiple_delays(vrlg.LD_DLY_LANE0_ODELAY, 8, 1, delay[0], "DLY_LANE0_ODELAY") self.axi_set_multiple_delays(vrlg.LD_DLY_LANE0_ODELAY, 8, 1, delay[0], "DLY_LANE0_ODELAY")
self.axi_set_multiple_delays(vrlg.LD_DLY_LANE1_ODELAY, 8, 1, delay[1], "DLY_LANE1_ODELAY") self.axi_set_multiple_delays(vrlg.LD_DLY_LANE1_ODELAY, 8, 1, delay[1], "DLY_LANE1_ODELAY")
self.x393_axi_tasks.write_contol_register(vrlg.DLY_SET,0); # set all delays self.x393_axi_tasks.write_contol_register(vrlg.DLY_SET,0); # set all delays
def axi_set_dm_odelay (self, def axi_set_dm_odelay (self,
delay=None): # input [7:0] delay; delay=None, # input [7:0] delay;
quiet=1):
""" """
Set all DM output delays to the same value Set all DM output delays to the same value
<delay> 8-bit (5+3) delay value to use or a tuple/list with a pair for (lane0, lane1) <delay> 8-bit (5+3) delay value to use or a tuple/list with a pair for (lane0, lane1)
if delay is None will restore default values if delay is None will restore default values
<quiet> reduce output
""" """
if delay is None: if delay is None:
delay=(vrlg.get_default_field("DLY_LANE0_ODELAY",9),vrlg.get_default_field("DLY_LANE1_ODELAY",9)) delay=(vrlg.get_default_field("DLY_LANE0_ODELAY",9),vrlg.get_default_field("DLY_LANE1_ODELAY",9))
if isinstance(delay,(int,long)): if isinstance(delay,(int,long)):
delay=(delay,delay) delay=(delay,delay)
if self.DEBUG_MODE > 1: if quiet < 2:
print("SET DQM IDELAY="+hexMultiple(delay)) # hexMultiple print("SET DQM IDELAY="+hexMultiple(delay)) # hexMultiple
self.axi_set_multiple_delays(vrlg.LD_DLY_LANE0_ODELAY, 9, 1, delay[0], "DLY_LANE0_ODELAY") self.axi_set_multiple_delays(vrlg.LD_DLY_LANE0_ODELAY, 9, 1, delay[0], "DLY_LANE0_ODELAY")
self.axi_set_multiple_delays(vrlg.LD_DLY_LANE1_ODELAY, 9, 1, delay[1], "DLY_LANE1_ODELAY") self.axi_set_multiple_delays(vrlg.LD_DLY_LANE1_ODELAY, 9, 1, delay[1], "DLY_LANE1_ODELAY")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment