property_merge.hpp 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
  Copyright 2008 Intel Corporation
 
  Use, modification and distribution are subject to the Boost Software License,
  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_PROPERTY_MERGE_HPP
#define BOOST_POLYGON_PROPERTY_MERGE_HPP
namespace boost { namespace polygon{

template <typename coordinate_type>
class property_merge_point {
private:
  coordinate_type x_, y_;
public:
  inline property_merge_point() : x_(), y_() {}
  inline property_merge_point(coordinate_type x, coordinate_type y) : x_(x), y_(y) {}
  //use builtin assign and copy
  inline bool operator==(const property_merge_point& that) const { return x_ == that.x_ && y_ == that.y_; }
  inline bool operator!=(const property_merge_point& that) const { return !((*this) == that); }
  inline bool operator<(const property_merge_point& that) const {
    if(x_ < that.x_) return true;
    if(x_ > that.x_) return false;
    return y_ < that.y_;
  }
  inline coordinate_type x() const { return x_; }
  inline coordinate_type y() const { return y_; }
  inline void x(coordinate_type value) { x_ = value; }
  inline void y(coordinate_type value) { y_ = value; }
};

template <typename coordinate_type>
class property_merge_interval {
private:
  coordinate_type low_, high_;
public:
  inline property_merge_interval() : low_(), high_() {}
  inline property_merge_interval(coordinate_type low, coordinate_type high) : low_(low), high_(high) {}
  //use builtin assign and copy
  inline bool operator==(const property_merge_interval& that) const { return low_ == that.low_ && high_ == that.high_; }
  inline bool operator!=(const property_merge_interval& that) const { return !((*this) == that); }
  inline bool operator<(const property_merge_interval& that) const {
    if(low_ < that.low_) return true;
    if(low_ > that.low_) return false;
    return high_ < that.high_;
  }
  inline coordinate_type low() const { return low_; }
  inline coordinate_type high() const { return high_; }
  inline void low(coordinate_type value) { low_ = value; }
  inline void high(coordinate_type value) { high_ = value; }
};

template <typename coordinate_type, typename property_type, typename polygon_set_type, typename keytype = std::set<property_type> >
class merge_scanline {
public:
  //definitions

  typedef keytype property_set;
  typedef std::vector<std::pair<property_type, int> > property_map;
  typedef std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > vertex_property;
  typedef std::pair<property_merge_point<coordinate_type>, property_map> vertex_data;
  typedef std::vector<vertex_property> property_merge_data;
  //typedef std::map<property_set, polygon_set_type> Result;
  typedef std::map<coordinate_type, property_map> scanline_type;
  typedef typename scanline_type::iterator scanline_iterator;
  typedef std::pair<property_merge_interval<coordinate_type>, std::pair<property_set, property_set> > edge_property;
  typedef std::vector<edge_property> edge_property_vector;

  //static public member functions

  template <typename iT, typename orientation_2d_type>
  static inline void 
  populate_property_merge_data(property_merge_data& pmd, iT input_begin, iT input_end, 
                               const property_type& property, orientation_2d_type orient) {
    for( ; input_begin != input_end; ++input_begin) {
      std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > element;
      if(orient == HORIZONTAL)
        element.first = property_merge_point<coordinate_type>((*input_begin).second.first, (*input_begin).first);
      else
        element.first = property_merge_point<coordinate_type>((*input_begin).first, (*input_begin).second.first);
      element.second.first = property;
      element.second.second = (*input_begin).second.second;
      pmd.push_back(element);
    }
  }

  //public member functions

  merge_scanline() : output(), scanline(), currentVertex(), tmpVector(), previousY(), countFromBelow(), scanlinePosition() {}
  merge_scanline(const merge_scanline& that) :
    output(that.output),
    scanline(that.scanline),
    currentVertex(that.currentVertex),
    tmpVector(that.tmpVector),
    previousY(that.previousY),
    countFromBelow(that.countFromBelow),
    scanlinePosition(that.scanlinePosition)
  {}
  merge_scanline& operator=(const merge_scanline& that) {
    output = that.output;
    scanline = that.scanline;
    currentVertex = that.currentVertex;
    tmpVector = that.tmpVector;
    previousY = that.previousY;
    countFromBelow = that.countFromBelow;
    scanlinePosition = that.scanlinePosition;
    return *this;
  }

  template <typename result_type>
  inline void perform_merge(result_type& result, property_merge_data& data) {
    if(data.empty()) return;
    //sort
    gtlsort(data.begin(), data.end(), less_vertex_data<vertex_property>());
    //scanline
    bool firstIteration = true;
    scanlinePosition = scanline.end();
    for(std::size_t i = 0; i < data.size(); ++i) {
      if(firstIteration) {
        mergeProperty(currentVertex.second, data[i].second);
        currentVertex.first = data[i].first;
        firstIteration = false;
      } else {
        if(data[i].first != currentVertex.first) {
          if(data[i].first.x() != currentVertex.first.x()) {
            processVertex(output);
            //std::cout << scanline.size() << " ";
            countFromBelow.clear(); //should already be clear
            writeOutput(currentVertex.first.x(), result, output);
            currentVertex.second.clear();
            mergeProperty(currentVertex.second, data[i].second);
            currentVertex.first = data[i].first;
            //std::cout << assertRedundant(scanline) << "/" << scanline.size() << " ";
          } else {
            processVertex(output);
            currentVertex.second.clear();
            mergeProperty(currentVertex.second, data[i].second);
            currentVertex.first = data[i].first;
          }
        } else {
          mergeProperty(currentVertex.second, data[i].second);
        }
      }
    }
    processVertex(output);
    writeOutput(currentVertex.first.x(), result, output);
    //std::cout << assertRedundant(scanline) << "/" << scanline.size() << "\n";
    //std::cout << scanline.size() << "\n";
  }

private:
  //private supporting types

  template <class T>
  class less_vertex_data {
  public:
    less_vertex_data() {}
    bool operator()(const T& lvalue, const T& rvalue) const {
      if(lvalue.first.x() < rvalue.first.x()) return true;
      if(lvalue.first.x() > rvalue.first.x()) return false;
      if(lvalue.first.y() < rvalue.first.y()) return true;
      return false;
    }
  };

  template <typename T>
  struct lessPropertyCount {
    lessPropertyCount() {}
    bool operator()(const T& a, const T& b) {
      return a.first < b.first;
    }
  };

  //private static member functions

  static inline void mergeProperty(property_map& lvalue, std::pair<property_type, int>& rvalue) {
    typename property_map::iterator itr = std::lower_bound(lvalue.begin(), lvalue.end(), rvalue, 
                                                          lessPropertyCount<std::pair<property_type, int> >());
    if(itr == lvalue.end() ||
       (*itr).first != rvalue.first) {
      lvalue.insert(itr, rvalue);
    } else {
      (*itr).second += rvalue.second;
      if((*itr).second == 0)
        lvalue.erase(itr);
    }
//     if(assertSorted(lvalue)) {
//       std::cout << "in mergeProperty\n";
//       exit(0);
//     }
  }

//   static inline bool assertSorted(property_map& pset) {
//     bool result = false;
//     for(std::size_t i = 1; i < pset.size(); ++i) {
//       if(pset[i] < pset[i-1]) {
//         std::cout << "Out of Order Error ";
//         result = true;
//       }
//       if(pset[i].first == pset[i-1].first) {
//         std::cout << "Duplicate Property Error ";
//         result = true;
//       }
//       if(pset[0].second == 0 || pset[1].second == 0) {
//         std::cout << "Empty Property Error ";
//         result = true;
//       }
//     }
//     return result;
//   }

  static inline void setProperty(property_set& pset, property_map& pmap) {
    for(typename property_map::iterator itr = pmap.begin(); itr != pmap.end(); ++itr) {
      if((*itr).second > 0) {
        pset.insert(pset.end(), (*itr).first);
      }
    }
  }

  //private data members

  edge_property_vector output;
  scanline_type scanline;
  vertex_data currentVertex;
  property_map tmpVector;
  coordinate_type previousY;
  property_map countFromBelow;
  scanline_iterator scanlinePosition;

  //private member functions

  inline void mergeCount(property_map& lvalue, property_map& rvalue) {
    typename property_map::iterator litr = lvalue.begin();
    typename property_map::iterator ritr = rvalue.begin();
    tmpVector.clear();
    while(litr != lvalue.end() && ritr != rvalue.end()) {
      if((*litr).first <= (*ritr).first) {
        if(!tmpVector.empty() &&
           (*litr).first == tmpVector.back().first) {
          tmpVector.back().second += (*litr).second;
        } else {
          tmpVector.push_back(*litr);
        }
        ++litr;
      } else if((*ritr).first <= (*litr).first) {
        if(!tmpVector.empty() &&
           (*ritr).first == tmpVector.back().first) {
          tmpVector.back().second += (*ritr).second;
        } else {
          tmpVector.push_back(*ritr);
        }
        ++ritr;
      }
    }
    while(litr != lvalue.end()) {
      if(!tmpVector.empty() &&
         (*litr).first == tmpVector.back().first) {
        tmpVector.back().second += (*litr).second;
      } else {
        tmpVector.push_back(*litr);
      }
      ++litr;
    }
    while(ritr != rvalue.end()) {
      if(!tmpVector.empty() &&
         (*ritr).first == tmpVector.back().first) {
        tmpVector.back().second += (*ritr).second;
      } else {
        tmpVector.push_back(*ritr);
      }
      ++ritr;
    }
    lvalue.clear();
    for(std::size_t i = 0; i < tmpVector.size(); ++i) {
      if(tmpVector[i].second != 0) {
        lvalue.push_back(tmpVector[i]);
      }
    }
//     if(assertSorted(lvalue)) {
//       std::cout << "in mergeCount\n";
//       exit(0);
//     }
  }

  inline void processVertex(edge_property_vector& output) {
    if(!countFromBelow.empty()) {
      //we are processing an interval of change in scanline state between
      //previous vertex position and current vertex position where 
      //count from below represents the change on the interval
      //foreach scanline element from previous to current we
      //write the interval on the scanline that is changing
      //the old value and the new value to output
      property_merge_interval<coordinate_type> currentInterval(previousY, currentVertex.first.y());
      coordinate_type currentY = currentInterval.low();
      if(scanlinePosition == scanline.end() ||
         (*scanlinePosition).first != previousY) {
        scanlinePosition = scanline.lower_bound(previousY);
      }
      scanline_iterator previousScanlinePosition = scanlinePosition;
      ++scanlinePosition;
      while(scanlinePosition != scanline.end()) {
        coordinate_type elementY = (*scanlinePosition).first;
        if(elementY <= currentInterval.high()) {
          property_map& countOnLeft = (*previousScanlinePosition).second;
          edge_property element;
          output.push_back(element);
          output.back().first = property_merge_interval<coordinate_type>((*previousScanlinePosition).first, elementY);
          setProperty(output.back().second.first, countOnLeft);
          mergeCount(countOnLeft, countFromBelow);
          setProperty(output.back().second.second, countOnLeft);
          if(output.back().second.first == output.back().second.second) {
            output.pop_back(); //it was an internal vertical edge, not to be output
          }
          else if(output.size() > 1) {
            edge_property& secondToLast = output[output.size()-2];
            if(secondToLast.first.high() == output.back().first.low() &&
               secondToLast.second.first == output.back().second.first &&
               secondToLast.second.second == output.back().second.second) {
              //merge output onto previous output because properties are
              //identical on both sides implying an internal horizontal edge
              secondToLast.first.high(output.back().first.high());
              output.pop_back();
            }
          }
          if(previousScanlinePosition == scanline.begin()) {
            if(countOnLeft.empty()) {
              scanline.erase(previousScanlinePosition);
            }
          } else {
            scanline_iterator tmpitr = previousScanlinePosition;
            --tmpitr;
            if((*tmpitr).second == (*previousScanlinePosition).second)
              scanline.erase(previousScanlinePosition);
          }
             
        } else if(currentY < currentInterval.high()){
          //elementY > currentInterval.high()
          //split the interval between previous and current scanline elements
          std::pair<coordinate_type, property_map> elementScan;
          elementScan.first = currentInterval.high();
          elementScan.second = (*previousScanlinePosition).second;
          scanlinePosition = scanline.insert(scanlinePosition, elementScan);
          continue;
        } else {
          break;
        }
        previousScanlinePosition = scanlinePosition;
        currentY = previousY = elementY;
        ++scanlinePosition;
        if(scanlinePosition == scanline.end() &&
           currentY < currentInterval.high()) {
          //insert a new element for top of range
          std::pair<coordinate_type, property_map> elementScan;
          elementScan.first = currentInterval.high();
          scanlinePosition = scanline.insert(scanline.end(), elementScan);
        } 
      }
      if(scanlinePosition == scanline.end() &&
         currentY < currentInterval.high()) {
        //handle case where we iterated to end of the scanline
        //we need to insert an element into the scanline at currentY
        //with property value coming from below
        //and another one at currentInterval.high() with empty property value
        mergeCount(scanline[currentY], countFromBelow);
        std::pair<coordinate_type, property_map> elementScan;
        elementScan.first = currentInterval.high();
        scanline.insert(scanline.end(), elementScan);

        edge_property element;
        output.push_back(element);
        output.back().first = property_merge_interval<coordinate_type>(currentY, currentInterval.high());
        setProperty(output.back().second.second, countFromBelow);
        mergeCount(countFromBelow, currentVertex.second);
      } else {
        mergeCount(countFromBelow, currentVertex.second);
        if(countFromBelow.empty()) {
          if(previousScanlinePosition == scanline.begin()) {
            if((*previousScanlinePosition).second.empty()) {
              scanline.erase(previousScanlinePosition);
              //previousScanlinePosition = scanline.end();
              //std::cout << "ERASE_A ";
            }
          } else {
            scanline_iterator tmpitr = previousScanlinePosition;
            --tmpitr;
            if((*tmpitr).second == (*previousScanlinePosition).second) {
              scanline.erase(previousScanlinePosition);
              //previousScanlinePosition = scanline.end();
              //std::cout << "ERASE_B ";
            }
          }
        }
      }
    } else {
      //count from below is empty, we are starting a new interval of change
      countFromBelow = currentVertex.second;
      scanlinePosition = scanline.lower_bound(currentVertex.first.y());
      if(scanlinePosition != scanline.end()) {
        if((*scanlinePosition).first != currentVertex.first.y()) {
          if(scanlinePosition != scanline.begin()) {
            //decrement to get the lower position of the first interval this vertex intersects
            --scanlinePosition;
            //insert a new element into the scanline for the incoming vertex
            property_map& countOnLeft = (*scanlinePosition).second;
            std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
            scanlinePosition = scanline.insert(scanlinePosition, element);
          } else {
            property_map countOnLeft;
            std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
            scanlinePosition = scanline.insert(scanlinePosition, element);
          }
        }
      } else {
        property_map countOnLeft;
        std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
        scanlinePosition = scanline.insert(scanlinePosition, element);
      }
    }
    previousY = currentVertex.first.y();
  }

  template <typename T>
  inline int assertRedundant(T& t) {
    if(t.empty()) return 0;
    int count = 0; 
    typename T::iterator itr = t.begin();
    if((*itr).second.empty())
      ++count;
    typename T::iterator itr2 = itr;
    ++itr2;
    while(itr2 != t.end()) {
      if((*itr).second == (*itr2).second)
        ++count;
      itr = itr2;
      ++itr2;
    }
    return count;
  }

  template <typename T>
  inline void performExtract(T& result, property_merge_data& data) {
    if(data.empty()) return;
    //sort
    gtlsort(data.begin(), data.end(), less_vertex_data<vertex_property>());
    
    //scanline
    bool firstIteration = true;
    scanlinePosition = scanline.end();
    for(std::size_t i = 0; i < data.size(); ++i) {
      if(firstIteration) {
        mergeProperty(currentVertex.second, data[i].second);
        currentVertex.first = data[i].first;
        firstIteration = false;
      } else {
        if(data[i].first != currentVertex.first) {
          if(data[i].first.x() != currentVertex.first.x()) {
            processVertex(output);
            //std::cout << scanline.size() << " ";
            countFromBelow.clear(); //should already be clear
            writeGraph(currentVertex.first.x(), result, output, scanline);
            currentVertex.second.clear();
            mergeProperty(currentVertex.second, data[i].second);
            currentVertex.first = data[i].first;
          } else {
            processVertex(output);
            currentVertex.second.clear();
            mergeProperty(currentVertex.second, data[i].second);
            currentVertex.first = data[i].first;
          }
        } else {
          mergeProperty(currentVertex.second, data[i].second);
        }
      }
    }
    processVertex(output);
    writeGraph(currentVertex.first.x(), result, output, scanline);
    //std::cout << scanline.size() << "\n";
  }

  template <typename T>
  inline void insertEdges(T& graph, property_set& p1, property_set& p2) {
    for(typename property_set::iterator itr = p1.begin(); itr != p1.end(); ++itr) {
      for(typename property_set::iterator itr2 = p2.begin(); itr2 != p2.end(); ++itr2) {
        if(*itr != *itr2) {
          graph[*itr].insert(*itr2);
          graph[*itr2].insert(*itr);
        }
      }
    }
  }

  template <typename T>
  inline void propertySetAbove(coordinate_type y, property_set& ps, T& scanline) {
    ps.clear();
    typename T::iterator itr = scanline.find(y);
    if(itr != scanline.end())
      setProperty(ps, (*itr).second);
  }

  template <typename T>
  inline void propertySetBelow(coordinate_type y, property_set& ps, T& scanline) {
    ps.clear();
    typename T::iterator itr = scanline.find(y);
    if(itr != scanline.begin()) {
      --itr;
      setProperty(ps, (*itr).second);
    }
  }

  template <typename T, typename T2>
  inline void writeGraph(coordinate_type x, T& graph, edge_property_vector& output, T2& scanline) {
    if(output.empty()) return;
    edge_property* previousEdgeP = &(output[0]);
    bool firstIteration = true;
    property_set ps;
    for(std::size_t i = 0; i < output.size(); ++i) {
      edge_property& previousEdge = *previousEdgeP;
      edge_property& edge = output[i];
      if(previousEdge.first.high() == edge.first.low()) {
        //horizontal edge
        insertEdges(graph, edge.second.first, previousEdge.second.first);
        //corner 1
        insertEdges(graph, edge.second.first, previousEdge.second.second);
        //other horizontal edge
        insertEdges(graph, edge.second.second, previousEdge.second.second);
        //corner 2
        insertEdges(graph, edge.second.second, previousEdge.second.first);
      } else {
        if(!firstIteration){
          //look up regions above previous edge 
          propertySetAbove(previousEdge.first.high(), ps, scanline);
          insertEdges(graph, ps, previousEdge.second.first);
          insertEdges(graph, ps, previousEdge.second.second);
        }
        //look up regions below current edge in the scanline
        propertySetBelow(edge.first.high(), ps, scanline);
        insertEdges(graph, ps, edge.second.first);
        insertEdges(graph, ps, edge.second.second);
      }
      firstIteration = false;
      //vertical edge
      insertEdges(graph, edge.second.second, edge.second.first);
      //shared region to left
      insertEdges(graph, edge.second.second, edge.second.second);
      //shared region to right
      insertEdges(graph, edge.second.first, edge.second.first);
      previousEdgeP = &(output[i]);
    }
    edge_property& previousEdge = *previousEdgeP;
    propertySetAbove(previousEdge.first.high(), ps, scanline);
    insertEdges(graph, ps, previousEdge.second.first);
    insertEdges(graph, ps, previousEdge.second.second);
    output.clear();
  }

  template <typename Result>
  inline void writeOutput(coordinate_type x, Result& result, edge_property_vector& output) {
    for(std::size_t i = 0; i < output.size(); ++i) {
      edge_property& edge = output[i];
      //edge.second.first is the property set on the left of the edge
      if(!edge.second.first.empty()) {
        typename Result::iterator itr = result.find(edge.second.first);
        if(itr == result.end()) {
          std::pair<property_set, polygon_set_type> element(edge.second.first, polygon_set_type(VERTICAL));
          itr = result.insert(result.end(), element);
        }
        std::pair<interval_data<coordinate_type>, int> element2(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), -1); //right edge of figure
        (*itr).second.insert(x, element2);
      }
      if(!edge.second.second.empty()) {
        //edge.second.second is the property set on the right of the edge
        typename Result::iterator itr = result.find(edge.second.second);
        if(itr == result.end()) {
          std::pair<property_set, polygon_set_type> element(edge.second.second, polygon_set_type(VERTICAL));
          itr = result.insert(result.end(), element);
        }
        std::pair<interval_data<coordinate_type>, int> element3(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), 1); //left edge of figure
        (*itr).second.insert(x, element3);
      }
    }
    output.clear();
  }
};

}
}
#endif