rectangle_formation.hpp 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*
    Copyright 2008 Intel Corporation
 
    Use, modification and distribution are subject to the Boost Software License,
    Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_RECTANGLE_FORMATION_HPP
#define BOOST_POLYGON_RECTANGLE_FORMATION_HPP
namespace boost { namespace polygon{

namespace rectangle_formation {
  template <class T> 
  class ScanLineToRects {
  public:
    typedef T rectangle_type;
    typedef typename rectangle_traits<T>::coordinate_type coordinate_type;
    typedef rectangle_data<coordinate_type> scan_rect_type;
  private:
    
    typedef std::set<scan_rect_type, less_rectangle_concept<scan_rect_type, scan_rect_type> > ScanData;
    ScanData scanData_;
    bool haveCurrentRect_;
    scan_rect_type currentRect_;
    orientation_2d orient_;
    typename rectangle_traits<T>::coordinate_type currentCoordinate_;
  public:
    inline ScanLineToRects() : scanData_(), haveCurrentRect_(), currentRect_(), orient_(), currentCoordinate_() {}
    
    inline ScanLineToRects(orientation_2d orient, rectangle_type model) :
      scanData_(orientation_2d(orient.to_int() ? VERTICAL : HORIZONTAL)),
      haveCurrentRect_(false), currentRect_(), orient_(orient), currentCoordinate_() {
      assign(currentRect_, model);
      currentCoordinate_ = (std::numeric_limits<coordinate_type>::max)();
    }
    
    template <typename CT>
    inline ScanLineToRects& processEdge(CT& rectangles, const interval_data<coordinate_type>& edge);
    
    inline ScanLineToRects& nextMajorCoordinate(coordinate_type currentCoordinate) {
      if(haveCurrentRect_) {
        scanData_.insert(scanData_.end(), currentRect_);
        haveCurrentRect_ = false;
      }
      currentCoordinate_ = currentCoordinate;
      return *this;
    }
    
  };

  template <class CT, class ST, class rectangle_type, typename interval_type, typename coordinate_type> inline CT& 
  processEdge_(CT& rectangles, ST& scanData, const interval_type& edge, 
               bool& haveCurrentRect, rectangle_type& currentRect, coordinate_type currentCoordinate, orientation_2d orient) 
  {
    typedef typename CT::value_type result_type;
    bool edgeProcessed = false;
    if(!scanData.empty()) {

      //process all rectangles in the scanData that touch the edge
      typename ST::iterator dataIter = scanData.lower_bound(rectangle_type(edge, edge));
      //decrement beginIter until its low is less than edge's low
      while((dataIter == scanData.end() || (*dataIter).get(orient).get(LOW) > edge.get(LOW)) && 
            dataIter != scanData.begin())
        {
          --dataIter;
        }
      //process each rectangle until the low end of the rectangle 
      //is greater than the high end of the edge
      while(dataIter != scanData.end() &&
            (*dataIter).get(orient).get(LOW) <= edge.get(HIGH)) 
        {
          const rectangle_type& rect = *dataIter;
          //if the rectangle data intersects the edge at all
          if(rect.get(orient).get(HIGH) >= edge.get(LOW)) {
            if(contains(rect.get(orient), edge, true)) {
              //this is a closing edge
              //we need to write out the intersecting rectangle and
              //insert between 0 and 2 rectangles into the scanData
              //write out rectangle
              rectangle_type tmpRect = rect;

              if(rect.get(orient.get_perpendicular()).get(LOW) < currentCoordinate) {
                //set the high coordinate perpedicular to slicing orientation
                //to the current coordinate of the scan event
                tmpRect.set(orient.get_perpendicular().get_direction(HIGH),
                            currentCoordinate);
                result_type result;
                assign(result, tmpRect);
                rectangles.insert(rectangles.end(), result);
              }
              //erase the rectangle from the scan data
              typename ST::iterator nextIter = dataIter;
              ++nextIter;
              scanData.erase(dataIter);
              if(tmpRect.get(orient).get(LOW) < edge.get(LOW)) {
                //insert a rectangle for the overhang of the bottom
                //of the rectangle back into scan data
                rectangle_type lowRect(tmpRect);
                lowRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
                                                                currentCoordinate));
                lowRect.set(orient.get_direction(HIGH), edge.get(LOW));
                scanData.insert(nextIter, lowRect);
              }
              if(tmpRect.get(orient).get(HIGH) > edge.get(HIGH)) {
                //insert a rectangle for the overhang of the top
                //of the rectangle back into scan data
                rectangle_type highRect(tmpRect);
                highRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
                                                                 currentCoordinate));
                highRect.set(orient.get_direction(LOW), edge.get(HIGH));
                scanData.insert(nextIter, highRect);
              }
              //we are done with this edge
              edgeProcessed = true;                 
              break;
            } else {
              //it must be an opening edge
              //assert that rect does not overlap the edge but only touches
              //write out rectangle
              rectangle_type tmpRect = rect;
              //set the high coordinate perpedicular to slicing orientation
              //to the current coordinate of the scan event
              if(tmpRect.get(orient.get_perpendicular().get_direction(LOW)) < currentCoordinate) {
                tmpRect.set(orient.get_perpendicular().get_direction(HIGH),
                            currentCoordinate);
                result_type result;
                assign(result, tmpRect);
                rectangles.insert(rectangles.end(), result);
              }
              //erase the rectangle from the scan data
              typename ST::iterator nextIter = dataIter;
              ++nextIter;
              scanData.erase(dataIter);
              dataIter = nextIter;
              if(haveCurrentRect) {
                if(currentRect.get(orient).get(HIGH) >= edge.get(LOW)){
                  if(!edgeProcessed && currentRect.get(orient.get_direction(HIGH)) > edge.get(LOW)){
                    rectangle_type tmpRect2(currentRect);
                    tmpRect2.set(orient.get_direction(HIGH), edge.get(LOW));
                    scanData.insert(nextIter, tmpRect2);
                    if(currentRect.get(orient.get_direction(HIGH)) > edge.get(HIGH)) {
                      currentRect.set(orient, interval_data<coordinate_type>(edge.get(HIGH), currentRect.get(orient.get_direction(HIGH))));
                    } else {
                      haveCurrentRect = false;
                    }
                  } else {
                    //extend the top of current rect
                    currentRect.set(orient.get_direction(HIGH), 
                                    (std::max)(edge.get(HIGH), 
                                               tmpRect.get(orient.get_direction(HIGH))));
                  }
                } else {
                  //insert current rect into the scanData
                  scanData.insert(nextIter, currentRect);
                  //create a new current rect
                  currentRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
                                                                      currentCoordinate));
                  currentRect.set(orient, interval_data<coordinate_type>((std::min)(tmpRect.get(orient).get(LOW), 
                                                       edge.get(LOW)),
                                                                         (std::max)(tmpRect.get(orient).get(HIGH),
                                                       edge.get(HIGH))));
                }
              } else {
                haveCurrentRect = true;
                currentRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
                                                                    currentCoordinate));
                currentRect.set(orient, interval_data<coordinate_type>((std::min)(tmpRect.get(orient).get(LOW), 
                                                     edge.get(LOW)),
                                                                       (std::max)(tmpRect.get(orient).get(HIGH),
                                                     edge.get(HIGH))));
              }
              //skip to nextIter position
              edgeProcessed = true;
              continue;
            }
            //edgeProcessed = true;
          }
          ++dataIter;
        } //end while edge intersects rectangle data 

    }
    if(!edgeProcessed) {
      if(haveCurrentRect) {
        if(currentRect.get(orient.get_perpendicular().get_direction(HIGH)) 
           == currentCoordinate &&
           currentRect.get(orient.get_direction(HIGH)) >= edge.get(LOW)) 
          {
            if(currentRect.get(orient.get_direction(HIGH)) > edge.get(LOW)){
              rectangle_type tmpRect(currentRect);
              tmpRect.set(orient.get_direction(HIGH), edge.get(LOW));
              scanData.insert(scanData.end(), tmpRect);
              if(currentRect.get(orient.get_direction(HIGH)) > edge.get(HIGH)) {
                currentRect.set(orient, 
                                interval_data<coordinate_type>(edge.get(HIGH), 
                                         currentRect.get(orient.get_direction(HIGH))));
                return rectangles;
              } else {
                haveCurrentRect = false;
                return rectangles;
              }
            }
            //extend current rect
            currentRect.set(orient.get_direction(HIGH), edge.get(HIGH));
            return rectangles;
          }
        scanData.insert(scanData.end(), currentRect);
        haveCurrentRect = false;
      } 
      rectangle_type tmpRect(currentRect);
      tmpRect.set(orient.get_perpendicular(), interval_data<coordinate_type>(currentCoordinate,
                                                      currentCoordinate));
      tmpRect.set(orient, edge);
      scanData.insert(tmpRect);
      return rectangles;
    }
    return rectangles;
  
  }

  template <class T> 
  template <class CT> 
  inline 
  ScanLineToRects<T>& ScanLineToRects<T>::processEdge(CT& rectangles, const interval_data<coordinate_type>& edge) 
  {
    processEdge_(rectangles, scanData_, edge, haveCurrentRect_, currentRect_, currentCoordinate_, orient_);
    return *this;
  }


} //namespace rectangle_formation

  template <typename T, typename T2>
  struct get_coordinate_type_for_rectangles {
    typedef typename polygon_traits<T>::coordinate_type type;
  };
  template <typename T>
  struct get_coordinate_type_for_rectangles<T, rectangle_concept> {
    typedef typename rectangle_traits<T>::coordinate_type type;
  };

  template <typename output_container, typename iterator_type, typename rectangle_concept>
  void form_rectangles(output_container& output, iterator_type begin, iterator_type end,
                       orientation_2d orient, rectangle_concept ) {
    typedef typename output_container::value_type rectangle_type;
    typedef typename get_coordinate_type_for_rectangles<rectangle_type, typename geometry_concept<rectangle_type>::type>::type Unit;
    rectangle_data<Unit> model;
    Unit prevPos = (std::numeric_limits<Unit>::max)();
    rectangle_formation::ScanLineToRects<rectangle_data<Unit> > scanlineToRects(orient, model);
    for(iterator_type itr = begin;
        itr != end; ++ itr) {
      Unit pos = (*itr).first;
      if(pos != prevPos) {
        scanlineToRects.nextMajorCoordinate(pos);
        prevPos = pos;
      }
      Unit lowy = (*itr).second.first;
      iterator_type tmp_itr = itr;
      ++itr;
      Unit highy = (*itr).second.first;
      scanlineToRects.processEdge(output, interval_data<Unit>(lowy, highy));
      if(abs((*itr).second.second) > 1) itr = tmp_itr; //next edge begins from this vertex
    }
  }
}
}
#endif