1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Boost.Range library
//
// Copyright Neil Groves 2009.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see http://www.boost.org/libs/range/
//
#ifndef BOOST_RANGE_ALGORITHM_EQUAL_HPP_INCLUDED
#define BOOST_RANGE_ALGORITHM_EQUAL_HPP_INCLUDED
#include <boost/config.hpp>
#include <boost/range/concepts.hpp>
#include <iterator>
namespace boost
{
namespace range_detail
{
// An implementation of equality comparison that is optimized for iterator
// traversal categories less than RandomAccessTraversal.
template< class SinglePassTraversalReadableIterator1,
class SinglePassTraversalReadableIterator2,
class IteratorCategoryTag1,
class IteratorCategoryTag2 >
inline bool equal_impl( SinglePassTraversalReadableIterator1 first1,
SinglePassTraversalReadableIterator1 last1,
SinglePassTraversalReadableIterator2 first2,
SinglePassTraversalReadableIterator2 last2,
IteratorCategoryTag1,
IteratorCategoryTag2 )
{
do
{
// If we have reached the end of the left range then this is
// the end of the loop. They are equal if and only if we have
// simultaneously reached the end of the right range.
if (first1 == last1)
return first2 == last2;
// If we have reached the end of the right range at this line
// it indicates that the right range is shorter than the left
// and hence the result is false.
if (first2 == last2)
return false;
// continue looping if and only if the values are equal
} while(*first1++ == *first2++);
// Reaching this line in the algorithm indicates that a value
// inequality has been detected.
return false;
}
template< class SinglePassTraversalReadableIterator1,
class SinglePassTraversalReadableIterator2,
class IteratorCategoryTag1,
class IteratorCategoryTag2,
class BinaryPredicate >
inline bool equal_impl( SinglePassTraversalReadableIterator1 first1,
SinglePassTraversalReadableIterator1 last1,
SinglePassTraversalReadableIterator2 first2,
SinglePassTraversalReadableIterator2 last2,
BinaryPredicate pred,
IteratorCategoryTag1,
IteratorCategoryTag2 )
{
do
{
// If we have reached the end of the left range then this is
// the end of the loop. They are equal if and only if we have
// simultaneously reached the end of the right range.
if (first1 == last1)
return first2 == last2;
// If we have reached the end of the right range at this line
// it indicates that the right range is shorter than the left
// and hence the result is false.
if (first2 == last2)
return false;
// continue looping if and only if the values are equal
} while(pred(*first1++, *first2++));
// Reaching this line in the algorithm indicates that a value
// inequality has been detected.
return false;
}
// An implementation of equality comparison that is optimized for
// random access iterators.
template< class RandomAccessTraversalReadableIterator1,
class RandomAccessTraversalReadableIterator2 >
inline bool equal_impl( RandomAccessTraversalReadableIterator1 first1,
RandomAccessTraversalReadableIterator1 last1,
RandomAccessTraversalReadableIterator2 first2,
RandomAccessTraversalReadableIterator2 last2,
std::random_access_iterator_tag,
std::random_access_iterator_tag )
{
return ((last1 - first1) == (last2 - first2))
&& std::equal(first1, last1, first2);
}
template< class RandomAccessTraversalReadableIterator1,
class RandomAccessTraversalReadableIterator2,
class BinaryPredicate >
inline bool equal_impl( RandomAccessTraversalReadableIterator1 first1,
RandomAccessTraversalReadableIterator1 last1,
RandomAccessTraversalReadableIterator2 first2,
RandomAccessTraversalReadableIterator2 last2,
BinaryPredicate pred )
{
return ((last1 - first1) == (last2 - first2))
&& std::equal(first1, last1, first2, pred);
}
template< class SinglePassTraversalReadableIterator1,
class SinglePassTraversalReadableIterator2 >
inline bool equal( SinglePassTraversalReadableIterator1 first1,
SinglePassTraversalReadableIterator1 last1,
SinglePassTraversalReadableIterator2 first2,
SinglePassTraversalReadableIterator2 last2 )
{
BOOST_DEDUCED_TYPENAME std::iterator_traits< SinglePassTraversalReadableIterator1 >::iterator_category tag1;
BOOST_DEDUCED_TYPENAME std::iterator_traits< SinglePassTraversalReadableIterator2 >::iterator_category tag2;
return equal_impl(first1, last1, first2, last2, tag1, tag2);
}
template< class SinglePassTraversalReadableIterator1,
class SinglePassTraversalReadableIterator2,
class BinaryPredicate >
inline bool equal( SinglePassTraversalReadableIterator1 first1,
SinglePassTraversalReadableIterator1 last1,
SinglePassTraversalReadableIterator2 first2,
SinglePassTraversalReadableIterator2 last2,
BinaryPredicate pred )
{
BOOST_DEDUCED_TYPENAME std::iterator_traits< SinglePassTraversalReadableIterator1 >::iterator_category tag1;
BOOST_DEDUCED_TYPENAME std::iterator_traits< SinglePassTraversalReadableIterator2 >::iterator_category tag2;
return equal_impl(first1, last1, first2, last2, pred, tag1, tag2);
}
} // namespace range_detail
namespace range
{
/// \brief template function equal
///
/// range-based version of the equal std algorithm
///
/// \pre SinglePassRange1 is a model of the SinglePassRangeConcept
/// \pre SinglePassRange2 is a model of the SinglePassRangeConcept
/// \pre BinaryPredicate is a model of the BinaryPredicateConcept
template< class SinglePassRange1, class SinglePassRange2 >
inline bool equal( const SinglePassRange1& rng1, const SinglePassRange2& rng2 )
{
BOOST_RANGE_CONCEPT_ASSERT(( SinglePassRangeConcept<const SinglePassRange1> ));
BOOST_RANGE_CONCEPT_ASSERT(( SinglePassRangeConcept<const SinglePassRange2> ));
return ::boost::range_detail::equal(
::boost::begin(rng1), ::boost::end(rng1),
::boost::begin(rng2), ::boost::end(rng2) );
}
/// \overload
template< class SinglePassRange1, class SinglePassRange2, class BinaryPredicate >
inline bool equal( const SinglePassRange1& rng1, const SinglePassRange2& rng2,
BinaryPredicate pred )
{
BOOST_RANGE_CONCEPT_ASSERT(( SinglePassRangeConcept<const SinglePassRange1> ));
BOOST_RANGE_CONCEPT_ASSERT(( SinglePassRangeConcept<const SinglePassRange2> ));
return ::boost::range_detail::equal(
::boost::begin(rng1), ::boost::end(rng1),
::boost::begin(rng2), ::boost::end(rng2),
pred);
}
} // namespace range
using range::equal;
} // namespace boost
#endif // include guard