matrix_inverse.inl 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
/// 
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
/// 
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_inverse
/// @file glm/gtc/matrix_inverse.inl
/// @date 2005-12-21 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

namespace glm
{
	template <typename T> 
	GLM_FUNC_QUALIFIER detail::tmat3x3<T> affineInverse
	(
		detail::tmat3x3<T> const & m
	)
	{
		detail::tmat3x3<T> Result(m);
		Result[2] = detail::tvec3<T>(0, 0, 1);
		Result = transpose(Result);
		detail::tvec3<T> Translation = Result * detail::tvec3<T>(-detail::tvec2<T>(m[2]), m[2][2]);
		Result[2] = Translation;
		return Result;
	}

	template <typename T> 
	GLM_FUNC_QUALIFIER detail::tmat4x4<T> affineInverse
	(
		detail::tmat4x4<T> const & m
	)
	{
		detail::tmat4x4<T> Result(m);
		Result[3] = detail::tvec4<T>(0, 0, 0, 1);
		Result = transpose(Result);
		detail::tvec4<T> Translation = Result * detail::tvec4<T>(-detail::tvec3<T>(m[3]), m[3][3]);
		Result[3] = Translation;
		return Result;
	}

	template <typename valType> 
	GLM_FUNC_QUALIFIER detail::tmat2x2<valType> inverseTranspose
	(
		detail::tmat2x2<valType> const & m
	)
	{
		valType Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];

		detail::tmat2x2<valType> Inverse(
			+ m[1][1] / Determinant,
			- m[0][1] / Determinant,
			- m[1][0] / Determinant, 
			+ m[0][0] / Determinant);

		return Inverse;
	}

	template <typename valType> 
	GLM_FUNC_QUALIFIER detail::tmat3x3<valType> inverseTranspose
	(
		detail::tmat3x3<valType> const & m
	)
	{
		valType Determinant = 
			+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
			- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
			+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);

		detail::tmat3x3<valType> Inverse;
		Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
		Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
		Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
		Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
		Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
		Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
		Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
		Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
		Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
		Inverse /= Determinant;

		return Inverse;
	}

	template <typename valType> 
	GLM_FUNC_QUALIFIER detail::tmat4x4<valType> inverseTranspose
	(
		detail::tmat4x4<valType> const & m
	)
	{
		valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
		valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
		valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
		valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
		valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
		valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
		valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
		valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
		valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
		valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
		valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
		valType SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
		valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
		valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
		valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
		valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
		valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
		valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
		valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];

		detail::tmat4x4<valType> Inverse;
		Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
		Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
		Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
		Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);

		Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
		Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
		Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
		Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);

		Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
		Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
		Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
		Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);

		Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
		Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
		Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
		Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);

		valType Determinant = 
			+ m[0][0] * Inverse[0][0] 
			+ m[0][1] * Inverse[0][1] 
			+ m[0][2] * Inverse[0][2] 
			+ m[0][3] * Inverse[0][3];

		Inverse /= Determinant;
    
		return Inverse;
	}
}//namespace glm