rnd_index_loader.hpp 4.98 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Copyright 2003-2008 Joaquin M Lopez Munoz.
 * Distributed under the Boost Software License, Version 1.0.
 * (See accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org/libs/multi_index for library home page.
 */

#ifndef BOOST_MULTI_INDEX_DETAIL_RND_INDEX_LOADER_HPP
#define BOOST_MULTI_INDEX_DETAIL_RND_INDEX_LOADER_HPP

#if defined(_MSC_VER)&&(_MSC_VER>=1200)
#pragma once
#endif

#include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
#include <algorithm>
#include <boost/detail/allocator_utilities.hpp>
#include <boost/multi_index/detail/auto_space.hpp>
#include <boost/multi_index/detail/prevent_eti.hpp>
#include <boost/multi_index/detail/rnd_index_ptr_array.hpp>
#include <boost/noncopyable.hpp>
#include <cstddef>

namespace boost{

namespace multi_index{

namespace detail{

/* This class implements a serialization rearranger for random access
 * indices. In order to achieve O(n) performance, the following strategy
 * is followed: the nodes of the index are handled as if in a bidirectional
 * list, where the next pointers are stored in the original
 * random_access_index_ptr_array and the prev pointers are stored in
 * an auxiliary array. Rearranging of nodes in such a bidirectional list
 * is constant time. Once all the arrangements are performed (on destruction
 * time) the list is traversed in reverse order and
 * pointers are swapped and set accordingly so that they recover its
 * original semantics ( *(node->up())==node ) while retaining the
 * new order.
 */

template<typename Allocator>
class random_access_index_loader_base:private noncopyable
{
protected:
  typedef typename prevent_eti<
    Allocator,
    random_access_index_node_impl<
      typename boost::detail::allocator::rebind_to<
        Allocator,
        char
      >::type
    >
  >::type                                           node_impl_type;
  typedef typename node_impl_type::pointer          node_impl_pointer;
  typedef random_access_index_ptr_array<Allocator>  ptr_array;

  random_access_index_loader_base(const Allocator& al_,ptr_array& ptrs_):
    al(al_),
    ptrs(ptrs_),
    header(*ptrs.end()),
    prev_spc(al,0),
    preprocessed(false)
  {}

  ~random_access_index_loader_base()
  {
    if(preprocessed)
    {
      node_impl_pointer n=header;
      next(n)=n;

      for(std::size_t i=ptrs.size();i--;){
        n=prev(n);
        std::size_t d=position(n);
        if(d!=i){
          node_impl_pointer m=prev(next_at(i));
          std::swap(m->up(),n->up());
          next_at(d)=next_at(i);
          std::swap(prev_at(d),prev_at(i));
        }
        next(n)=n;
      }
    }
  }

  void rearrange(node_impl_pointer position,node_impl_pointer x)
  {
    preprocess(); /* only incur this penalty if rearrange() is ever called */
    if(position==node_impl_pointer(0))position=header;
    next(prev(x))=next(x);
    prev(next(x))=prev(x);
    prev(x)=position;
    next(x)=next(position);
    next(prev(x))=prev(next(x))=x;
  }

private:
  void preprocess()
  {
    if(!preprocessed){
      /* get space for the auxiliary prev array */
      auto_space<node_impl_pointer,Allocator> tmp(al,ptrs.size()+1);
      prev_spc.swap(tmp);

      /* prev_spc elements point to the prev nodes */
      std::rotate_copy(
        &*ptrs.begin(),&*ptrs.end(),&*ptrs.end()+1,&*prev_spc.data());

      /* ptrs elements point to the next nodes */
      std::rotate(&*ptrs.begin(),&*ptrs.begin()+1,&*ptrs.end()+1);

      preprocessed=true;
    }
  }

  std::size_t position(node_impl_pointer x)const
  {
    return (std::size_t)(x->up()-ptrs.begin());
  }

  node_impl_pointer& next_at(std::size_t n)const
  {
    return *ptrs.at(n);
  }

  node_impl_pointer& prev_at(std::size_t n)const
  {
    return *(prev_spc.data()+n);
  }

  node_impl_pointer& next(node_impl_pointer x)const
  {
    return *(x->up());
  }

  node_impl_pointer& prev(node_impl_pointer x)const
  {
    return prev_at(position(x));
  }

  Allocator                               al;
  ptr_array&                              ptrs;
  node_impl_pointer                       header;
  auto_space<node_impl_pointer,Allocator> prev_spc;
  bool                                    preprocessed;
};

template<typename Node,typename Allocator>
class random_access_index_loader:
  private random_access_index_loader_base<Allocator>
{
  typedef random_access_index_loader_base<Allocator> super;
  typedef typename super::node_impl_pointer          node_impl_pointer;
  typedef typename super::ptr_array                  ptr_array;

public:
  random_access_index_loader(const Allocator& al_,ptr_array& ptrs_):
    super(al_,ptrs_)
  {}

  void rearrange(Node* position,Node *x)
  {
    super::rearrange(position?position->impl():node_impl_pointer(0),x->impl());
  }
};

} /* namespace multi_index::detail */

} /* namespace multi_index */

} /* namespace boost */

#endif