Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
bcf427de
Commit
bcf427de
authored
Sep 07, 2018
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Modified to use newer Tiff write
parent
38b9513f
Changes
6
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
36 additions
and
56 deletions
+36
-56
nn_ds_neibs13.py
nn_ds_neibs13.py
+1
-1
nn_ds_neibs14.py
nn_ds_neibs14.py
+1
-1
nn_ds_neibs15.py
nn_ds_neibs15.py
+2
-1
nn_ds_neibs17.py
nn_ds_neibs17.py
+14
-32
nn_eval_01.py
nn_eval_01.py
+3
-3
qcstereo_functions.py
qcstereo_functions.py
+15
-18
No files found.
nn_ds_neibs13.py
View file @
bcf427de
...
...
@@ -420,7 +420,7 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan):
else
:
data
[
...
,
0
]
+=
data
[
...
,
1
]
data
=
data
.
transpose
(
2
,
0
,
1
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
[
...
,
np
.
newaxis
]
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
)
def
eval_results
(
rslt_path
,
absolute
,
...
...
nn_ds_neibs14.py
View file @
bcf427de
...
...
@@ -425,7 +425,7 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan):
else
:
data
[
...
,
0
]
+=
data
[
...
,
1
]
data
=
data
.
transpose
(
2
,
0
,
1
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
[
...
,
np
.
newaxis
]
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
)
def
eval_results
(
rslt_path
,
absolute
,
...
...
nn_ds_neibs15.py
View file @
bcf427de
...
...
@@ -424,7 +424,7 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan):
else
:
data
[
...
,
0
]
+=
data
[
...
,
1
]
data
=
data
.
transpose
(
2
,
0
,
1
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
[
...
,
np
.
newaxis
]
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
)
def
eval_results
(
rslt_path
,
absolute
,
...
...
@@ -1161,6 +1161,7 @@ with tf.Session() as sess:
num_train_variants
=
len
(
datasets_train
)
thr
=
None
;
thr_result
=
None
trains_to_update
=
[
train_next
[
n_train
][
'files'
]
>
train_next
[
n_train
][
'slots'
]
for
n_train
in
range
(
len
(
train_next
))]
for
epoch
in
range
(
EPOCHS_TO_RUN
):
"""
...
...
nn_ds_neibs17.py
View file @
bcf427de
This diff is collapsed.
Click to expand it.
nn_eval_01.py
View file @
bcf427de
...
...
@@ -5,13 +5,13 @@ __license__ = "GPL-3.0+"
__email__
=
"andrey@elphel.com"
from
PIL
import
Image
#
from PIL import Image
import
os
import
sys
import
glob
#
import glob
import
numpy
as
np
#
import numpy as np
import
time
...
...
qcstereo_functions.py
View file @
bcf427de
...
...
@@ -3,7 +3,6 @@ __copyright__ = "Copyright 2018, Elphel, Inc."
__license__
=
"GPL-3.0+"
__email__
=
"andrey@elphel.com"
#from numpy import float64
import
os
import
numpy
as
np
import
tensorflow
as
tf
...
...
@@ -46,7 +45,6 @@ def parseXmlConfig(conf_file, root_dir):
files
=
{}
for
p
in
root
.
find
(
'files'
):
files
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
# globals().update(parameters)
dbg_parameters
=
{}
for
p
in
root
.
find
(
'dbg_parameters'
):
dbg_parameters
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
...
...
@@ -94,9 +92,6 @@ def readTFRewcordsEpoch(train_filename, cluster_radius):
file_all
=
os
.
path
.
join
(
npy_dir
,
filebasename
+
'.npy'
)
if
os
.
path
.
exists
(
file_all
):
data
=
np
.
load
(
file_all
)
# corr2d= np.load (file_corr2d)
# target_disparity = np.load(file_target_disparity)
# gt_ds = np.load(file_gt_ds)
else
:
record_iterator
=
tf
.
python_io
.
tf_record_iterator
(
path
=
train_filename
)
corr2d_list
=
[]
...
...
@@ -152,16 +147,12 @@ def read_and_decode(filename_queue, featrures_per_tile):
target_disparity
=
features
[
'target_disparity'
]
# tf.decode_raw(features['target_disparity'], tf.float32)
gt_ds
=
tf
.
cast
(
features
[
'gt_ds'
],
tf
.
float32
)
# tf.decode_raw(features['gt_ds'], tf.float32)
in_features
=
tf
.
concat
([
corr2d
,
target_disparity
],
0
)
# still some nan-s in correlation data?
# in_features_clean = tf.where(tf.is_nan(in_features), tf.zeros_like(in_features), in_features)
# corr2d_out, target_disparity_out, gt_ds_out = tf.train.shuffle_batch( [in_features_clean, target_disparity, gt_ds],
corr2d_out
,
target_disparity_out
,
gt_ds_out
=
tf
.
train
.
shuffle_batch
(
[
in_features
,
target_disparity
,
gt_ds
],
batch_size
=
1000
,
# 2,
capacity
=
30
,
num_threads
=
2
,
min_after_dequeue
=
10
)
return
corr2d_out
,
target_disparity_out
,
gt_ds_out
#http://adventuresinmachinelearning.com/introduction-tensorflow-queuing/
def
add_margins
(
npa
,
radius
,
val
=
np
.
nan
):
npa_ext
=
np
.
empty
((
npa
.
shape
[
0
]
+
2
*
radius
,
npa
.
shape
[
1
]
+
2
*
radius
,
npa
.
shape
[
2
]),
dtype
=
npa
.
dtype
)
npa_ext
[
radius
:
radius
+
npa
.
shape
[
0
],
radius
:
radius
+
npa
.
shape
[
1
]]
=
npa
...
...
@@ -304,7 +295,6 @@ def initTrainTestData(
"""
num_trains
=
len
(
files
[
'train'
])
num_entries
=
num_trains
*
buffer_size
# dataset_train_all = None
dataset_train_merged
=
None
train_next
=
[
None
]
*
num_trains
for
n_train
,
f_train
in
enumerate
(
files
[
'train'
]):
...
...
@@ -402,7 +392,7 @@ def initImageData(files,
print_time
(
" Done"
)
return
img_data
def
evaluateAllResults
(
result_files
,
absolute_disparity
,
cluster_radius
):
def
evaluateAllResults
(
result_files
,
absolute_disparity
,
cluster_radius
,
labels
=
None
):
for
result_file
in
result_files
:
try
:
print_time
(
"Reading resuts from "
+
result_file
,
end
=
" "
)
...
...
@@ -412,12 +402,12 @@ def evaluateAllResults(result_files, absolute_disparity, cluster_radius):
continue
print_time
(
"Done"
)
print_time
(
"Saving resuts to tiff"
,
end
=
" "
)
result_npy_to_tiff
(
result_file
,
absolute_disparity
,
fix_nan
=
True
)
result_npy_to_tiff
(
result_file
,
absolute_disparity
,
fix_nan
=
True
,
labels
=
labels
)
print_time
(
"Done"
)
def
result_npy_prepare
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
):
def
result_npy_prepare
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
,
labels
=
None
):
"""
@param npy_path full path to the npy file with 4-layer data (242,324,4) - nn_disparity(offset), target_disparity, gt disparity, gt strength
...
...
@@ -426,6 +416,9 @@ def result_npy_prepare(npy_path, absolute, fix_nan, insert_deltas=True):
@param fix_nan - replace nan in target_disparity with 0 to apply offset, target_disparity will still contain nan
"""
data
=
np
.
load
(
npy_path
)
#(324,242,4) [nn_disp, target_disp,gt_disp, gt_conf]
if
labels
is
None
:
labels
=
[
"chn
%
d"
%
(
i
)
for
i
in
range
(
data
.
shape
[
0
])]
# labels = ["nn_out","hier_out","gt_disparity","gt_strength"]
nn_out
=
0
# target_disparity = 1
gt_disparity
=
2
...
...
@@ -438,6 +431,7 @@ def result_npy_prepare(npy_path, absolute, fix_nan, insert_deltas=True):
if
insert_deltas
:
np
.
nan_to_num
(
data
[
...
,
gt_strength
],
copy
=
False
)
data
=
np
.
concatenate
([
data
[
...
,
0
:
4
],
data
[
...
,
0
:
2
],
data
[
...
,
0
:
2
],
data
[
...
,
4
:]],
axis
=
2
)
labels
=
labels
[:
4
]
+
[
"nn_out"
,
"hier_out"
,
"nn_err"
,
"hier_err"
]
+
labels
[
4
:]
data
[
...
,
6
]
-=
data
[
...
,
gt_disparity
]
data
[
...
,
7
]
-=
data
[
...
,
gt_disparity
]
for
l
in
[
2
,
4
,
5
,
6
,
7
]:
...
...
@@ -445,9 +439,13 @@ def result_npy_prepare(npy_path, absolute, fix_nan, insert_deltas=True):
# All other layers - mast too
for
l
in
range
(
8
,
data
.
shape
[
2
]):
data
[
...
,
l
]
=
np
.
select
([
data
[
...
,
gt_strength
]
==
0.0
,
data
[
...
,
gt_strength
]
>
0.0
],
[
np
.
nan
,
data
[
...
,
l
]])
return
data
return
data
,
labels
def
result_npy_to_tiff
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
):
def
result_npy_to_tiff
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
,
labels
=
None
):
"""
@param npy_path full path to the npy file with 4-layer data (242,324,4) - nn_disparity(offset), target_disparity, gt disparity, gt strength
...
...
@@ -455,12 +453,12 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan, insert_deltas=True):
@param absolute - True - the first layer contains absolute disparity, False - difference from target_disparity
@param fix_nan - replace nan in target_disparity with 0 to apply offset, target_disparity will still contain nan
"""
data
=
result_npy_prepare
(
npy_path
,
absolute
,
fix_nan
,
insert_delta
s
)
data
,
labels
=
result_npy_prepare
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
,
labels
=
label
s
)
tiff_path
=
npy_path
.
replace
(
'.npy'
,
'.tiff'
)
data
=
data
.
transpose
(
2
,
0
,
1
)
print
(
"Saving results to TIFF: "
+
tiff_path
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
[
...
,
np
.
newaxis
]
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
,
labels
=
labels
)
def
eval_results
(
rslt_path
,
absolute
,
min_disp
=
-
0.1
,
#minimal GT disparity
...
...
@@ -469,7 +467,6 @@ def eval_results(rslt_path, absolute,
max_ofst_result
=
1.0
,
str_pow
=
2.0
,
radius
=
0
):
# for min_disparity, max_disparity, max_offset_target, max_offset_result, strength_pow in [
variants
=
[[
-
0.1
,
5.0
,
0.5
,
0.5
,
1.0
],
[
-
0.1
,
5.0
,
0.5
,
0.5
,
2.0
],
[
-
0.1
,
5.0
,
0.2
,
0.2
,
1.0
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment