1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_PROPERTY_MERGE_HPP
#define BOOST_POLYGON_PROPERTY_MERGE_HPP
namespace boost { namespace polygon{
template <typename coordinate_type>
class property_merge_point {
private:
coordinate_type x_, y_;
public:
inline property_merge_point() : x_(), y_() {}
inline property_merge_point(coordinate_type x, coordinate_type y) : x_(x), y_(y) {}
//use builtin assign and copy
inline bool operator==(const property_merge_point& that) const { return x_ == that.x_ && y_ == that.y_; }
inline bool operator!=(const property_merge_point& that) const { return !((*this) == that); }
inline bool operator<(const property_merge_point& that) const {
if(x_ < that.x_) return true;
if(x_ > that.x_) return false;
return y_ < that.y_;
}
inline coordinate_type x() const { return x_; }
inline coordinate_type y() const { return y_; }
inline void x(coordinate_type value) { x_ = value; }
inline void y(coordinate_type value) { y_ = value; }
};
template <typename coordinate_type>
class property_merge_interval {
private:
coordinate_type low_, high_;
public:
inline property_merge_interval() : low_(), high_() {}
inline property_merge_interval(coordinate_type low, coordinate_type high) : low_(low), high_(high) {}
//use builtin assign and copy
inline bool operator==(const property_merge_interval& that) const { return low_ == that.low_ && high_ == that.high_; }
inline bool operator!=(const property_merge_interval& that) const { return !((*this) == that); }
inline bool operator<(const property_merge_interval& that) const {
if(low_ < that.low_) return true;
if(low_ > that.low_) return false;
return high_ < that.high_;
}
inline coordinate_type low() const { return low_; }
inline coordinate_type high() const { return high_; }
inline void low(coordinate_type value) { low_ = value; }
inline void high(coordinate_type value) { high_ = value; }
};
template <typename coordinate_type, typename property_type, typename polygon_set_type, typename keytype = std::set<property_type> >
class merge_scanline {
public:
//definitions
typedef keytype property_set;
typedef std::vector<std::pair<property_type, int> > property_map;
typedef std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > vertex_property;
typedef std::pair<property_merge_point<coordinate_type>, property_map> vertex_data;
typedef std::vector<vertex_property> property_merge_data;
//typedef std::map<property_set, polygon_set_type> Result;
typedef std::map<coordinate_type, property_map> scanline_type;
typedef typename scanline_type::iterator scanline_iterator;
typedef std::pair<property_merge_interval<coordinate_type>, std::pair<property_set, property_set> > edge_property;
typedef std::vector<edge_property> edge_property_vector;
//static public member functions
template <typename iT, typename orientation_2d_type>
static inline void
populate_property_merge_data(property_merge_data& pmd, iT input_begin, iT input_end,
const property_type& property, orientation_2d_type orient) {
for( ; input_begin != input_end; ++input_begin) {
std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > element;
if(orient == HORIZONTAL)
element.first = property_merge_point<coordinate_type>((*input_begin).second.first, (*input_begin).first);
else
element.first = property_merge_point<coordinate_type>((*input_begin).first, (*input_begin).second.first);
element.second.first = property;
element.second.second = (*input_begin).second.second;
pmd.push_back(element);
}
}
//public member functions
merge_scanline() : output(), scanline(), currentVertex(), tmpVector(), previousY(), countFromBelow(), scanlinePosition() {}
merge_scanline(const merge_scanline& that) :
output(that.output),
scanline(that.scanline),
currentVertex(that.currentVertex),
tmpVector(that.tmpVector),
previousY(that.previousY),
countFromBelow(that.countFromBelow),
scanlinePosition(that.scanlinePosition)
{}
merge_scanline& operator=(const merge_scanline& that) {
output = that.output;
scanline = that.scanline;
currentVertex = that.currentVertex;
tmpVector = that.tmpVector;
previousY = that.previousY;
countFromBelow = that.countFromBelow;
scanlinePosition = that.scanlinePosition;
return *this;
}
template <typename result_type>
inline void perform_merge(result_type& result, property_merge_data& data) {
if(data.empty()) return;
//sort
gtlsort(data.begin(), data.end(), less_vertex_data<vertex_property>());
//scanline
bool firstIteration = true;
scanlinePosition = scanline.end();
for(std::size_t i = 0; i < data.size(); ++i) {
if(firstIteration) {
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
firstIteration = false;
} else {
if(data[i].first != currentVertex.first) {
if(data[i].first.x() != currentVertex.first.x()) {
processVertex(output);
//std::cout << scanline.size() << " ";
countFromBelow.clear(); //should already be clear
writeOutput(currentVertex.first.x(), result, output);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
//std::cout << assertRedundant(scanline) << "/" << scanline.size() << " ";
} else {
processVertex(output);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
}
} else {
mergeProperty(currentVertex.second, data[i].second);
}
}
}
processVertex(output);
writeOutput(currentVertex.first.x(), result, output);
//std::cout << assertRedundant(scanline) << "/" << scanline.size() << "\n";
//std::cout << scanline.size() << "\n";
}
private:
//private supporting types
template <class T>
class less_vertex_data {
public:
less_vertex_data() {}
bool operator()(const T& lvalue, const T& rvalue) const {
if(lvalue.first.x() < rvalue.first.x()) return true;
if(lvalue.first.x() > rvalue.first.x()) return false;
if(lvalue.first.y() < rvalue.first.y()) return true;
return false;
}
};
template <typename T>
struct lessPropertyCount {
lessPropertyCount() {}
bool operator()(const T& a, const T& b) {
return a.first < b.first;
}
};
//private static member functions
static inline void mergeProperty(property_map& lvalue, std::pair<property_type, int>& rvalue) {
typename property_map::iterator itr = std::lower_bound(lvalue.begin(), lvalue.end(), rvalue,
lessPropertyCount<std::pair<property_type, int> >());
if(itr == lvalue.end() ||
(*itr).first != rvalue.first) {
lvalue.insert(itr, rvalue);
} else {
(*itr).second += rvalue.second;
if((*itr).second == 0)
lvalue.erase(itr);
}
// if(assertSorted(lvalue)) {
// std::cout << "in mergeProperty\n";
// exit(0);
// }
}
// static inline bool assertSorted(property_map& pset) {
// bool result = false;
// for(std::size_t i = 1; i < pset.size(); ++i) {
// if(pset[i] < pset[i-1]) {
// std::cout << "Out of Order Error ";
// result = true;
// }
// if(pset[i].first == pset[i-1].first) {
// std::cout << "Duplicate Property Error ";
// result = true;
// }
// if(pset[0].second == 0 || pset[1].second == 0) {
// std::cout << "Empty Property Error ";
// result = true;
// }
// }
// return result;
// }
static inline void setProperty(property_set& pset, property_map& pmap) {
for(typename property_map::iterator itr = pmap.begin(); itr != pmap.end(); ++itr) {
if((*itr).second > 0) {
pset.insert(pset.end(), (*itr).first);
}
}
}
//private data members
edge_property_vector output;
scanline_type scanline;
vertex_data currentVertex;
property_map tmpVector;
coordinate_type previousY;
property_map countFromBelow;
scanline_iterator scanlinePosition;
//private member functions
inline void mergeCount(property_map& lvalue, property_map& rvalue) {
typename property_map::iterator litr = lvalue.begin();
typename property_map::iterator ritr = rvalue.begin();
tmpVector.clear();
while(litr != lvalue.end() && ritr != rvalue.end()) {
if((*litr).first <= (*ritr).first) {
if(!tmpVector.empty() &&
(*litr).first == tmpVector.back().first) {
tmpVector.back().second += (*litr).second;
} else {
tmpVector.push_back(*litr);
}
++litr;
} else if((*ritr).first <= (*litr).first) {
if(!tmpVector.empty() &&
(*ritr).first == tmpVector.back().first) {
tmpVector.back().second += (*ritr).second;
} else {
tmpVector.push_back(*ritr);
}
++ritr;
}
}
while(litr != lvalue.end()) {
if(!tmpVector.empty() &&
(*litr).first == tmpVector.back().first) {
tmpVector.back().second += (*litr).second;
} else {
tmpVector.push_back(*litr);
}
++litr;
}
while(ritr != rvalue.end()) {
if(!tmpVector.empty() &&
(*ritr).first == tmpVector.back().first) {
tmpVector.back().second += (*ritr).second;
} else {
tmpVector.push_back(*ritr);
}
++ritr;
}
lvalue.clear();
for(std::size_t i = 0; i < tmpVector.size(); ++i) {
if(tmpVector[i].second != 0) {
lvalue.push_back(tmpVector[i]);
}
}
// if(assertSorted(lvalue)) {
// std::cout << "in mergeCount\n";
// exit(0);
// }
}
inline void processVertex(edge_property_vector& output) {
if(!countFromBelow.empty()) {
//we are processing an interval of change in scanline state between
//previous vertex position and current vertex position where
//count from below represents the change on the interval
//foreach scanline element from previous to current we
//write the interval on the scanline that is changing
//the old value and the new value to output
property_merge_interval<coordinate_type> currentInterval(previousY, currentVertex.first.y());
coordinate_type currentY = currentInterval.low();
if(scanlinePosition == scanline.end() ||
(*scanlinePosition).first != previousY) {
scanlinePosition = scanline.lower_bound(previousY);
}
scanline_iterator previousScanlinePosition = scanlinePosition;
++scanlinePosition;
while(scanlinePosition != scanline.end()) {
coordinate_type elementY = (*scanlinePosition).first;
if(elementY <= currentInterval.high()) {
property_map& countOnLeft = (*previousScanlinePosition).second;
edge_property element;
output.push_back(element);
output.back().first = property_merge_interval<coordinate_type>((*previousScanlinePosition).first, elementY);
setProperty(output.back().second.first, countOnLeft);
mergeCount(countOnLeft, countFromBelow);
setProperty(output.back().second.second, countOnLeft);
if(output.back().second.first == output.back().second.second) {
output.pop_back(); //it was an internal vertical edge, not to be output
}
else if(output.size() > 1) {
edge_property& secondToLast = output[output.size()-2];
if(secondToLast.first.high() == output.back().first.low() &&
secondToLast.second.first == output.back().second.first &&
secondToLast.second.second == output.back().second.second) {
//merge output onto previous output because properties are
//identical on both sides implying an internal horizontal edge
secondToLast.first.high(output.back().first.high());
output.pop_back();
}
}
if(previousScanlinePosition == scanline.begin()) {
if(countOnLeft.empty()) {
scanline.erase(previousScanlinePosition);
}
} else {
scanline_iterator tmpitr = previousScanlinePosition;
--tmpitr;
if((*tmpitr).second == (*previousScanlinePosition).second)
scanline.erase(previousScanlinePosition);
}
} else if(currentY < currentInterval.high()){
//elementY > currentInterval.high()
//split the interval between previous and current scanline elements
std::pair<coordinate_type, property_map> elementScan;
elementScan.first = currentInterval.high();
elementScan.second = (*previousScanlinePosition).second;
scanlinePosition = scanline.insert(scanlinePosition, elementScan);
continue;
} else {
break;
}
previousScanlinePosition = scanlinePosition;
currentY = previousY = elementY;
++scanlinePosition;
if(scanlinePosition == scanline.end() &&
currentY < currentInterval.high()) {
//insert a new element for top of range
std::pair<coordinate_type, property_map> elementScan;
elementScan.first = currentInterval.high();
scanlinePosition = scanline.insert(scanline.end(), elementScan);
}
}
if(scanlinePosition == scanline.end() &&
currentY < currentInterval.high()) {
//handle case where we iterated to end of the scanline
//we need to insert an element into the scanline at currentY
//with property value coming from below
//and another one at currentInterval.high() with empty property value
mergeCount(scanline[currentY], countFromBelow);
std::pair<coordinate_type, property_map> elementScan;
elementScan.first = currentInterval.high();
scanline.insert(scanline.end(), elementScan);
edge_property element;
output.push_back(element);
output.back().first = property_merge_interval<coordinate_type>(currentY, currentInterval.high());
setProperty(output.back().second.second, countFromBelow);
mergeCount(countFromBelow, currentVertex.second);
} else {
mergeCount(countFromBelow, currentVertex.second);
if(countFromBelow.empty()) {
if(previousScanlinePosition == scanline.begin()) {
if((*previousScanlinePosition).second.empty()) {
scanline.erase(previousScanlinePosition);
//previousScanlinePosition = scanline.end();
//std::cout << "ERASE_A ";
}
} else {
scanline_iterator tmpitr = previousScanlinePosition;
--tmpitr;
if((*tmpitr).second == (*previousScanlinePosition).second) {
scanline.erase(previousScanlinePosition);
//previousScanlinePosition = scanline.end();
//std::cout << "ERASE_B ";
}
}
}
}
} else {
//count from below is empty, we are starting a new interval of change
countFromBelow = currentVertex.second;
scanlinePosition = scanline.lower_bound(currentVertex.first.y());
if(scanlinePosition != scanline.end()) {
if((*scanlinePosition).first != currentVertex.first.y()) {
if(scanlinePosition != scanline.begin()) {
//decrement to get the lower position of the first interval this vertex intersects
--scanlinePosition;
//insert a new element into the scanline for the incoming vertex
property_map& countOnLeft = (*scanlinePosition).second;
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
scanlinePosition = scanline.insert(scanlinePosition, element);
} else {
property_map countOnLeft;
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
scanlinePosition = scanline.insert(scanlinePosition, element);
}
}
} else {
property_map countOnLeft;
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
scanlinePosition = scanline.insert(scanlinePosition, element);
}
}
previousY = currentVertex.first.y();
}
template <typename T>
inline int assertRedundant(T& t) {
if(t.empty()) return 0;
int count = 0;
typename T::iterator itr = t.begin();
if((*itr).second.empty())
++count;
typename T::iterator itr2 = itr;
++itr2;
while(itr2 != t.end()) {
if((*itr).second == (*itr2).second)
++count;
itr = itr2;
++itr2;
}
return count;
}
template <typename T>
inline void performExtract(T& result, property_merge_data& data) {
if(data.empty()) return;
//sort
gtlsort(data.begin(), data.end(), less_vertex_data<vertex_property>());
//scanline
bool firstIteration = true;
scanlinePosition = scanline.end();
for(std::size_t i = 0; i < data.size(); ++i) {
if(firstIteration) {
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
firstIteration = false;
} else {
if(data[i].first != currentVertex.first) {
if(data[i].first.x() != currentVertex.first.x()) {
processVertex(output);
//std::cout << scanline.size() << " ";
countFromBelow.clear(); //should already be clear
writeGraph(currentVertex.first.x(), result, output, scanline);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
} else {
processVertex(output);
currentVertex.second.clear();
mergeProperty(currentVertex.second, data[i].second);
currentVertex.first = data[i].first;
}
} else {
mergeProperty(currentVertex.second, data[i].second);
}
}
}
processVertex(output);
writeGraph(currentVertex.first.x(), result, output, scanline);
//std::cout << scanline.size() << "\n";
}
template <typename T>
inline void insertEdges(T& graph, property_set& p1, property_set& p2) {
for(typename property_set::iterator itr = p1.begin(); itr != p1.end(); ++itr) {
for(typename property_set::iterator itr2 = p2.begin(); itr2 != p2.end(); ++itr2) {
if(*itr != *itr2) {
graph[*itr].insert(*itr2);
graph[*itr2].insert(*itr);
}
}
}
}
template <typename T>
inline void propertySetAbove(coordinate_type y, property_set& ps, T& scanline) {
ps.clear();
typename T::iterator itr = scanline.find(y);
if(itr != scanline.end())
setProperty(ps, (*itr).second);
}
template <typename T>
inline void propertySetBelow(coordinate_type y, property_set& ps, T& scanline) {
ps.clear();
typename T::iterator itr = scanline.find(y);
if(itr != scanline.begin()) {
--itr;
setProperty(ps, (*itr).second);
}
}
template <typename T, typename T2>
inline void writeGraph(coordinate_type x, T& graph, edge_property_vector& output, T2& scanline) {
if(output.empty()) return;
edge_property* previousEdgeP = &(output[0]);
bool firstIteration = true;
property_set ps;
for(std::size_t i = 0; i < output.size(); ++i) {
edge_property& previousEdge = *previousEdgeP;
edge_property& edge = output[i];
if(previousEdge.first.high() == edge.first.low()) {
//horizontal edge
insertEdges(graph, edge.second.first, previousEdge.second.first);
//corner 1
insertEdges(graph, edge.second.first, previousEdge.second.second);
//other horizontal edge
insertEdges(graph, edge.second.second, previousEdge.second.second);
//corner 2
insertEdges(graph, edge.second.second, previousEdge.second.first);
} else {
if(!firstIteration){
//look up regions above previous edge
propertySetAbove(previousEdge.first.high(), ps, scanline);
insertEdges(graph, ps, previousEdge.second.first);
insertEdges(graph, ps, previousEdge.second.second);
}
//look up regions below current edge in the scanline
propertySetBelow(edge.first.high(), ps, scanline);
insertEdges(graph, ps, edge.second.first);
insertEdges(graph, ps, edge.second.second);
}
firstIteration = false;
//vertical edge
insertEdges(graph, edge.second.second, edge.second.first);
//shared region to left
insertEdges(graph, edge.second.second, edge.second.second);
//shared region to right
insertEdges(graph, edge.second.first, edge.second.first);
previousEdgeP = &(output[i]);
}
edge_property& previousEdge = *previousEdgeP;
propertySetAbove(previousEdge.first.high(), ps, scanline);
insertEdges(graph, ps, previousEdge.second.first);
insertEdges(graph, ps, previousEdge.second.second);
output.clear();
}
template <typename Result>
inline void writeOutput(coordinate_type x, Result& result, edge_property_vector& output) {
for(std::size_t i = 0; i < output.size(); ++i) {
edge_property& edge = output[i];
//edge.second.first is the property set on the left of the edge
if(!edge.second.first.empty()) {
typename Result::iterator itr = result.find(edge.second.first);
if(itr == result.end()) {
std::pair<property_set, polygon_set_type> element(edge.second.first, polygon_set_type(VERTICAL));
itr = result.insert(result.end(), element);
}
std::pair<interval_data<coordinate_type>, int> element2(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), -1); //right edge of figure
(*itr).second.insert(x, element2);
}
if(!edge.second.second.empty()) {
//edge.second.second is the property set on the right of the edge
typename Result::iterator itr = result.find(edge.second.second);
if(itr == result.end()) {
std::pair<property_set, polygon_set_type> element(edge.second.second, polygon_set_type(VERTICAL));
itr = result.insert(result.end(), element);
}
std::pair<interval_data<coordinate_type>, int> element3(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), 1); //left edge of figure
(*itr).second.insert(x, element3);
}
}
output.clear();
}
};
}
}
#endif