coplanar.cpp 7.52 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * coplanar.cpp - coplanar class implementation
 *
 * Copyright (C) 2008 Michael Margraf <michael.margraf@alumni.tu-berlin.de>
 * Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
 * Modified for Kicad: 2011 jean-pierre.charras
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this package; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */


#include <stdlib.h>
#include <stdio.h>
#include <string.h>
29
#include <cmath>
30

31 32 33
#include <units.h>
#include <transline.h>
#include <coplanar.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

COPLANAR::COPLANAR() : TRANSLINE()
{
    m_name = "CoPlanar";
    backMetal = false;
}


GROUNDEDCOPLANAR::GROUNDEDCOPLANAR() : COPLANAR()
{
    m_name = "GrCoPlanar";
    backMetal = true;
}


// -------------------------------------------------------------------
void COPLANAR::getProperties()
{
    f   = getProperty( FREQUENCY_PRM );
    w   = getProperty( PHYS_WIDTH_PRM );
    s   = getProperty( PHYS_S_PRM );
    len = getProperty( PHYS_LEN_PRM );
    h   = getProperty( H_PRM );
    t   = getProperty( T_PRM );

    er    = getProperty( EPSILONR_PRM );
    murC  = getProperty( MURC_PRM );
    tand  = getProperty( TAND_PRM );
    sigma = 1.0 / getProperty( RHO_PRM );
    Z0    = getProperty( Z0_PRM );
    ang_l = getProperty( ANG_L_PRM );
}


// -------------------------------------------------------------------
void COPLANAR::calc()
{
    skindepth = skin_depth();

    // other local variables (quasi-static constants)
    double k1, kk1, kpk1, k2, k3, q1, q2, q3 = 0, qz, er0 = 0;
    double zl_factor;

    // compute the necessary quasi-static approx. (K1, K3, er(0) and Z(0))
    k1   = w / (w + s + s);
    kk1  = ellipk( k1 );
    kpk1 = ellipk( sqrt( 1 - k1 * k1 ) );
    q1   = kk1 / kpk1;

    // backside is metal
    if( backMetal )
    {
        k3  = tanh( (M_PI / 4) * (w / h) ) / tanh( (M_PI / 4) * (w + s + s) / h );
        q3  = ellipk( k3 ) / ellipk( sqrt( 1 - k3 * k3 ) );
        qz  = 1 / (q1 + q3);
        er0 = 1 + q3 * qz * (er - 1);
        zl_factor = ZF0 / 2 * qz;
    }
    // backside is air
    else
    {
        k2  = sinh( (M_PI / 4) * (w / h) ) / sinh( (M_PI / 4) * (w + s + s) / h );
        q2  = ellipk( k2 ) / ellipk( sqrt( 1 - k2 * k2 ) );
        er0 = 1 + (er - 1) / 2 * q2 / q1;
        zl_factor = ZF0 / 4 / q1;
    }

    // adds effect of strip thickness
    if( t > 0 )
    {
        double d, se, We, ke, qe;
        d  = (t * 1.25 / M_PI) * ( 1 + log( 4 * M_PI * w / t ) );
        se = s - d;
        We = w + d;

        // modifies k1 accordingly (k1 = ke)
        ke = We / (We + se + se); // ke = k1 + (1 - k1 * k1) * d / 2 / s;
        qe = ellipk( ke ) / ellipk( sqrt( 1 - ke * ke ) );

        // backside is metal
        if( backMetal )
        {
            qz  = 1 / (qe + q3);
            er0 = 1 + q3 * qz * (er - 1);
            zl_factor = ZF0 / 2 * qz;
        }
        // backside is air
        else
        {
            zl_factor = ZF0 / 4 / qe;
        }

        // modifies er0 as well
        er0 = er0 - (0.7 * (er0 - 1) * t / s) / ( q1 + (0.7 * t / s) );
    }

    // pre-compute square roots
    double sr_er  = sqrt( er );
    double sr_er0 = sqrt( er0 );

    // cut-off frequency of the TE0 mode
    double fte = (C0 / 4) / ( h * sqrt( er - 1 ) );

    // dispersion factor G
    double p = log( w / h );
    double u = 0.54 - (0.64 - 0.015 * p) * p;
    double v = 0.43 - (0.86 - 0.54 * p) * p;
    double G = exp( u * log( w / s ) + v );

    // loss constant factors (computed only once for efficency sake)
    double ac = 0;
    if( t > 0 )
    {
        // equations by GHIONE
        double n = (1 - k1) * 8 * M_PI / ( t * (1 + k1) );
        double a = w / 2;
        double b = a + s;
        ac = ( M_PI + log( n * a ) ) / a + ( M_PI + log( n * b ) ) / b;
    }
    double ac_factor = ac / ( 4 * ZF0 * kk1 * kpk1 * (1 - k1 * k1) );
    double ad_factor = ( er / (er - 1) ) * tand * M_PI / C0;


    // ....................................................
    double sr_er_f = sr_er0;

    // add the dispersive effects to er0
    sr_er_f += (sr_er - sr_er0) / ( 1 + G * pow( f / fte, -1.8 ) );

    // for now, the loss are limited to strip losses (no radiation
    // losses yet) losses in neper/length
    atten_cond = 20.0 / log( 10.0 ) * len
                 * ac_factor * sr_er0 * sqrt( M_PI * MU0 * f / sigma );
    atten_dielectric = 20.0 / log( 10.0 ) * len
                       * ad_factor * f * (sr_er_f * sr_er_f - 1) / sr_er_f;

    ang_l = 2.0 * M_PI * len * sr_er_f * f / C0; /* in radians */

    er_eff = sr_er_f * sr_er_f;
    Z0     = zl_factor / sr_er_f;
}


// -------------------------------------------------------------------
void COPLANAR::show_results()
{
    setProperty( Z0_PRM, Z0 );
    setProperty( ANG_L_PRM, ang_l );

    setResult( 0, er_eff, "" );
    setResult( 1, atten_cond, "dB" );
    setResult( 2, atten_dielectric, "dB" );

187
    setResult( 3, skindepth / UNIT_MICRON, "µm" );
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}


// -------------------------------------------------------------------
void COPLANAR::analyze()
{
    getProperties();

    /* compute coplanar parameters */
    calc();

    /* print results in the subwindow */
    show_results();
}


#define MAX_ERROR 0.000001

// -------------------------------------------------------------------
void COPLANAR::synthesize()
{
    double Z0_dest, Z0_current, Z0_result, increment, slope, error;
    int    iteration;

    getProperties();

    /* required value of Z0 */
    Z0_dest = Z0;

    /* Newton's method */
    iteration = 0;

    /* compute coplanar parameters */
    calc();
    Z0_current = Z0;

    error = fabs( Z0_dest - Z0_current );

    while( error > MAX_ERROR )
    {
        iteration++;
        if( isSelected( PHYS_WIDTH_PRM ) )
        {
            increment = w / 100.0;
            w += increment;
        }
        else
        {
            increment = s / 100.0;
            s += increment;
        }
        /* compute coplanar parameters */
        calc();
        Z0_result = Z0;
        /* f(w(n)) = Z0 - Z0(w(n)) */
        /* f'(w(n)) = -f'(Z0(w(n))) */
        /* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
        /* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
        slope = (Z0_result - Z0_current) / increment;
        slope = (Z0_dest - Z0_current) / slope - increment;
        if( isSelected( PHYS_WIDTH_PRM ) )
            w += slope;
        else
            s += slope;
        if( w <= 0.0 )
            w = increment;
        if( s <= 0.0 )
            s = increment;
        /* find new error */
        /* compute coplanar parameters */
        calc();
        Z0_current = Z0;
        error = fabs( Z0_dest - Z0_current );
        if( iteration > 100 )
            break;
    }

    setProperty( PHYS_WIDTH_PRM, w );
    setProperty( PHYS_S_PRM, s );
    /* calculate physical length */
    ang_l = getProperty( ANG_L_PRM );
    len   = C0 / f / sqrt( er_eff ) * ang_l / 2.0 / M_PI; /* in m */
    setProperty( PHYS_LEN_PRM, len );

    /* compute coplanar parameters */
    calc();

    /* print results in the subwindow */
    show_results();
}