Commit 6fa2f060 authored by Maciej Suminski's avatar Maciej Suminski

Formatted ttl library to comply with KiCad coding policy.

parent a0fb4ed0
This diff is collapsed.
......@@ -40,111 +40,152 @@
#ifndef _HALF_EDGE_DART_
#define _HALF_EDGE_DART_
#include <ttl/halfedge/hetriang.h>
namespace hed
{
/**
* \class Dart
* \brief \b %Dart class for the half-edge data structure.
*
* See \ref api for a detailed description of how the member functions
* should be implemented.
*/
class DART
{
EDGE_PTR m_edge;
namespace hed {
//------------------------------------------------------------------------------------------------
// Dart class for the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \class Dart
* \brief \b %Dart class for the half-edge data structure.
*
* See \ref api for a detailed description of how the member functions
* should be implemented.
*/
class Dart {
EdgePtr edge_;
bool dir_; // true if dart is counterclockwise in face
/// Dart direction: true if dart is counterclockwise in face
bool m_dir;
public:
public:
/// Default constructor
Dart() { dir_ = true; }
DART()
{
m_dir = true;
}
/// Constructor
Dart(const EdgePtr& edge, bool dir = true) { edge_ = edge; dir_ = dir; }
DART( const EDGE_PTR& aEdge, bool aDir = true )
{
m_edge = aEdge;
m_dir = aDir;
}
/// Copy constructor
Dart(const Dart& dart) { edge_ = dart.edge_; dir_ = dart.dir_; }
DART( const DART& aDart )
{
m_edge = aDart.m_edge;
m_dir = aDart.m_dir;
}
/// Destructor
~Dart() {}
~DART()
{
}
/// Assignment operator
Dart& operator = (const Dart& dart) {
if (this == &dart)
DART& operator=( const DART& aDart )
{
if( this == &aDart )
return *this;
m_edge = aDart.m_edge;
m_dir = aDart.m_dir;
return *this;
edge_ = dart.edge_;
dir_ = dart.dir_;
return *this;
}
/// Comparing dart objects
bool operator==(const Dart& dart) const {
if (dart.edge_ == edge_ && dart.dir_ == dir_)
return true;
return false;
bool operator==( const DART& aDart ) const
{
return ( aDart.m_edge == m_edge && aDart.m_dir == m_dir );
}
/// Comparing dart objects
bool operator!=(const Dart& dart) const {
return !(dart==*this);
bool operator!=( const DART& aDart ) const
{
return !( aDart == *this );
}
/// Maps the dart to a different node
Dart& alpha0() { dir_ = !dir_; return *this; }
DART& Alpha0()
{
m_dir = !m_dir;
return *this;
}
/// Maps the dart to a different edge
Dart& alpha1() {
if (dir_) {
edge_ = edge_->getNextEdgeInFace()->getNextEdgeInFace();
dir_ = false;
}
else {
edge_ = edge_->getNextEdgeInFace();
dir_ = true;
}
return *this;
DART& Alpha1()
{
if( m_dir )
{
m_edge = m_edge->GetNextEdgeInFace()->GetNextEdgeInFace();
m_dir = false;
}
else
{
m_edge = m_edge->GetNextEdgeInFace();
m_dir = true;
}
return *this;
}
/// Maps the dart to a different triangle. \b Note: the dart is not changed if it is at the boundary!
Dart& alpha2() {
if (edge_->getTwinEdge()) {
edge_ = edge_->getTwinEdge();
dir_ = !dir_;
}
// else, the dart is at the boundary and should not be changed
return *this;
DART& Alpha2()
{
if( m_edge->GetTwinEdge() )
{
m_edge = m_edge->GetTwinEdge();
m_dir = !m_dir;
}
// else, the dart is at the boundary and should not be changed
return *this;
}
// Utilities not required by TTL
// -----------------------------
/** @name Utilities not required by TTL */
//@{
void Init( const EDGE_PTR& aEdge, bool aDir = true )
{
m_edge = aEdge;
m_dir = aDir;
}
void init(const EdgePtr& edge, bool dir = true) { edge_ = edge; dir_ = dir; }
double X() const
{
return GetNode()->GetX();
}
double x() const { return getNode()->GetX(); } // x-coordinate of source node
double y() const { return getNode()->GetY(); } // y-coordinate of source node
double Y() const
{
return GetNode()->GetY();
}
bool isCounterClockWise() const { return dir_; }
bool IsCCW() const
{
return m_dir;
}
const NodePtr& getNode() const { return dir_ ? edge_->getSourceNode() : edge_->getTargetNode(); }
const NodePtr& getOppositeNode() const { return dir_ ? edge_->getTargetNode() : edge_->getSourceNode(); }
EdgePtr& getEdge() { return edge_; }
const NODE_PTR& GetNode() const
{
return m_dir ? m_edge->GetSourceNode() : m_edge->GetTargetNode();
}
//@} // End of Utilities not required by TTL
const NODE_PTR& GetOppositeNode() const
{
return m_dir ? m_edge->GetTargetNode() : m_edge->GetSourceNode();
}
};
EDGE_PTR& GetEdge()
{
return m_edge;
}
//@} // End of Utilities not required by TTL
};
}; // End of hed namespace
} // End of hed namespace
#endif
......@@ -40,136 +40,149 @@
#ifndef _HALF_EDGE_TRAITS_
#define _HALF_EDGE_TRAITS_
#include <ttl/halfedge/hetriang.h>
#include <ttl/halfedge/hedart.h>
namespace hed {
//------------------------------------------------------------------------------------------------
// Traits class for the half-edge data structure
//------------------------------------------------------------------------------------------------
/** \struct TTLtraits
* \brief \b Traits class (static struct) for the half-edge data structure.
*
* The member functions are those required by different function templates
* in the TTL. Documentation is given here to explain what actions
* should be carried out on the actual data structure as required by the functions
* in the \ref ttl namespace.
*
* The source code of \c %HeTraits.h shows how the traits class is implemented for the
* half-edge data structure.
*
* \see \ref api
*
*/
struct TTLtraits {
namespace hed
{
/**
* \struct TTLtraits
* \brief \b Traits class (static struct) for the half-edge data structure.
*
* The member functions are those required by different function templates
* in the TTL. Documentation is given here to explain what actions
* should be carried out on the actual data structure as required by the functions
* in the \ref ttl namespace.
*
* The source code of \c %HeTraits.h shows how the traits class is implemented for the
* half-edge data structure.
*
* \see \ref api
*/
struct TTLtraits
{
/**
* The floating point type used in calculations involving scalar products and cross products.
*/
typedef double REAL_TYPE;
/** The floating point type used in calculations
* involving scalar products and cross products.
*/
typedef double real_type;
//----------------------------------------------------------------------------------------------
// ------------------------------- Geometric Predicates Group ---------------------------------
//----------------------------------------------------------------------------------------------
/** @name Geometric Predicates */
//@{
//----------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors represented as darts.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static real_type scalarProduct2d(const Dart& v1, const Dart& v2) {
Dart v10 = v1; v10.alpha0();
Dart v20 = v2; v20.alpha0();
return ttl_util::scalarProduct2d(v10.x()-v1.x(), v10.y()-v1.y(),
v20.x()-v2.x(), v20.y()-v2.y());
/**
* Scalar product between two 2D vectors represented as darts.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static REAL_TYPE ScalarProduct2D( const DART& aV1, const DART& aV2 )
{
DART v10 = aV1;
v10.Alpha0();
DART v20 = aV2;
v20.Alpha0();
return ttl_util::ScalarProduct2D( v10.X() - aV1.X(), v10.Y() - aV1.Y(),
v20.X() - aV2.X(), v20.Y() - aV2.Y() );
}
//----------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.\n
*
* ttl_util::scalarProduct2d can be used.
*/
static real_type scalarProduct2d(const Dart& v, const NodePtr& p) {
Dart d0 = v; d0.alpha0();
return ttl_util::scalarProduct2d(d0.x() - v.x(), d0.y() - v.y(),
p->GetX() - v.x(), p->GetY() - v.y());
/**
* Scalar product between two 2D vectors.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.\n
*
* ttl_util::ScalarProduct2D can be used.
*/
static REAL_TYPE ScalarProduct2D( const DART& aV, const NODE_PTR& aP )
{
DART d0 = aV;
d0.Alpha0();
return ttl_util::ScalarProduct2D( d0.X() - aV.X(), d0.Y() - aV.Y(),
aP->GetX() - aV.X(), aP->GetY() - aV.Y() );
}
//----------------------------------------------------------------------------------------------
/** Cross product between two vectors in the plane represented as darts.
* The z-component of the cross product is returned.\n
*
* ttl_util::crossProduct2d can be used.
*/
static real_type crossProduct2d(const Dart& v1, const Dart& v2) {
Dart v10 = v1; v10.alpha0();
Dart v20 = v2; v20.alpha0();
return ttl_util::crossProduct2d(v10.x()-v1.x(), v10.y()-v1.y(),
v20.x()-v2.x(), v20.y()-v2.y());
/**
* Cross product between two vectors in the plane represented as darts.
* The z-component of the cross product is returned.\n
*
* ttl_util::CrossProduct2D can be used.
*/
static REAL_TYPE CrossProduct2D( const DART& aV1, const DART& aV2 )
{
DART v10 = aV1;
v10.Alpha0();
DART v20 = aV2;
v20.Alpha0();
return ttl_util::CrossProduct2D( v10.X() - aV1.X(), v10.Y() - aV1.Y(),
v20.X() - aV2.X(), v20.Y() - aV2.Y() );
}
//----------------------------------------------------------------------------------------------
/** Cross product between two vectors in the plane.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.
* The z-component of the cross product is returned.\n
*
* ttl_util::crossProduct2d can be used.
*/
static real_type crossProduct2d(const Dart& v, const NodePtr& p) {
Dart d0 = v; d0.alpha0();
return ttl_util::crossProduct2d(d0.x() - v.x(), d0.y() - v.y(),
p->GetX() - v.x(), p->GetY() - v.y());
/**
* Cross product between two vectors in the plane.
* The first vector is represented by a dart \e v, and the second
* vector has direction from the source node of \e v to the point \e p.
* The z-component of the cross product is returned.\n
*
* ttl_util::CrossProduct2d can be used.
*/
static REAL_TYPE CrossProduct2D( const DART& aV, const NODE_PTR& aP )
{
DART d0 = aV;
d0.Alpha0();
return ttl_util::CrossProduct2D( d0.X() - aV.X(), d0.Y() - aV.Y(),
aP->GetX() - aV.X(), aP->GetY() - aV.Y() );
}
//----------------------------------------------------------------------------------------------
/** Let \e n1 and \e n2 be the nodes associated with two darts, and let \e p
* be a point in the plane. Return a positive value if \e n1, \e n2,
* and \e p occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*/
static real_type orient2d(const Dart& n1, const Dart& n2, const NodePtr& p) {
real_type pa[2]; real_type pb[2]; real_type pc[2];
pa[0] = n1.x(); pa[1] = n1.y();
pb[0] = n2.x(); pb[1] = n2.y();
pc[0] = p->GetX(); pc[1] = p->GetY();
return ttl_util::orient2dfast(pa, pb, pc);
/**
* Let \e n1 and \e n2 be the nodes associated with two darts, and let \e p
* be a point in the plane. Return a positive value if \e n1, \e n2,
* and \e p occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*/
static REAL_TYPE Orient2D( const DART& aN1, const DART& aN2, const NODE_PTR& aP )
{
REAL_TYPE pa[2];
REAL_TYPE pb[2];
REAL_TYPE pc[2];
pa[0] = aN1.X();
pa[1] = aN1.Y();
pb[0] = aN2.X();
pb[1] = aN2.Y();
pc[0] = aP->GetX();
pc[1] = aP->GetY();
return ttl_util::Orient2DFast( pa, pb, pc );
}
//----------------------------------------------------------------------------------------------
/** This is the same predicate as represented with the function above,
* but with a slighty different interface:
* The last parameter is given as a dart where the source node of the dart
* represents a point in the plane.
* This function is required for constrained triangulation.
*/
static real_type orient2d(const Dart& n1, const Dart& n2, const Dart& p) {
real_type pa[2]; real_type pb[2]; real_type pc[2];
pa[0] = n1.x(); pa[1] = n1.y();
pb[0] = n2.x(); pb[1] = n2.y();
pc[0] = p.x(); pc[1] = p.y();
return ttl_util::orient2dfast(pa, pb, pc);
/**
* This is the same predicate as represented with the function above,
* but with a slighty different interface:
* The last parameter is given as a dart where the source node of the dart
* represents a point in the plane.
* This function is required for constrained triangulation.
*/
static REAL_TYPE Orient2D( const DART& aN1, const DART& aN2, const DART& aP )
{
REAL_TYPE pa[2];
REAL_TYPE pb[2];
REAL_TYPE pc[2];
pa[0] = aN1.X();
pa[1] = aN1.Y();
pb[0] = aN2.X();
pb[1] = aN2.Y();
pc[0] = aP.X();
pc[1] = aP.Y();
return ttl_util::Orient2DFast( pa, pb, pc );
}
//@} // End of Geometric Predicates Group
};
};
}; // End of hed namespace
......
This diff is collapsed.
This diff is collapsed.
......@@ -3,11 +3,11 @@
* Applied Mathematics, Norway.
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* SINTEF ICT, DeaPArtment of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of TTL.
* This file is aPArt of TTL.
*
* TTL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
......@@ -16,7 +16,7 @@
*
* TTL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* MERCHANTABILITY or FITNESS FOR A aPARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
......@@ -40,28 +40,22 @@
#ifndef _TTL_UTIL_H_
#define _TTL_UTIL_H_
#include <vector>
#include <algorithm>
#ifdef _MSC_VER
# if _MSC_VER < 1300
# include <minmax.h>
# endif
#endif
//using namespace std;
/** \brief Utilities
*
* This name space contains utility functions for TTL.\n
* This name saPAce contains utility functions for TTL.\n
*
* Point and vector algebra such as scalar product and cross product
* between vectors are implemented here.
* These functions are required by functions in the \ref ttl namespace,
* These functions are required by functions in the \ref ttl namesaPAce,
* where they are assumed to be present in the \ref hed::TTLtraits "TTLtraits" class.
* Thus, the user can call these functions from the traits class.
* For efficiency reasons, the user may consider implementing these
......@@ -77,67 +71,59 @@
* ttl and \ref api
*
* \author
* Øyvind Hjelle, oyvindhj@ifi.uio.no
* yvind Hjelle, oyvindhj@ifi.uio.no
*/
namespace ttl_util
{
/** @name Computational geometry */
//@{
/** Scalar product between two 2D vectors.
*
* \aPAr Returns:
* \code
* aDX1*aDX2 + aDY1*aDY2
* \endcode
*/
template <class REAL_TYPE>
REAL_TYPE ScalarProduct2D( REAL_TYPE aDX1, REAL_TYPE aDY1, REAL_TYPE aDX2, REAL_TYPE aDY2 )
{
return aDX1 * aDX2 + aDY1 * aDY2;
}
namespace ttl_util {
//------------------------------------------------------------------------------------------------
// ------------------------------ Computational Geometry Group ----------------------------------
//------------------------------------------------------------------------------------------------
/** @name Computational geometry */
//@{
//------------------------------------------------------------------------------------------------
/** Scalar product between two 2D vectors.
*
* \par Returns:
* \code
* dx1*dx2 + dy1*dy2
* \endcode
*/
template <class real_type>
real_type scalarProduct2d(real_type dx1, real_type dy1, real_type dx2, real_type dy2) {
return dx1*dx2 + dy1*dy2;
}
//------------------------------------------------------------------------------------------------
/** Cross product between two 2D vectors. (The z-component of the actual cross product.)
*
* \par Returns:
* \code
* dx1*dy2 - dy1*dx2
* \endcode
*/
template <class real_type>
real_type crossProduct2d(real_type dx1, real_type dy1, real_type dx2, real_type dy2) {
return dx1*dy2 - dy1*dx2;
}
/** Cross product between two 2D vectors. (The z-component of the actual cross product.)
*
* \aPAr Returns:
* \code
* aDX1*aDY2 - aDY1*aDX2
* \endcode
*/
template <class REAL_TYPE>
REAL_TYPE CrossProduct2D( REAL_TYPE aDX1, REAL_TYPE aDY1, REAL_TYPE aDX2, REAL_TYPE aDY2 )
{
return aDX1 * aDY2 - aDY1 * aDX2;
}
/** Returns a positive value if the 2D nodes/points \e aPA, \e aPB, and
* \e aPC occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*
* \note
* - This is a finite arithmetic fast version. It can be made more robust using
* exact arithmetic schemes by Jonathan Richard Shewchuk. See
* http://www-2.cs.cmu.edu/~quake/robust.html
*/
template <class REAL_TYPE>
REAL_TYPE Orient2DFast( REAL_TYPE aPA[2], REAL_TYPE aPB[2], REAL_TYPE aPC[2] )
{
REAL_TYPE acx = aPA[0] - aPC[0];
REAL_TYPE bcx = aPB[0] - aPC[0];
REAL_TYPE acy = aPA[1] - aPC[1];
REAL_TYPE bcy = aPB[1] - aPC[1];
//------------------------------------------------------------------------------------------------
/** Returns a positive value if the 2D nodes/points \e pa, \e pb, and
* \e pc occur in counterclockwise order; a negative value if they occur
* in clockwise order; and zero if they are collinear.
*
* \note
* - This is a finite arithmetic fast version. It can be made more robust using
* exact arithmetic schemes by Jonathan Richard Shewchuk. See
* http://www-2.cs.cmu.edu/~quake/robust.html
*/
template <class real_type>
real_type orient2dfast(real_type pa[2], real_type pb[2], real_type pc[2]) {
real_type acx = pa[0] - pc[0];
real_type bcx = pb[0] - pc[0];
real_type acy = pa[1] - pc[1];
real_type bcy = pb[1] - pc[1];
return acx * bcy - acy * bcx;
}
}
}; // End of ttl_util namespace scope
} // namespace ttl_util
#endif // _TTL_UTIL_H_
......@@ -68,7 +68,7 @@ bool sortDistance( const RN_NODE_PTR& aOrigin, const RN_NODE_PTR& aNode1,
bool sortWeight( const RN_EDGE_PTR& aEdge1, const RN_EDGE_PTR& aEdge2 )
{
return aEdge1->getWeight() < aEdge2->getWeight();
return aEdge1->GetWeight() < aEdge2->GetWeight();
}
......@@ -92,7 +92,7 @@ bool operator!=( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond )
bool isEdgeConnectingNode( const RN_EDGE_PTR& aEdge, const RN_NODE_PTR& aNode )
{
return aEdge->getSourceNode() == aNode || aEdge->getTargetNode() == aNode;
return aEdge->GetSourceNode() == aNode || aEdge->GetTargetNode() == aNode;
}
......@@ -125,8 +125,8 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
{
RN_EDGE_PTR& dt = *aEdges.begin();
int srcTag = tags[dt->getSourceNode()];
int trgTag = tags[dt->getTargetNode()];
int srcTag = tags[dt->GetSourceNode()];
int trgTag = tags[dt->GetTargetNode()];
// Check if by adding this edge we are going to join two different forests
if( srcTag != trgTag )
......@@ -139,7 +139,7 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
// Move nodes that were marked with old tag to the list marked with the new tag
cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] );
if( dt->getWeight() == 0 ) // Skip already existing connections (weight == 0)
if( dt->GetWeight() == 0 ) // Skip already existing connections (weight == 0)
{
mstExpectedSize--;
}
......@@ -148,9 +148,9 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
// Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE,
// RN_EDGE_MST saves both source and target node and does not require any other
// edges to exist for getting source/target nodes
RN_EDGE_MST_PTR newEdge = boost::make_shared<RN_EDGE_MST>( dt->getSourceNode(),
dt->getTargetNode(),
dt->getWeight() );
RN_EDGE_MST_PTR newEdge = boost::make_shared<RN_EDGE_MST>( dt->GetSourceNode(),
dt->GetTargetNode(),
dt->GetWeight() );
mst->push_back( newEdge );
++mstSize;
}
......@@ -169,8 +169,8 @@ std::vector<RN_EDGE_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
void RN_NET::validateEdge( RN_EDGE_PTR& aEdge )
{
RN_NODE_PTR source = aEdge->getSourceNode();
RN_NODE_PTR target = aEdge->getTargetNode();
RN_NODE_PTR source = aEdge->GetSourceNode();
RN_NODE_PTR target = aEdge->GetTargetNode();
bool valid = true;
// If any of nodes belonging to the edge has the flag set,
......@@ -280,13 +280,13 @@ void RN_NET::compute()
std::partial_sort_copy( boardNodes.begin(), boardNodes.end(), nodes.begin(), nodes.end() );
TRIANGULATOR triangulator;
triangulator.createDelaunay( nodes.begin(), nodes.end() );
boost::scoped_ptr<RN_LINKS::RN_EDGE_LIST> triangEdges( triangulator.getEdges() );
triangulator.CreateDelaunay( nodes.begin(), nodes.end() );
boost::scoped_ptr<RN_LINKS::RN_EDGE_LIST> triangEdges( triangulator.GetEdges() );
// Compute weight/distance for edges resulting from triangulation
RN_LINKS::RN_EDGE_LIST::iterator eit, eitEnd;
for( eit = (*triangEdges).begin(), eitEnd = (*triangEdges).end(); eit != eitEnd; ++eit )
(*eit)->setWeight( getDistance( (*eit)->getSourceNode(), (*eit)->getTargetNode() ) );
(*eit)->SetWeight( getDistance( (*eit)->GetSourceNode(), (*eit)->GetTargetNode() ) );
// Add the currently existing connections list to the results of triangulation
std::copy( boardEdges.begin(), boardEdges.end(), std::front_inserter( *triangEdges ) );
......@@ -508,8 +508,8 @@ void RN_NET::RemoveItem( const TRACK* aTrack )
RN_EDGE_PTR& edge = m_tracks.at( aTrack );
// Save nodes, so they can be cleared later
RN_NODE_PTR aBegin = edge->getSourceNode();
RN_NODE_PTR aEnd = edge->getTargetNode();
RN_NODE_PTR aBegin = edge->GetSourceNode();
RN_NODE_PTR aEnd = edge->GetTargetNode();
m_links.RemoveConnection( edge );
// Remove nodes associated with the edge. It is done in a safe way, there is a check
......@@ -696,8 +696,8 @@ std::list<RN_NODE_PTR> RN_NET::GetNodes( const BOARD_CONNECTED_ITEM* aItem ) con
const TRACK* track = static_cast<const TRACK*>( aItem );
RN_EDGE_PTR edge = m_tracks.at( track );
nodes.push_back( edge->getSourceNode() );
nodes.push_back( edge->getTargetNode() );
nodes.push_back( edge->GetSourceNode() );
nodes.push_back( edge->GetTargetNode() );
}
break;
......
......@@ -50,13 +50,13 @@ class ZONE_CONTAINER;
class CPolyPt;
// Preserve KiCad coding style policy
typedef hed::Node RN_NODE;
typedef hed::NodePtr RN_NODE_PTR;
typedef hed::Edge RN_EDGE;
typedef hed::EdgePtr RN_EDGE_PTR;
typedef hed::EdgeMST RN_EDGE_MST;
typedef boost::shared_ptr<hed::EdgeMST> RN_EDGE_MST_PTR;
typedef hed::Triangulation TRIANGULATOR;
typedef hed::NODE RN_NODE;
typedef hed::NODE_PTR RN_NODE_PTR;
typedef hed::EDGE RN_EDGE;
typedef hed::EDGE_PTR RN_EDGE_PTR;
typedef hed::EDGE_MST RN_EDGE_MST;
typedef hed::TRIANGULATION TRIANGULATOR;
typedef boost::shared_ptr<hed::EDGE_MST> RN_EDGE_MST_PTR;
bool operator==( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond );
bool operator!=( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond );
......
......@@ -97,8 +97,8 @@ void RATSNEST_VIEWITEM::ViewDraw( int aLayer, GAL* aGal ) const
BOOST_FOREACH( const RN_EDGE_PTR& edge, *edges )
{
const RN_NODE_PTR& sourceNode = edge->getSourceNode();
const RN_NODE_PTR& targetNode = edge->getTargetNode();
const RN_NODE_PTR& sourceNode = edge->GetSourceNode();
const RN_NODE_PTR& targetNode = edge->GetTargetNode();
VECTOR2D source( sourceNode->GetX(), sourceNode->GetY() );
VECTOR2D target( targetNode->GetX(), targetNode->GetY() );
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment