Commit c64289c7 authored by Andrey Filippov's avatar Andrey Filippov

next change

parent 1fb4f69a
......@@ -395,9 +395,10 @@ class ExploreData:
lst = []
for i in range (self.hist_to_batch.max()+1):
lst.append([])
# bb1d = bb[findx].reshape(self.num_tiles)
disp_var_tiles = disp_var[findx].reshape(self.num_tiles)
disp_neibs_tiles = disp_neibs[findx].reshape(self.num_tiles)
# bb1d = bb[findx].reshape(self.num_tiles)
if use_neibs:
disp_var_tiles = disp_var[findx].reshape(self.num_tiles)
disp_neibs_tiles = disp_neibs[findx].reshape(self.num_tiles)
for n, indx in enumerate(bb[findx].reshape(self.num_tiles)):
if indx >= 0:
if use_neibs:
......@@ -718,10 +719,10 @@ if __name__ == "__main__":
ml_subdir = "ml"
#Parameters to generate neighbors data. Set radius to 0 to generate single-tile
RADIUS = 1
RADIUS = 0
MIN_NEIBS = (2 * RADIUS + 1) * (2 * RADIUS + 1) # All tiles valid == 9
VARIANCE_THRESHOLD = 1.5
NUM_TRAIN_SETS = 2
NUM_TRAIN_SETS = 6
if RADIUS == 0:
BATCH_DISP_BINS = 20
......
......@@ -36,6 +36,7 @@ ABSOLUTE_DISPARITY = False # True # False
DEBUG_PLT_LOSS = True
FEATURES_PER_TILE = 324
EPOCHS_TO_RUN = 10000 #0
EPOCHS_SAME_FILE = 20
RUN_TOT_AVG = 100 # last batches to average. Epoch is 307 training batches
BATCH_SIZE = 1000 # Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SHUFFLE_EPOCH = True
......@@ -115,12 +116,13 @@ def read_and_decode(filename_queue):
try:
train_filenameTFR = sys.argv[1]
except IndexError:
train_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train.tfrecords"
train_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_00.tfrecords"
try:
test_filenameTFR = sys.argv[2]
except IndexError:
test_filenameTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/test.tfrecords"
#FILES_PER_SCENE
train_filenameTFR1 = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_01.tfrecords"
import tensorflow as tf
import tensorflow.contrib.slim as slim
......@@ -128,6 +130,13 @@ import tensorflow.contrib.slim as slim
print_time("Importing training data... ", end="")
corr2d_train, target_disparity_train, gt_ds_train = readTFRewcordsEpoch(train_filenameTFR)
print_time(" Done")
print_time("Importing second training data... ", end="")
corr2d_train1, target_disparity_train1, gt_ds_train1 = readTFRewcordsEpoch(train_filenameTFR1)
print_time(" Done")
corr2d_trains = [corr2d_train, corr2d_train1]
target_disparity_trains = [target_disparity_train, target_disparity_train1]
gt_ds_trains = [gt_ds_train, gt_ds_train1]
corr2d_train_placeholder = tf.placeholder(corr2d_train.dtype, (None,324)) # corr2d_train.shape)
target_disparity_train_placeholder = tf.placeholder(target_disparity_train.dtype, (None,1)) #target_disparity_train.shape)
......@@ -382,14 +391,14 @@ with tf.Session() as sess:
train2_avg = 0.0
test_avg = 0.0
test2_avg = 0.0
for epoch in range(EPOCHS_TO_RUN):
# if SHUFFLE_EPOCH:
# dataset_train = dataset_train.shuffle(buffer_size=10000)
sess.run(iterator_train.initializer, feed_dict={corr2d_train_placeholder: corr2d_train,
target_disparity_train_placeholder: target_disparity_train,
gt_ds_train_placeholder: gt_ds_train})
for epoch in range (EPOCHS_TO_RUN):
# file_index = (epoch // 20) % 2
file_index = (epoch // 1) % 2
# if SHUFFLE_EPOCH:
# dataset_train = dataset_train.shuffle(buffer_size=10000)
sess.run(iterator_train.initializer, feed_dict={corr2d_train_placeholder: corr2d_trains[file_index],
target_disparity_train_placeholder: target_disparity_trains[file_index],
gt_ds_train_placeholder: gt_ds_trains[file_index]})
for i in range(dataset_train_size):
try:
train_summary,_, G_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment