Commit f1070dfe authored by Oleg Dzhimiev's avatar Oleg Dzhimiev

Merge remote-tracking branch 'origin/jtag'

parents 82d0a51c 023fb0af
......@@ -6,6 +6,8 @@ obj-$(CONFIG_ELPHEL393) += elphel393-pwr.o
obj-$(CONFIG_ELPHEL393) += elphel393-mem.o
obj-$(CONFIG_ELPHELDRVONMICROZED) += elphel393-mem.o
obj-$(CONFIG_ELPHEL393_INIT) += elphel393-init.o
fpgajtag-y := fpgajtag353.o x393.o
obj-$(CONFIG_ELPHEL393_EXTERNAL) += fpgajtag.o
\ No newline at end of file
obj-$(CONFIG_ELPHEL393) += x393.o
obj-$(CONFIG_ELPHEL393) += sensor_i2c.o
obj-$(CONFIG_ELPHEL393) += fpgajtag353.o
#fpgajtag-y := fpgajtag353.o x393.o
#obj-$(CONFIG_ELPHEL393_EXTERNAL) += fpgajtag.o
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
/*******************************************************************************
* FILE NAME : sensor_i2c.h
* DESCRIPTION: Interface to FPGA-based i2c sequencer for sensor ports
* Copyright 2016 (C) Elphel, Inc.
* -----------------------------------------------------------------------------*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
// I2C device description to be used with i2c sequencer
/*
typedef struct x393_i2c_device_tag{
char * name;
u8 slave7; // slave address (7-bit)
u8 address_bytes;
u8 data_bytes;
int scl_khz; // maximal SCL frequency in KHz (currently limited by 200KHz slowest)
struct x393_i2c_device_tag * next;
} x393_i2c_device_t;
*/
/* Reserve i2c page (1 of 256 for a sensor port)*/
int i2c_page_alloc(int chn);
/* Free i2c page */
void i2c_page_free(int chn, int page);
/* Set i2c table entry to raw data (will just overwrite tbl_mode = 2) */
void set_sensor_i2c_raw(int chn,
int page, // index in lookup table
u32 data); // Bit delay - number of mclk periods in 1/4 of the SCL period
/* Set i2c table entry for write operation */
void set_sensor_i2c_wr(int chn,
int page, // index in lookup table
int sa, // slave address (7 bit)
int rah, // High byte of the i2c register address
int num_bytes, //Number of bytes to write (1..10)
int bit_delay); // Bit delay - number of mclk periods in 1/4 of the SCL period
/* Set i2c table entry for read operation */
void set_sensor_i2c_rd(int chn,
int page, // index in lookup table
int two_byte_addr, // Number of address bytes (0 - one byte, 1 - two bytes)
int num_bytes, // Number of bytes to read (1..8, 0 means 8)
int bit_delay);// Bit delay - number of mclk periods in 1/4 of the SCL period
/*
// Write i2c command to the i2c command sequencer
// I2C command sequencer, block of 16 DWORD slots for absolute frame numbers (modulo 16) and 15 slots for relative ones
// 0 - ASAP, 1 next frame, 14 -14-th next.
// Data written depends on context:
// 1 - I2C register write: index page (MSB), 3 payload bytes. Payload bytes are used according to table and sent
// after the slave address and optional high address byte. Other bytes are sent in descending order (LSB- last).
// If less than 4 bytes are programmed in the table the high bytes (starting with the one from the table) are
// skipped.
// If more than 4 bytes are programmed in the table for the page (high byte), one or two next 32-bit words
// bypass the index table and all 4 bytes are considered payload ones. If less than 4 extra bytes are to be
// sent for such extra word, only the lower bytes are sent.
//
// 2 - I2C register read: index page, slave address (8-bit, with lower bit 0) and one or 2 address bytes (as programmed
// in the table. Slave address is always in byte 2 (bits 23:16), byte1 (high register address) is skipped if
// read address in the table is programmed to be a single-byte one
*/
/* Write one or multiple DWORDs to i2c relative (modulo16) address. Use offs = 0 for immediate (ASAP) command */
/* Length of data is determined by the page data already preset */
int write_sensor_i2c_rel (int chn,
int offs, // 4 bits
u32 * data);
/* Same to absolute (modulo16) address */
int write_sensor_i2c_abs (int chn,
int offs, // 4 bits
u32 * data);
/* Write sensor 16 bit (or 8 bit as programmed in the table) data in immediate mode */
void write_sensor_reg16 (int chn,
int page, // page (8 bits)
int addr, // low 8 bits
u32 data); // 16 or 8-bit data (LSB aligned)
/* Initiate sensor i2c read in immediate mode (data itself has to be read from FIFO with read_sensor_i2c_fifo)*/
void read_sensor_i2c (int chn,
int page, // page (8 bits)
int sa7, // 7-bit i2c slave address
int addr); // 8/16 bit address
/* Read next byte from the channel i2c FIFO. Return byte or -1 if no data available */
/* Sensor channel status should be in auto update mode (3) */
int read_sensor_i2c_fifo(int chn);
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
......@@ -301,7 +301,7 @@ static int make_group (struct device *dev, const char * name, int port_mask, mod
{
int retval=-1;
int port,index=0,num_regs;
struct attribute **pattrs; /* array of pointers to attibutes */
struct attribute **pattrs; /* array of pointers to attributes */
struct device_attribute *dev_attrs;
struct attribute_group *attr_group;
for (port=0,num_regs=1;port<MAX_PORTS;port++) if (port_mask & (1<<port)) num_regs++; /* 1 extra - used for all ports */
......
......@@ -58,6 +58,11 @@
#define FPGA_SJTAG_BOUNDARY_MINOR 6 // read/write boundary pins of the sensor board FPGA
#define FPGA_AJTAG_BOUNDARY_MINOR 7 // read/write boundary pins of the aux board FPGA
#define FPGA_SJTAG_CHANNELS 4 // Number of sensor ports for JTAG
#define FPGA_SJTAG_MINOR_OFFSET 8 // Minors range start for the sensor port JTAG
#define FPGA_SJTAG_BOUNDARY_OFFSET 12 // Minors range start for the sensor port boundary
#define X3X3_EXIF_EXIF 0 // read encoded Exif data (SEEK_END,
#define X3X3_EXIF_META 1 // write metadata, concurently opened files. All writes atomic
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment