Commit 3d603296 authored by Andrey Filippov's avatar Andrey Filippov

fixed last of the known so far errors in the DQ input delays vs DQS input delays LMA fitting

parent 07f11d45
......@@ -116,7 +116,12 @@ class X393LMA(object):
'tFDQS': [True, True, True, True],
'tFDQ': [True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True],
'anaScale': True, # False,# True, # False # Broke?
'tCDQS': False # True #False #True # list of 30
# 'tCDQS': False # True #False #True # list of 30
'tCDQS': [True, True, True, True, True, True, True, True, # 8
True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,
# False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, #15
True, True, True, True, True, True, True]
# False, False, False, False, False, False, False] #7
}
"""
parameterMask={'tSDQS': True,
......@@ -144,7 +149,10 @@ class X393LMA(object):
data_set,
compare_prim_steps,
scale_w=0.2, # multiply weight by this if fractions are undefined
periods=None):
periods=None,
quiet=1):
if quiet < 3:
print ("createYandWvectors(): scale_w=%f"%(scale_w))
def pythIsNone(obj):
return obj is None
......@@ -765,7 +773,7 @@ class X393LMA(object):
print()
return data_periods_map
def init_parameters(self,
def lma_fit(self,
lane, # byte lane
bin_size,
clk_period,
......@@ -782,6 +790,10 @@ class X393LMA(object):
each of 2x2 elements (DQ delay values) or null
Create data set template - for each DQS delay and inPhase
- branch - number of full periods to add
After initial parametersn are created - run LMA to find optimal ones,
then return up to 3 varints (early, nominal, late) providing the best
DQ input delay for each DQS one
@lane byte lane to process
@bin_size bin size for the histograms (should be 5/10/20/40)
@clk_period SDCLK period in ps
......@@ -792,7 +804,10 @@ class X393LMA(object):
save None for fraction in unknown (previous -0.5, next +0.5)
@scale_w weight for "uncertain" values (where samples chane from all 0 to all 1 in one step)
@quiet reduce output
@return 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
each element being either None, or a list of 3 best DQ delay values for the DQS delay (some mey be None too)
"""
if quiet < 3:
print ("init_parameters(): scale_w=%f"%(scale_w))
self.clk_period=clk_period
......@@ -816,7 +831,8 @@ class X393LMA(object):
data_set,
compare_prim_steps,
scale_w,
data_periods_map)
data_periods_map,
quiet)
# print("ywp=%s"%(str(ywp)))
if quiet < 2:
print("\nY-vector:")
......@@ -839,6 +855,7 @@ class X393LMA(object):
for b, d in enumerate(hist_estimated['b_indiv']):
tDQSHL += (d[1][0]-d[0][0] +d[3][0]-d[2][0])*step_ps
tDQHL[b] = (d[0][0]-d[1][0] +d[3][0]-d[2][0])*step_ps
if quiet < 3:
print ("%d: S=%f, D=%f"%(b, d[1][0]-d[0][0] +d[3][0]-d[2][0], d[0][0]-d[1][0] +d[3][0]-d[2][0]))
tDQSHL /= 8.0
# calculate primary tDQ delays (primary - for the edges selected by 'primary_set'
......@@ -860,8 +877,14 @@ class X393LMA(object):
"tCDQS": (0.0,)*30
# "anaScale":self.analog_scale
}
"""
Returns # best (early,nominal,late) for each bit for each delay ([3][160][8])
Outer list each has 160-element list, some of which are None, others hove 8 elements (including None ones)
"""
if quiet < 2:
print ("parameters=%s"%(str(parameters)))
self.normalizeParameters(parameters) #isMask=False)
if quiet < 4:
print ("normalized parameters=%s"%(str(parameters)))
"""
both ways work:
......@@ -872,15 +895,16 @@ class X393LMA(object):
# self.parameterMask=self.normalizeParameters({},isMask=True)
self.parameterMask=self.normalizeParameters(self.parameterMask,isMask=True)
if quiet < 4:
print ("parameters mask=%s"%(str(self.parameterMask)))
create_jacobian=True
fxj= self.createFxAndJacobian(parameters,
ywp, # keep in self.variable?
primary_set,
jacobian=create_jacobian,
parMask=None,
quiet=1)
create_jacobian,
None, #parMask
quiet)
if create_jacobian:
fx=fxj['fx']
......@@ -893,19 +917,12 @@ class X393LMA(object):
print("\nfx (filtered):")
self.showYOrVector(ywp,True,fx)
SX=0.0
SX2=0.0
S0=0.0
for d,w in zip(fx,ywp['w']):
if w>0:
S0+=w
SX+=w*d
SX2+=w*d*d
avg= SX/S0
rms= math.sqrt(SX2/S0)
print ("average(fx)= %fps, rms(fx)=%fps"%(avg,rms))
if quiet < 4:
arms = self.getParAvgRMS(parameters,
ywp,
primary_set, # prima
quiet+1)
print ("average(fx)= %fps, rms(fx)=%fps"%(arms['avg'],arms['rms']))
if quiet < 3:
jByJT=np.dot(fxj['jacob'],np.transpose(fxj['jacob']))
print("\njByJT:")
......@@ -923,7 +940,7 @@ class X393LMA(object):
self.lambdas,
self.finalDiffRMS,
quiet)
if quiet < 4:
if (quiet < 4) or ((quiet < 5) and finished):
arms = self.getParAvgRMS(parameters,
ywp,
primary_set, # prima
......@@ -941,8 +958,8 @@ class X393LMA(object):
ywp, # keep in self.variable?
primary_set,
False,
parMask=None,
quiet=1)
None,
quiet)
if quiet < 3:
print("\nfx-postLMA:")
......@@ -976,6 +993,14 @@ class X393LMA(object):
else:
print("%d"%(DQvDQS[enl][dly][b]),end=" ")
print()
rslt={}
rslt_names=("early","nominal","late")
for i, d in enumerate(DQvDQS):
rslt[rslt_names[i]] = d
return rslt
# return DQvDQS
# Returns 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
# each element being either None, or a list of 3 best DQ delay values for the DQS delay (some mey be None too)
def getBestDQforDQS(self,
......@@ -1189,7 +1214,7 @@ class X393LMA(object):
if d >= 0:
dqs_delay32_index[i] = dqs_delay32_en[d]
print("*****dqs_delay32_index=",dqs_delay32_index)
# print("*****dqs_delay32_index=",dqs_delay32_index)
dq_finedelay_en=[None]*8
for b in range(8):
......@@ -1208,6 +1233,7 @@ class X393LMA(object):
dtdqs_dtFDQS = (-fineM5[0][dlyMod5],-fineM5[1][dlyMod5],-fineM5[2][dlyMod5],-fineM5[3][dlyMod5])
dtdqs_dtDQSHL_rf=(-0.25,+0.25) # ign opposite from: ir = ir0 - s/4 + d/4; or = or0 - s/4 - d/4, ... - NOT, but maybe other is wrong
#correct for DQS edge type
# dbg=[0.0]*32
for b in range(8): # use all 4 variants
for t in range(4):
indx=32*dly+t*8+b
......@@ -1223,9 +1249,10 @@ class X393LMA(object):
jacob[pIndx,indx]=-dtdqs_dtFDQS[i]
if dqs_delay32_en:
for i,pIndx in enumerate (dqs_delay32_en):
for i,pIndx in enumerate (dqs_delay32_index):
if pIndx >= 0:
jacob[pIndx,indx]=(0,1.0)[i==dlyDiv5]
# dbg[i]+=jacob[pIndx,indx]
if parInd['tDQSHL'] >= 0:
jacob[parInd['tDQSHL'],indx]=-dtdqs_dtDQSHL_rf[t & 1]
......@@ -1249,7 +1276,7 @@ class X393LMA(object):
if parInd['anaScale'] >= 0:
if anaScale and not isNone(y_fractions[indx]):
jacob[parInd['anaScale'],indx]=-y_fractions[indx]
# print("dbg: %d: "%(dly),dbg)
return {'fx':fx,'jacob':jacob}
def getParAvgRMS(self,
parameters,
......
......@@ -2042,9 +2042,19 @@ class X393McntrlAdjust(object):
quiet=1):
"""
@scale_w weight for "uncertain" values (where samples chane from all 0 to all 1 in one step)
Run DQ vs DQS fitting for one data lane (0 or 1) using earlier acquired hard-coded data
@lane byte lane to process
@bin_size bin size for the histograms (should be 5/10/20/40)
@primary_set which of the data edge series to use as leading (other will be trailing by 180)
@data_set_number select one of the hard-coded data sets (sets 0 and 1 use comparing with the data 1 fine step below
set #2 (default) used measurement with previous primary step measurement (will not suffer from
fine range wider than on primary step)
@scale_w weight for "uncertain" values (where samples change from all 0 to all 1 in one step)
For sufficient data 0.0 is OK (and seems to work better)- only "analog" samples are considered
@return 3-element dictionary of ('early','nominal','late'), each being None or a 160-element list,
each element being either None, or a list of 3 best DQ delay values for the DQS delay (some mey be None too)
"""
if quiet < 3:
print ("proc_test_data(): scale_w=%f"%(scale_w))
compare_prim_steps=get_test_dq_dqs_data.get_compare_prim_steps(data_set_number)
meas_data=get_test_dq_dqs_data.get_data(data_set_number)
......@@ -2054,14 +2064,6 @@ class X393McntrlAdjust(object):
bits=[None]*16
for b,pData in enumerate(data):
if pData:
"""
bits[b]=[[None,None],[None,None]]
for inPhase in (0,1):
if pData[inPhase]:
for e in (0,1):
if pData[inPhase][e]:
bits[b][inPhase][e]=pData[inPhase][e][0]
"""
bits[b]=[None]*4
for inPhase in (0,1):
if pData[inPhase]:
......@@ -2072,8 +2074,7 @@ class X393McntrlAdjust(object):
if quiet<1:
x393_lma.test_data(meas_delays,compare_prim_steps,quiet)
lma=x393_lma.X393LMA()
lma.init_parameters(
lane,
return lma.lma_fit(lane,
bin_size,
2500.0, # clk_period,
78.0, # dly_step_ds,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment