Commit 9a1886bd authored by Oleg Dzhimiev's avatar Oleg Dzhimiev

more parametrization

parent a1e5cb79
......@@ -1337,13 +1337,29 @@ with tf.Session() as sess:
l1 = NN_LAYOUT1.index(next(filter(lambda x: x!=0, NN_LAYOUT1)))
l1_sym8 = NN_LAYOUT1[l1] // 8
l1_non_sum = NN_LAYOUT1[l1] % 8
TILES_PER_LINE1 = 2
TILES_PER_LINE2 = 4
ZERO_SPAN1 = 0.0002
ZERO_SPAN2 = 0.0002
tile_side1 = TILE_SIDE
tile_side2 = int(math.sqrt(NN_LAYOUT2[-1]))
cluster_side = CLUSTER_RADIUS*2+1
cluster_size = cluster_side*cluster_side
l1_w = (tile_side1+1)*TILE_LAYERS*TILES_PER_LINE1
l1_h = (tile_side1+1)*8//TILES_PER_LINE1
if l1_non_sum==0:
wimg1_placeholder = tf.placeholder(tf.float32, [1,40,80,3])
wimg1_placeholder = tf.placeholder(tf.float32, [1,l1_h,l1_w,3])
wimg1 = tf.summary.image('weights/sub_'+str(l1), wimg1_placeholder)
l2 = NN_LAYOUT2.index(next(filter(lambda x: x!=0, NN_LAYOUT2)))
wimg2_placeholder = tf.placeholder(tf.float32, [1,250,100,3])
l2_w = (tile_side2+1)*cluster_side*TILES_PER_LINE2
l2_h = (tile_side2+1)*cluster_side*NN_LAYOUT2[l2]//TILES_PER_LINE2
wimg2_placeholder = tf.placeholder(tf.float32, [1,l2_h,l2_w,3])
wimg2 = tf.summary.image('weights/inter_'+str(l2), wimg2_placeholder)
# display weights, part 1 end
......@@ -1566,21 +1582,20 @@ with tf.Session() as sess:
#l1 = NN_LAYOUT1.index(next(filter(lambda x: x!=0, NN_LAYOUT1)))
#l1_sym8 = NN_LAYOUT1[l1] // 8
#l1_non_sum = NN_LAYOUT1[l1] % 8
if l1_non_sum==0:
with tf.variable_scope('g_fc_sub'+str(l1),reuse=tf.AUTO_REUSE):
w = tf.get_variable('weights',shape=[325,l1_sym8])
w = tf.transpose(w,(1,0))
img1 = npw.tiles(npw.coldmap(w.eval(),zero_span=0.0002),(1,4,9,9),tiles_per_line=2,borders=True)
img1 = npw.tiles(npw.coldmap(w.eval(),zero_span=ZERO_SPAN1),(1,TILE_LAYERS,tile_side1,tile_side1),tiles_per_line=TILES_PER_LINE1,borders=True)
img1 = img1[np.newaxis,...]
train_writer.add_summary(wimg1.eval(feed_dict={wimg1_placeholder: img1}), epoch)
#l2 = NN_LAYOUT2.index(next(filter(lambda x: x!=0, NN_LAYOUT2)))
with tf.variable_scope('g_fc_inter'+str(l2),reuse=tf.AUTO_REUSE):
w = tf.get_variable('weights',shape=[400,NN_LAYOUT2[l2]])
w = tf.get_variable('weights',shape=[cluster_size*NN_LAYOUT2[-1],NN_LAYOUT2[l2]])
w = tf.transpose(w,(1,0))
img2 = npw.tiles(npw.coldmap(w.eval(),zero_span=0.0002),(5,5,4,4),tiles_per_line=4,borders=True)
img2 = npw.tiles(npw.coldmap(w.eval(),zero_span=ZERO_SPAN2),(cluster_side,cluster_side,tile_side2,tile_side2),tiles_per_line=TILES_PER_LINE2,borders=True)
img2 = img2[np.newaxis,...]
train_writer.add_summary(wimg2.eval(feed_dict={wimg2_placeholder: img2}), epoch)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment